Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 22
  • Imagem de Miniatura
    Item
    Uma abordagem para a classificação monotônica de dados correlacionados
    (Universidade Federal de Viçosa, 2019-12-18) Ribeiro, Marcelo Carlos; Oliveira, Fernando Luiz Pereira de; http://lattes.cnpq.br/7535255933317217
    A classificação ordenada está cada vez mais atraindo o interesse de áreas como es- tatística, ciências da computação e pesquisa operacional. A restrição de monotonici- dade indica uma relação entre o rótulo da classe com uma ou mais variáveis (atribu- tos). Nesta tese, apresentam-se duas contribuições resultantes de um trabalho de in- vestigação sobre a classificação monotônica de dados correlacionados. Uma consiste em propor uma metodologia que se baseia no método CPP-tri proposto por Sant’Anna, Costa e Pereira (2015), que considere a correlação entre os atributos no cálculo da probabilidade do indivíduo pertencer a classe. A outra, consiste em fornecer um pa- cote R para o método proposto, denominado como CPP-cor Ribeiro et al. (2020). Os algoritmos desenvolvidos basearam-se no código em R disponível em Silva (2016). A metodologia proposta não só agrega a informação relacionada à correlação das va- riáveis ao método, como apresenta resultados significativamente superiores quando comparados aos resultados obtidos pela metodologia tradicional, o método CPP-tri. Palavras-chave: Classificação monotônica. Múltiplas variáveis correlacionadas.
  • Imagem de Miniatura
    Item
    Modelagem com equações diferenciais estocásticas: aplicação no crescimento de frutos de pimenta
    (Universidade Federal de Viçosa, 2019-07-19) Guzzo, Felipe; Cecon, Paulo Roberto; http://lattes.cnpq.br/8446708398667471
    Equações diferenciais estocásticas (EDEs) são usadas para modelar sistemas com a presença de perturbações aleatórias. Uma maneira de se derivar uma EDE, é adicionando um termo de ruído aleatório a uma equação diferencial determinística (EDD). Assim, a diferença entre EDEs e EDDs, é de que a solução de uma EDE é uma coleção de variáveis aleatórias ou processo estocástico. Dessa maneira, diferente da modelagem com EDDs, onde é obtida uma estimativa para a resposta média da variável de interesse, a modelagem com EDEs permite, de maneira direta, uma estimativa de erro associada à resposta média da variável de interesse. O objetivo deste estudo foi modelar o crescimento de frutos de pimenta (Capsicum annuum L.) e obter a distribuição de probabilidade para a média do tamanho (i. e., comprimento e diâmetro) de frutos. Nesse trabalho, foi demonstrado como se obter a distribuição da média do comprimento e do diâmetro de frutos de pimenta, representando uma redução de custos, tempo e trabalho em relação aos métodos biométricos tradicionais. Palavras-chave: Capsicum annum. Equação logística. Tempo de Primeira Passagem
  • Imagem de Miniatura
    Item
    Avaliação de uma nova modelagem proporcional dos efeitos aditivos e de dominância e reflexos na genética quantitativa e na seleção genômica
    (Universidade Federal de Viçosa, 2019-07-24) Miranda, Taiana Lopes Rangel; Resende, Marcos Deon Vilela de; http://lattes.cnpq.br/0513010608168896
    A Seleção Genômica (Genomic Wide Selection – GWS) é uma abordagem muito utilizada nos programas de melhoramento e foi desenvolvida com o intuito de utilizar as informações diretas do DNA no processo de identificação de indivíduos geneticamente superiores, através da predição do valor genético genômico (Genomic Estimated Breeding Value – GEBV). A GWS baseia-se na análise de um grande número de marcadores moleculares SNPs (Single Nucleotide Polymorphisms) extensamente distribuídos no genoma. O modelo genético básico tradicionalmente utilizado na Genética Quantitativa e na GWS (modelo infinitesimal de Fisher, 1918), atribui à variância aditiva uma grande