Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Testes F e de normalidade avaliados sob diferentes condições experimentais
    (Universidade Federal de Viçosa, 2023-02-17) Ribeiro Neto, Homero; Santos, Nerilson Terra; http://lattes.cnpq.br/1186796802413495
    A pressuposição de normalidade dos erros experimentais é uma das exigências que se impõe para a aplicação de importantes procedimentos inferenciais, como o teste F da Análise de Variância (ANOVA), muito empregada em diversos campos científicos, como as Ciências Agrárias. Nesse sentido, resultados importantes e conhecidos da Estatística, como o Teorema Central do Limite, não impõem, teoricamente, muitas dificuldades para se obter, a partir de praticamente qualquer variável aleatória não normal, uma nova variável aleatória, que seja normal, com a finalidade de não violar essa pressuposição. No entanto, por questões de ordem prática, nem sempre é possível obter um número de repetições por tratamento suficientemente elevado para que o Teorema supracitado seja aplicado. Assim, algumas das alternativas mais empregadas são os testes de normalidade, para, com quantidades limitadas de observações amostrais, inferir a respeito da normalidade dos dados. Porém, as efetividades desses testes, assim como de outros testes de hipóteses, em termos de poder (probabilidade de rejeitar uma hipótese nula falsa) e nível de significância (probabilidade de rejeitar uma hipótese nula verdadeira cometendo o erro tipo I), são influenciadas pelas condições experimentais. Por isso, este trabalho foi realizado com o objetivo de comparar o desempenho dos testes de normalidade mais comuns em condições de igualdade (desigualdade) das médias dos tratamentos, homogeneidade (heterogeneidade) de suas variâncias residuais, número de repetições de cada um e simetria (assimetria) das distribuições de probabilidades dos erros experimentais. Foi possível também analisar o desempenho do próprio teste F, inclusive quando a pressuposição de normalidade foi violada. De maneira geral, foi possível concluir, ao realizar simulações, que o poder empírico dos testes de normalidade tende a cair quando a distribuição empírica dos erros experimentais é simétrica e o número total de observações é muito baixo, e que as taxas de erro tipo I, tanto dos testes de normalidade, quanto do teste F, tendem a aumentar quando as variâncias residuais dos tratamentos são heterogêneas. Palavras-chave: Testes de Hipóteses. Nível de Significância. Erro Tipo I. Erro tipo II. Análise de Variância (ANOVA). Delineamento Inteiramente Casualizado (DIC). Distribuição Normal. Erros Experimentais.
  • Imagem de Miniatura
    Item
    Desempenho de testes de homogeneidade de variâncias em diferentes cenários simulados
    (Universidade Federal de Viçosa, 2021-06-30) Menezes, Gleynner Ghiotto Lima; Santos, Nerilson Terra; http://lattes.cnpq.br/4019897827963986
    A confiabilidade nos resultados obtidos a partir dos testes de hipóteses estão sujeitos ao atendimento de pressuposições, o qual, quando pelo menos uma delas não é satisfeita, seu desempenho ou nível de confiança pode estar comprometido, levando a conclusões errôneas. Deste modo, existem diversos testes na literatura que foram propostos a fim de verificar a suposição de homogeneidade de variâncias em análises estatísticas, sendo esta tomada por diversos autores como o fator de maior influência sobre a sensibilidade dos resultados. No entanto, não existe um consenso sobre o melhor cenário de aplicação para cada um deles. Neste trabalho, pretende-se comparar os testes de homogeneidade de variâncias paramétricos de Bartlett, Levene, Brown- Forsythe, Cochran e Hartley, e os testes não paramétricos de Fligner- Killeen, Conover e Mood, através de um estudo de simulação utilizando o software R, onde, serão realizadas comparações segundo um Delineamento Inteiramente Casualisado sobre os seguintes aspectos de avaliação: proporção de heterogeneidade, proporção de desbalanceamento e diferentes distribuições de probabilidades. A hipótese de homocedasticidade foi adotada para analisar a taxa empírica do erro tipo I (𝛼̂) e, a de heterocedasticidade, para analisar a taxa empírica do poder do teste (𝜋̂). Diante disso, foi observado que, sob distribuição normal, o teste paramétrico de Bartlett obtém o melhor controle da taxa empírica do erro tipo I e obtém alto poder nos cenários balanceados e desbalanceados. Quando os conjuntos de dados são provenientes de populações não normais, o teste paramétrico de Brown- Forsythe foi o mais indicado. Dentre os testes não paramétricos, o teste de Mood foi o mais indicado para atuar sobre as três distribuições de probabilidades avaliadas. Palavras-chave: Heterocedasticidade. Robustez. Poder.