Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
2 resultados
Resultados da Pesquisa
Item Testes F e de normalidade avaliados sob diferentes condições experimentais(Universidade Federal de Viçosa, 2023-02-17) Ribeiro Neto, Homero; Santos, Nerilson Terra; http://lattes.cnpq.br/1186796802413495A pressuposição de normalidade dos erros experimentais é uma das exigências que se impõe para a aplicação de importantes procedimentos inferenciais, como o teste F da Análise de Variância (ANOVA), muito empregada em diversos campos científicos, como as Ciências Agrárias. Nesse sentido, resultados importantes e conhecidos da Estatística, como o Teorema Central do Limite, não impõem, teoricamente, muitas dificuldades para se obter, a partir de praticamente qualquer variável aleatória não normal, uma nova variável aleatória, que seja normal, com a finalidade de não violar essa pressuposição. No entanto, por questões de ordem prática, nem sempre é possível obter um número de repetições por tratamento suficientemente elevado para que o Teorema supracitado seja aplicado. Assim, algumas das alternativas mais empregadas são os testes de normalidade, para, com quantidades limitadas de observações amostrais, inferir a respeito da normalidade dos dados. Porém, as efetividades desses testes, assim como de outros testes de hipóteses, em termos de poder (probabilidade de rejeitar uma hipótese nula falsa) e nível de significância (probabilidade de rejeitar uma hipótese nula verdadeira cometendo o erro tipo I), são influenciadas pelas condições experimentais. Por isso, este trabalho foi realizado com o objetivo de comparar o desempenho dos testes de normalidade mais comuns em condições de igualdade (desigualdade) das médias dos tratamentos, homogeneidade (heterogeneidade) de suas variâncias residuais, número de repetições de cada um e simetria (assimetria) das distribuições de probabilidades dos erros experimentais. Foi possível também analisar o desempenho do próprio teste F, inclusive quando a pressuposição de normalidade foi violada. De maneira geral, foi possível concluir, ao realizar simulações, que o poder empírico dos testes de normalidade tende a cair quando a distribuição empírica dos erros experimentais é simétrica e o número total de observações é muito baixo, e que as taxas de erro tipo I, tanto dos testes de normalidade, quanto do teste F, tendem a aumentar quando as variâncias residuais dos tratamentos são heterogêneas. Palavras-chave: Testes de Hipóteses. Nível de Significância. Erro Tipo I. Erro tipo II. Análise de Variância (ANOVA). Delineamento Inteiramente Casualizado (DIC). Distribuição Normal. Erros Experimentais.Item Desempenho de testes de homogeneidade de variâncias em diferentes cenários simulados(Universidade Federal de Viçosa, 2021-06-30) Menezes, Gleynner Ghiotto Lima; Santos, Nerilson Terra; http://lattes.cnpq.br/4019897827963986A confiabilidade nos resultados obtidos a partir dos testes de hipóteses estão sujeitos ao atendimento de pressuposições, o qual, quando pelo menos uma delas não é satisfeita, seu desempenho ou nível de confiança pode estar comprometido, levando a conclusões errôneas. Deste modo, existem diversos testes na literatura que foram propostos a fim de verificar a suposição de homogeneidade de variâncias em análises estatísticas, sendo esta tomada por diversos autores como o fator de maior influência sobre a sensibilidade dos resultados. No entanto, não existe um consenso sobre o melhor cenário de aplicação para cada um deles. Neste trabalho, pretende-se comparar os testes de homogeneidade de variâncias paramétricos de Bartlett, Levene, Brown- Forsythe, Cochran e Hartley, e os testes não paramétricos de Fligner- Killeen, Conover e Mood, através de um estudo de simulação utilizando o software R, onde, serão realizadas comparações segundo um Delineamento Inteiramente Casualisado sobre os seguintes aspectos de avaliação: proporção de heterogeneidade, proporção de desbalanceamento e diferentes distribuições de probabilidades. A hipótese de homocedasticidade foi adotada para analisar a taxa empírica do erro tipo I (𝛼̂) e, a de heterocedasticidade, para analisar a taxa empírica do poder do teste (𝜋̂). Diante disso, foi observado que, sob distribuição normal, o teste paramétrico de Bartlett obtém o melhor controle da taxa empírica do erro tipo I e obtém alto poder nos cenários balanceados e desbalanceados. Quando os conjuntos de dados são provenientes de populações não normais, o teste paramétrico de Brown- Forsythe foi o mais indicado. Dentre os testes não paramétricos, o teste de Mood foi o mais indicado para atuar sobre as três distribuições de probabilidades avaliadas. Palavras-chave: Heterocedasticidade. Robustez. Poder.