proporção de explicação da variância genética, mesmo sob ação gênica de dominância. Isto se deve ao fato de, no processo de derivação de expressões biométricas, a variância aditiva ser maximizada e a variância de dominância ser o resíduo da variação genética total. Recentemente um modelo genético alternativo foi proposto, no qual a variância de dominância é priorizada usando uma parametrização em que heterozigotos e um dos homozigotos são codificados com valores equivalentes. Nessa proposta o componente genético aditivo ao nível de locos é introduzido no modelo depois da variância de dominância ter sido maximizada. O objetivo desse trabalho foi avaliar essa nova parametrização dos efeitos aditivos e de dominância na seleção genômica e genética quantitativa em geral, e compará-la à parametrização tradicionalmente aplicada utilizando o método G-BLUP (Genomic Best Linear Unbiased Predictor). Adicionalmente essas comparações foram estendidas contemplando diferentes MAFs (Minor Allele Frequency). O procedimento de validação cruzada foi utilizado para avaliar as estimativas dos parâmetros usados nas comparações. Estimativas dos componentes da variação genética e das herdabilidades aditiva, devida à dominância e genotípica total, bem como da capacidade preditiva e do coeficiente da regressão entre o fenótipo e o GEBV foram obtidos, visando a comparação dos modelos. Dois índices combinando as estimativas dos componentes de variância obtidos pelos dois modelos foram propostos e avaliados. Os resultados indicaram que a nova modelagem, bem como a combinação de ambas são alternativas para melhorar as estimativas das variâncias genética aditiva e de dominância e da proporção entre elas.
  • Imagem de Miniatura
    Item
    Avaliações das interações entre os efeitos do modelo estatístico do delineamento em quadrado latino
    (Universidade Federal de Viçosa, 2019-07-15) Ribeiro, Alice dos Santos; Ribeiro Júnior, José Ivo; http://lattes.cnpq.br/5843119694312879
    Na agropecuária, muitos experimentos possuem restrições na casualização. Um delineamento utilizado quando há dois fatores perturbadores é o quadrado latino (DLQ). Porém, há a exigência de que os níveis dos fatores não interajam entre si e nem com os tratamentos. Desse modo, teve-se como objetivo, analisar a pressuposição de ausência de interações e avaliar a influência dos seus efeitos quando presentes no modelo estatístico do DQL 3x3, sobre as estimativas dos efeitos de tratamentos e dos erros experimentais. Para isso, foram formados 169 quadrados latinos, oriundos de um fatorial 13x13 referente aos parâmetros utilizados para os efeitos das interações entre o tratamento 1 e a linha 1 (τω ), e entre o tratamento 2 e a coluna 2 (τγ ). Para os DQLs, foram estimados os efeitos principais dos tratamentos, realizadas as análises de variância e obtidos os valores ajustados. Para as avaliações das pressuposições dos resíduos, foram obtidos os p- valores dos testes de Kolmogorov-Smirnov e de Bartlett, além dos resultados do teste da não aditividade de Tukey (1955). Concluiu-se que as presenças das interações interferiram nas estimativas dos efeitos de tratamentos e nos resultados da análise de variância, o que muitas vezes, implica em conclusões equivocadas sobre o melhor tratamento. Nos resíduos, as interações foram distribuídas de forma uniforme, resultando na detecção da homogeneidade de variâncias pelo teste de Bartlett, mas não, necessariamente, da normalidade pelo teste de Kolmogorov- Smirnov. Já o teste da não aditividade de Tukey (1955) não detectou as presenças das interações no DQL, o que implicou na necessidade de se utilizar, como indicativo da ocorrência de pelo menos uma interação, o aumento do coeficiente de variação em relação às de outras estimativas de experimentos similares. Palavras-chave: DQL. Efeitos de tratamentos. Pressuposições.
