Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Técnica de agrupamento na seleção de modelos de regressão não lineares para descrição do acúmulo de matéria seca em plantas de alho
    (Universidade Federal de Viçosa, 2014-02-19) Puiatti, Guilherme Alves; Nascimento, Moysés; http://lattes.cnpq.br/6544887498494945; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; http://lattes.cnpq.br/3292690471132609; