Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
2 resultados
Resultados da Pesquisa
Item Redes neurais regularizadas na predição de características agronômicas de soja(Universidade Federal de Viçosa, 2024-04-03) Costa, Noé Mitterhofer Eiterer Ponce de Leon da; Nascimento, Moysés; http://lattes.cnpq.br/9184271760739064Um dos métodos de aprendizado de máquina utilizado atualmente na Seleção Genômica (SG) são as Redes Neurais Artificiais (RNAs) e, dentre estas, a Rede Perceptron de Múltiplas Camadas (PMC). O PMC destaca-se na solução de problemas de classificação ou regressão pelo fato de não exigir um modelo funcional, nem de atender pressuposições e não requerer conhecimento a priori sobre o fenômeno em estudo. No entanto, um problema comum nas PMC é o overfitting, que se trata de um superajustamento da rede aos dados de treinamento. Nestes casos, o modelo não possui capacidade de generalização fazendo que ele seja menos eficaz nas predições em um novo conjunto de dados ou no conjunto de teste. Para contornar este problema, algumas alternativas são as regularizações L1 e L2, que se baseiam nas regressões em penalizações similares aos métodos Lasso e Ridge, respectivamente. O objetivo deste estudo foi avaliar a eficiência do uso da regularização em modelos de PMC aplicados na predição genômica. Além disso, os resultados obtidos foram comparados com outros utilizados em predição genômica, tais como o Perceptron de Múltiplas Camadas (PMC), Árvore de Decisão (AD), Random Forest (RF), Bagging (BAG), Boosting (BOO) e Genomic Best Linear Unbiased Prediction (GBLUP). Os dados são provenientes de 100 genótipos de soja, em um experimento conduzido de setembro a novembro de 2021, no delineamento em blocos ao acaso com três repetições, em que cada parcela foi constituída de uma planta cultivada em um vaso dentro de uma casa de vegetação. Foram avaliadas as características diâmetro de hipocótilo (DH, em milímetros), altura de planta (AP, em centímetros), comprimento total de raiz (CR, em centímetros) e área superficial projetada de raiz (AR, em centímetros quadrados). Na avaliação do PMC regularizado (PMCR), foram utilizados as medidas de capacidade preditiva (CP) e raiz do erro quadrático médio (RMSE) para comparação dos métodos. Em geral, o PMC com regularização L2 melhorou o desempenho em comparação com métodos avaliados em termos de CP e RMSE. Os valores de CP obtidos pelas redes regularizadas L2 foram melhores que todos os métodos avaliados. Especificamente, quando comparado com o segundo o melhor método, os ganhos em termos de CP foram de 6,05%, 25,86%, 32,90% e 0,16% para as características, respectivamente, AP, DH, CR e AR. Já em termos de RMSE, o PMCR apresentou resultados inferiores e desejáveis em 10,81%, 15,00%, 13,62% e 20,41% para as características AP, DH, CR e AR, respectivamente, quando comparado com as redes sem regularização. Quando a comparação é entre todas as metodologias comparativas, o GBLUP obteve o menor valor de RMSE para todas características avaliadas. Palavras-chave: Capacidade Preditiva. Machine Learning. Predição Genômica.Item Computational intelligence and statistical learning applied to Coffea canephora(Universidade Federal de Viçosa, 2022-05-02) Sousa, Ithalo Coelho de; Nascimento, Moysés; http://lattes.cnpq.br/1025209026546066Genomic prediction in Coffee breeding has shown good potential in predictive ability (PA), genetic gains and reduction of the selection cycle time. Many methodologies are used to predict the genetic merit, but some of them require priori assumptions that may increase the complexity of the model. Artificial neural network (ANN) has advantage to not require priori assumptions about the relationships between inputs and the output allowing great flexibility to handle different types of complex non-additive effects, such as dominance and epistasis. Despite this advantage, the biological interpretability of ANNs is still limited. In the elaboration of this research project, two basic questions were formulated. The first question, is it possible to estimate genetic parameters using ANNs? The second, is it possible to reduce the panel marker size with no penalty in predictive ability? For this, the analyzes were divided into two articles. In the first article, the aim was to estimate the heritability and markers effects for two traits in Coffea canephora using an additive-dominance architecture ANN and to compare it with genomic best linear unbiased prediction (GBLUP). In the second article, the aim was to evaluate the trade-off between density marker panels size and the PA for eight agronomic traits in Coffea canephora using machine learning (bagging and random forest) algorithms and comparing them with BLASSO (Bayesian Least Absolute Shrinkage and Selection Operator) method. For both article, the data set consisted of 165 genotypes of Coffea canephora genotyped for 14,387 snp markers, after quality control analysis. For the first article the phenotypic data used was rust (Rus) and yield (Y). For the second article the phenotypic data is composed by vegetative vigor (Vig), rust (Rus) and cercosporiose incidence (Cer), fruit maturation time (Mat), fruit size (FS), plant height (PH), diameter of the canopy projection (DC) and yield (Y). In the first article we reduced the dimensionality of the data using bagging decision tree and then run 64,000 neural networks for each trait selecting the best architecture based on predictive ability for estimating the heritability, obtained results compatibles with those in literature. In the second article, 12 different density market panels were used to evaluate the effect of dimensionality reduction in PA. The common trend observed in the analysis shows an increase of the PA as the number of markers decreases, having a peak in most of the cases when used between 500 and 1,000 markers. In general, the worst results were obtained when used the full SNP panel density. The results of the second article indicate that the reduction of the number of markers can improve the selection of individuals at a lower cost. Computational Intelligence methods prove to be powerful tools for predicting genetic values, to estimate genetic parameters and to select markers. Keywords: GBLUP. BLASSO. BAGGING. Random forest. GEBV. Marker effect. Heritability.