  • Imagem de Miniatura
    Item
    Regressão multivariada para determinação de sacarose na presença de cacau usando diferentes instrumentos de espectroscopia NIR
    (Universidade Federal de Viçosa, 2019-02-19) Silva, Raphael Henrique Teixeira; Peternelli, Luiz Alexandre; http://lattes.cnpq.br/3045503690859643
    O objetivo deste trabalho foi realizar um estudo comparativo entre os dois tipos de instrumentos da técnica NIR (o NIR de bancada, com maior resolução (1000nm até 2500nm), e o portátil, com menor resolução (900nm até 1700nm)) e averiguar se o NIR portátil é um substituto ao NIR de bancada. A fim de elucidar a viabilidade, ou não, da utilização do NIR portátil, foram realizados experimentos de mistura entre cacau e sacarose (Experimento 1) e cacau, sacarose e frutose (Experimento 2). Para ambos os experimentos, observou-se que a diferença dos erros relativos entre os instrumentos (NIR portátil e de bancada) não foram tão expressivas, sendo, em média, 4% de diferença entre as amostras do NIR portátil e do bancada para o Experimento 1, e 6% para o Experimento 2. É importante dizer que quando se utiliza a mesma faixa espectral coincidente em ambos os instrumentos (1000nm até 1700nm), pode-se concluir que o NIR portátil é recomendado para estudos de mistura de cacau e sacarose, e para os que envolvem frutose na mistura. Considerando os resultados para as amostras dos produtos industrializados, observou-se que os modelos dos Experimentos 1 e 2, utilizando o NIR portátil, foram capazes de predizer, de forma significativa, os percentuais de sacarose correspondente nas embalagens dos produtos de interesse. Desta forma, o instrumento portátil apresentou ser uma boa alternativa para realizar as análises para predição de sacarose, considerando o custo-benefício, podendo-se reduzir custos com aquisição de instrumento e proporcionar rapidez e maior mobilidade para análises.
  • Imagem de Miniatura
    Item
    Regressão quantílica aplicada à seleção genômica para características oligogênicas em melhoramento de plantas autógamas
    (Universidade Federal de Viçosa, 2019-02-21) Oliveira, Gabriela França; Nascimento, Ana Carolina Campana; http://lattes.cnpq.br/9895689990102944
    O constante crescimento populacional e as limitadas áreas agricultáveis requerem o aumento da produtividade das espécies agronômicas. Nos últimos 50 anos estima-se que 50% do aumento da produtividade mundial dessas espécies foi devido ao melhoramento genético. Para que o melhoramento seja feito de forma eficiente, o conhecimento do sistema reprodutivo das espécies a serem melhoradas é de suma importância para um melhorista, uma vez que tal conhecimento auxilia na adoção de métodos adequados para cada espécie. Em geral, a obtenção de cultivares melhoradas é um processo longo e oneroso. Visando a redução de tempo e custos, além do aumento da acurácia de seleção, a Seleção Genômica Ampla (Genome Wide Selection - GWS) que utiliza informações diretas do DNA por meio dos marcadores moleculares para predição do valor genético genômico dos indivíduos, foi proposta. Dentre as diversas metodologias de GWS, recentemente, foi proposto o uso da Regressão Quantílica Regularizada (RQR). A RQR permite ajustar modelos de regressão ao longo de toda distribuição da variável dependente, possibilitando assim uma melhor descrição do fenômeno em estudo, quando comparada a metodologias tradicionais que se baseiam apenas na média condicional. O uso da RQR tem-se mostrado bastante promissor, porém, ainda não foi avaliado em todo o processo de um programa de melhoramento de plantas. Diante do exposto, objetivou-se avaliar o uso da RQR na seleção genômica, considerando dados simulados de plantas autógamas com características oligogênicas. Foi simulada uma população F 2 , com características com duas herdabilidades (0,4 e 0,8) e controladas por quatro genes. Foi realizado o avanço de gerações (até a F 6 ) considerando duas porcentagens de seleção (10% e 20%) e, como critério de seleção, o valor genético genômico obtido por meio da RQR, além da seleção fenotípica e de outros métodos tradicionais de seleção genômica, especificamente RR-BLUP e o BLASSO. Observou- se que o modelo de RQR apresentou, em relação a fixação dos alelos favoráveis, resultados melhores ou iguais aqueles obtidos por todos métodos avaliados. Especificamente, em cenários de herdabilidade 0,4, independente