Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Item
    Desempenho da análise de regressão linear realizada sob o delineamento em blocos casualizados
    (Universidade Federal de Viçosa, 2022-02-21) Alassane, Daibou; Ribeiro Júnior, José Ivo; http://lattes.cnpq.br/6945776532964962
    Nas ciências agrárias, muitos experimentos são conduzidos com um ou dois fatores quantitativos sob o delineamento em blocos casualizados (DBC) e com quatro repetições por tratamento, cujas respostas são analisadas por meio da análise de regressão linear. O objetivo deste trabalho foi de avaliar os efeitos dos números de tratamentos e de repetições sobre o desempenho do modelo de regressão linear com uma e duas variáveis independentes e com dados coletados de experimentos instalados sob o DBC. Inicialmente, foi estabelecida uma equação de regressão linear simples para o estudo de uma variável e outra equação de regressão linear múltipla para o estudo de duas variáveis independentes. Em seguida, foram realizadas simulações de acordo com a distribuição normal para os erros do modelo de regressão com média populacional igual a zero e desvios-padrão populacionais para fornecerem diferentes precisões proporcionadas pelos respectivos coeficientes de variação iguais a 10, 20 e 30%. Além disso, foram realizadas três simulações para cada desvio-padrão, separadamente. No total, foram gerados 75.000 conjuntos de dados para o estudo da análise de regressão linear simples e 15.000 para o estudo da análise de regressão linear múltipla. E por fim, para cada uma das medidas avaliadas para verificar o desempenho dos modelos de regressão em função dos diferentes números de tratamentos e de repetições, foi realizada uma análise de superfície de resposta. Para o ajuste de um modelo de regressão linear simples em um experimento instalado sob o DBC, concluiu-se que para um mesmo número de unidades experimentais, o melhor é planejar o menor número possível de níveis quantitativos. Se houver uma expectativa para o modelo linear, pode-se então, recomendar apenas dois níveis quantitativos. Caso contrário, recomendam-se três. Para o ajuste de um modelo de regressão linear múltipla com duas variáveis independentes em um experimento instalado sob o DBC, concluiu-se, do mesmo modo, que para um mesmo número de unidades experimentais, o melhor é planejar, também, o menor número possível de combinações entre os níveis quantitativos das duas variáveis independentes. Se houver uma expectativa para o modelo com apenas efeitos lineares, pode-se então, recomendar apenas dois níveis quantitativos por variável independente avaliados em um fatorial 2 x 2. Caso contrário, recomendam-se três níveis por variável avaliados em um fatorial 3 x 3. Em ambos os casos, todos os tratamentos avaliados com o maior número possível de repetições. Palavras-chave: Tratamentos. Repetições. Precisão experimental.