Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
1 resultados
Resultados da Pesquisa
Item Tamanho populacional na detecção de QTL utilizando regressão quantílica em estudos de associação genômica ampla(Universidade Federal de Viçosa, 2023-06-15) Oliveira, Gabriela França; Nascimento, Ana Carolina Campana; http://lattes.cnpq.br/9895689990102944Estudos de associação genômica (Genome-Wide Association Studies - GWAS) são aqueles que buscam identificar marcadores significativos que podem estar relacionadas às características de interesse nos programas de melhoramento. O Modelo Linear Geral (General Linear Model - GLM) é um dos principais procedimentos de avaliação de associações significativas entre marcadores e QTLs (Quantitative Trait Locus). A estimação dos efeitos dos marcadores por meio do GLM é baseada em médias condicionais. No entanto, esta estimação pode ser inadequada quando os erros não seguem distribuição normal e/ou não possuem variâncias homogêneas. Uma metodologia alternativa e que recentemente vem sendo explorada em estudos de associação genômica é a Regressão Quantílica (RQ), a qual possibilita a estimação do efeito dos marcadores ao longo de toda distribuição dos valores fenotípicos. A RQ já foi avaliada com sucesso em estudos de GWAS em um conjunto de dados reais que apresentava um número reduzido de indivíduos. Porém, a performance da técnica para diferentes tamanhos populacionais ainda não foi estudada. Diante do exposto, o objetivo deste estudo, foi avaliar a performance da RQ em estudos de GWAS quanto à capacidade de detectar QTLs associados as características fenotípicas de interesse, considerando diferentes tamanhos populacionais. Para isso, foram utilizados dados simulados, com características de diferentes níveis de herdabilidade (ℎ 2 = 0,30 e 0,50), controlados por 3 e 100 QTLs. Foi simulada uma população de 1000 indivíduos e posteriormente foram realizadas reduções aleatórias de 100 indivíduos até atingir uma população de tamanho 200. O poder de detecção de QTLs e a taxa de falsos positivos foram obtidos por meio do GLM e também por meio da RQ considerando três quantis diferentes (𝜏 = 0,10; 0,50 e 0,90). Como resultado, observou-se que os modelos RQ, apresentaram maior poder de detecção de QTLs em todos os cenários avaliados e taxa de falsos positivos relativamente baixa em cenários com maior número de indivíduos. Os modelos de RQ nos quantis extremos (𝜏 = 0,1 e 0,90) foram aqueles que obtiveram maior poder de detecção de QTLs verdadeiros. Em contrapartida, a análise baseada no GLM detectou poucos (cenários com maior tamanho populacional) ou nenhum QTL nos cenários avaliados. Nos cenários com baixa herdabilidade, o RQ obteve um alto poder de detecção. Dessa forma, verificou-se que a utilização da RQ em GWAS é eficaz, permitindo a detecção de QTLs associados a características de interesse, mesmo em cenários com poucos indivíduos genotipados e fenotipados. Palavras-chave: GWAS. Melhoramento genético. Modelo Linear Geral. Simulação. Quantis condicionais.