da porcentagem de seleção, somente a seleção dos indivíduos baseados no modelo de RQR no quantil (τ = 0,5) foi capaz de fixar os alelos favoráveis até a sexta geração. Por outro lado, em cenários de maior herdabilidade (0,8) e com porcentagem de seleção de 10%, a seleção baseada nos métodos RQR (τ = 0,5) e BLASSO permitiram a fixação dos alelos ainda na geração F 4 . Quando a seleção se baseou nos métodos RR-BLUP e seleção fenotípica os alelos favoráveis não foram fixados até a sexta geração em nenhum cenário avaliado. Em relação ao ganho de seleção, a RQR (τ = 0,5) obteve ganhos maiores ou iguais aos métodos tradicionais de seleção genômica em todos os cenários avaliados. Especificamente, os ganhos da RQR (τ = 0,5) foram até 4,5% maiores que aqueles obtidos pelo BLASSO, até 6,1% maiores que os do RR-BLUP e até 4,6% maiores que a seleção fenotípica. Dessa forma verificou-se com aplicação da RQR no melhoramento de plantas considerando populações simuladas de plantas autógamas com características oligogênicas, seria possível uma redução de tempo e consequentemente de custos, devido a diminuição das gerações de autofecundações para a fixação dos alelos favoráveis em todos os cenários avaliados ou a obtenção de genótipos melhorados.
  • Imagem de Miniatura
    Item
    Genômica e modelos não-lineares mistos no ajuste de curvas de lactação de bovinos da raça Girolando
    (Universidade Federal de Viçosa, 2018-10-05) Teixeira, Filipe Ribeiro Formiga; Nascimento, Moysés; http://lattes.cnpq.br/4574646837472160
    Pesquisas que visam a construção de curvas de lactação de diferentes raças de gado de leite têm sido realizadas com frequência nos últimos anos. Esses trabalhos usualmente têm como objetivo identificar o comportamento da produtividade leiteira do rebanho, a identificação de indivíduos superiores segundo suas características de lactação ou estudar as associações fenotípicas/genéticas entre diferentes variáveis de lactação. O presente trabalho teve como objetivo propor a utilização da Seleção Genômica Ampla para estimar os valores genéticos genômicos das características de lactação e construir as curvas de lactação genômicas de bovinos da raça Girolando (responsável por 80% da produção do leite brasileiro) baseadas em informações estimadas pelo ajuste de modelos não-lineares mistos. Objetivou-se também a identificar o melhor modelo para o ajuste de curvas de lactação dessa raça, sendo escolhido dentre nove propostos na literatura. Os dados foram fornecidos pela Embrapa Gado de Leite (Juíz de Fora-MG), referentes a 1.822 registros de controle leiteiro correspondente a 226 bovinos Girolando, juntamente com a informação de 37.673 marcadores SNPs associados aos animais em estudo. Comparando nove modelos não-lineares (Brody, Cappio-Borlino, Cobby & Le Du, Dhanoa, Nelder, Papajscik e Bodero, Rook, Sikka e Wood) com a abordagem de modelos mistos, constatou-se que a melhor equação segundo os critérios de AIC e BIC, com valores de 10.013,79 e 10.101,92, respectivamente, foi a de Wood. Através das características de lactação estimadas pelo modelo de Wood foi possível identificar um grupo seleto de 8 animais com maior produtividade (média de 10.584 Kg/lactação). A estimação dos valores genéticos genômicos (Estimated Genomic Breeding Values – EGBV) das características genômicas (produção inicial – a, taxa de ascensão – b, taxa de declínio – c, produção total, pico de lactação, persistência e tempo até o pico) através do BLASSO (Bayesian LASSO) permitiram o conhecimento genético dessas características. As herdabilidades das mesmas variaram de 0,09 para a taxa de declínio até 0,29 para a persistência. As correlações entre seus valores genéticos genômicos apresentaram resultados de -0,90 (entre a taxa de declínio e a persistência) a 0,98 (entre o pico de lactação e a produção total). Os coeficientes de Kappa para concordância entre os indivíduos selecionados de acordo com diferentes variáveis variou de 0 a 0,95. As análises realizadas permitiram o conhecimento do melhor entre os modelos não-lineares para ajuste das curvas de lactação de bovinos da raça Girolando. Com a construção das curvas genômicas foi possível identificar diferenças genéticas entre os indivíduos, estas livres dos efeitos ambientais. A abordagem proposta foi capaz de produzir resultados relevantes e pode ser aplicada para outras raças e situações diferentes.
  • Imagem de Miniatura
    Item
    Um novo método para alocação de unidades em subamostras representativas baseado em covariáveis discretas
    (Universidade Federal de Viçosa, 2018-03-23) Farias, Rosielle da Costa; Oliveira, Fernando Luiz Pereira de; http://lattes.cnpq.br/9960481120705734
    Em estudos experimentais, ensaios clínicos por exemplo, nos quais se deseja verificar a eficácia de alguma intervenção, é fundamental a presença de diferentes grupos que sofrerão ou não as intervenções para que futuras comparações possam ser realizadas. Para garantir que tais comparações sejam válidas, é necessário que os grupos apresentem características o mais semelhantes possíveis entre si e a amostra original. Este trabalho apresenta uma nova metodologia de divisão de uma amostra original em k subamostras representativas em relação à amostra original, com base em covariáveis que definem as características da amostra. Os resultados obtidos demonstram que a metodologia proposta apresenta resultados bastante satisfatórios, principalmente se comparados com a técnica tradicional de seleção de subamostras, o sorteio aleatório (amostragem aleatória simples). As subamostras delineadas pelo método apresentam altíssimo grau de similaridade com a amostra original, o que possibilitará estudos experimentais com viés de seleção bastante reduzido e resultados confiáveis.
  • Imagem de Miniatura
    Item
    Comparação de métodos de seleção de variáveis em regressão aplicados a dados genômicos e de espectroscopia NIR
    (Universidade Federal de Viçosa, 2018-02-21) Ferreira, Roberta de Amorim; Peternelli, Luiz Alexandre; http://lattes.cnpq.br/6364173429092431
    Muitas áreas de pesquisa possuem conjuntos de dados com os desafios da alta dimensionalidade e multicolinearidade a serem superados, de modo que métodos específicos para ajuste do modelo devem ser empregados. Embora os métodos existentes sejam eficientes para construção do modelo, frequentemente se faz necessário selecionar as variáveis mais importantes em explicar o modelo, visto que essa prática pode aumentar sua capacidade preditiva, diminuir custos e tempo das análises. Esse trabalho teve como objetivo principal avaliar e construir modelos empregando três métodos de seleção de variáveis aplicados a dados de marcadores SNPs (Single Nucleotide Polymorphisms) e a dados de espectroscopia no infravermelho próximo (NIR), além de avaliar a melhoria na qualidade de predição, quando comparado ao uso dos dados completos. Os métodos avaliados foram o de seleção dos preditores ordenados associado a regressão por quadrados mínimos parciais (PLS-OPS), o Sparce partial least Square (SPLS) e o Lasso bayesiano (BLASSO) supervisionado, este último é uma adaptação do método BLASSO com a vantagem de selecionar as variáveis. Foram utlizados conjuntos de dados simulados compostos por 100 amostras e 500 marcadores SNPs avaliados em dois cenários que diferem entre si no vetor de coeficientes de regressão utilizado e quatro conjuntos de dados reais, sendo um de SNPs e três de dados NIR. Usou-se o software R para a modelagem dos dados. As amostras foram separadas em conjuntos de treinamento e de teste via algoritmo de Kennard e Stone. A qualidade preditiva do modelo foi avaliada com base no coeficiente médio de correlação (r) entre valores preditos e reais, e a raiz quadrada do erro quadrático médio (RMSE). No conjunto de dados simulados avaliado no primeiro cenário, havia 52 marcadores de maiores efeitos. Os modelos usando o BLASSO supervisionado, o SPLS e o PLS-OPS selecionaram, respectivamente, em média, 100, 310 e 124 variáveis. Em termos de capacidade preditiva os modelos após seleção foram semelhantes quando comparados ao uso dos dados completos. No segundo cenário, 10 marcadores de menor efeito foram escolhidos para serem significativos. Nesse cenário, para escolha do número de variáveis a serem selecionadas pelo BLASSO supervisionado utilizou-se dois critérios: no primeiro 20% das variáveis foram selecionadas, e no segundo o número de variáveis selecionadas eram iguais ao do SPLS e do PLS-OPS. Em média os modelos apresentaram um desempenho melhor utlizando a seleção de variáveis em relação aos modelos construídos com os dados completos, sendo o SPLS levemente superior, com r = 0,846 e intervalo de RMSE de menor amplitude. Para a predição da produção de grãos em dados de SNPs, o método BLASSO supervisionado foi superior, com menor valor de RMSE (0,56) e maior valor de r (0,569). O PLS-OPS também apresentou bom desempenho nesse conjunto de dados, atestando o uso deste método para dados dessa natureza. No primeiro conjunto de dados NIR em que foi avaliado o teor de fibra da cana-de-açúcar, de maneira geral os valores de RMSE e de r se mantiveram próximos àqueles obtidos para os dados completos. No segundo conjunto de dados reais NIR em que foi avaliado o teor de lignina da cana-de-açúcar, pode-se observar que os melhores resultados foram obtidos com o método BLASSO supervisionado (RMSE = 0,705 e r = 0,956). No terceiro conjunto de dados reais NIR em que foram avaliadas amostras de repolho roxo, os melhores resultados foram obtidos quando utlizou-se o PLS-OPS (RMSE = 13,05 e r = 0,996). No segundo e terceiro conjuntos de dados NIR avaliados as estatísticas obtidas foram próximas às obtidas com os dados completos, porém com a vantagem de possuir menos variáveis. De maneira geral, os métodos funcionam de forma semelhante, mas cada um exibe vantagens sobre o outro em determinadas situações. Ao utilizarmos os métodos de seleção, podemos observar que os modelos se tornaram mais simples, visto que o número de variáveis reduziu significamente em todos os conjuntos de dados estudados.
  • Imagem de Miniatura
    Item
    Predição genômica via redução de dimensionalidade em modelos aditivo dominante
    (Universidade Federal de Viçosa, 2018-02-26) Costa, Jaquicele Aparecida da; Azevedo, Camila Ferreira; http://lattes.cnpq.br/6939298449989672
    Grandes avanços no melhoramento animal e vegetal têm sido propiciados utilizando- se informações da genética molecular. Nessa perspectiva, idealizaram a Seleção Genômica Ampla (Genome Wide Selection – GWS) cuja abordagem envolve a cobertura completa do genoma utilizando milhares de marcadores SNPs (Single Nucleotide Polymorphisms). O objetivo é estimar o mérito genético dos indivíduos e para tal, as pesquisas realizadas na GWS se baseiam na busca e na aplicação de metodologias estatísticas que visam resolver os problemas enfrentados no processo de estimação, como a alta dimensionalidade e a alta colinearidade entre os marcadores. Dentre elas, se destacam os métodos de redução de dimensionalidade: Regressão via Componentes Principais (PCR), Quadrados Mínimos Parciais (PLS) e Regressão via Componentes Independentes (ICR) e o tradicional método de regularização/shrinkage, G-BLUP (Genomic Best Linear Unbiased Predictor). Assim, o primeiro capítulo contempla as ideias centrais e a importância da GWS para o melhoramento genético, a definição de efeitos aditivos e de efeitos devido à dominância, os problemas estatísticos enfrentados na estimação dos efeitos de marcadores nos fenótipos pelo método usual baseado em quadrados mínimos ordinários, bem como as metodologias estatísticas baseadas em redução dimensional para resolver tais problemas e os procedimentos de validação que tem por finalidade comparar as metodologias estatísticas da GWS. Já o segundo capítulo refere-se a proposição e aplicação de sete critérios para a escolha do número ótimo de componentes independentes a serem utilizados na ICR, considerando apenas os efeitos aditivos. Os critérios consistem em determinar que o número de componentes independentes seja igual ao número de componentes que conduz: (i) os valores genômicos estimados via PCR a um maior valor de acurácia; (ii) os valores genômicos estimados via PCR a um menor valor de viés; (iii) a PCR a 80% de explicação da variação total de X; (iv) a PCR a 80% de explicação da variação total de Y; (v) a ICR a 80% de explicação da variação total de X; além dos critérios que consistem no número de componentes independentes igual ao número de variáveis determinadas pelos procedimentos (vi) Forward Selection e (vii) Backward Selection. O conjunto de dados simulados era composto por 2.000 marcadores SNPs e as populações simuladas totalizaram 1.000 indivíduos de 20 famílias de irmãos completos que tiveram os fenótipos e os genótipos avaliados. Além disso, os cenários simulados são baseados em dois níveis de herdabilidade e duas arquiteturas genéticas com ausência de dominância, constituindo assim, em quatro cenários, os quais foram simulados dez vezes cada. Com o intuito de demonstrar a aplicabilidade do estudo no melhoramento genético, foram avaliadas seis características de produtividade de um conjunto de dados reais de arroz asiático Oryza sativa (Número de panículas por planta, altura da planta, comprimento da panícula, número de panículas no perfilho primário, número de sementes por panícula e espiguetas por panícula) correspondente a 370 acessos de arroz, os quais foram genotipados para 44.100 marcadores SNPs. Em ambos os casos (dados simulados e reais) foi utilizada a validação independente e calculada as medidas de eficiência para comparar os critérios. De modo geral, as análises indicaram que o primeiro critério (número de componentes independentes igual ao número de componentes principais cujos os valores genômicos estimados via PCR apresentava maior valor de acurácia) se mostrou mais eficiente para os dois conjuntos de dados e apresentou as medidas de eficiência mais próximas do método exaustivo, com a vantagem de exigir menos tempo e esforço computacional. Para complementar o estudo, o terceiro capítulo consiste na aplicação dos três critérios mais eficientes do capítulo 2, os quais consistem no número de componentes independentes igual ao número de componentes que conduz os valores genômicos estimados via PCR a um maior valor de acurácia; a um menor valor de viés e a PCR a 80% de explicação da variação total de X considerando o modelo aditivo-dominante. Ainda no contexto deste modelo, foi aplicado os três métodos de redução de dimensionalidade (PCR, PLS e ICR) levando em consideração a escolha do número ótimo de componentes que conduz os valores genômicos aditivos, valores genômicos devido à dominância ou os valores genômicos totais (aditivo + dominância) a uma maior acurácia. Todos os métodos de redução de dimensionalidade foram comparados com o G-BLUP em termos de eficiência na estimação dos valores genômicos. As populações simuladas foram constituídas por 1.000 indivíduos de 20 famílias de irmãos completos, sendo genotipados para 2000 marcadores SNPs e as análises correspondentes a quatro cenários (dois níveis de herdabilidade × duas arquiteturas genéticas) sendo assumido dominância completa. Os resultados do capítulo 3 assinalaram que se manteve a superioridade do critério 1 nos modelos aditivo-dominante. Além disso, para a estimação dos efeitos aditivos e devido a dominância concomitantemente por meio dos métodos de redução de dimensionalidade, é recomendável utilizar o número de componentes que conduz o valor genômico devido à dominância a uma maior acurácia. Ademais, ao confrontar as metodologias de redução dimensional (ICR, PCR e PLS) com o G-BLUP, verifica- se que a PCR é superior em termos de acurácia e o método vantajosamente apresenta um dos menores tempos computacionais na execução das análises. Ademais, nenhum dos métodos considerados capturaram adequadamente as herdabilidades simuladas e apresentaram viés.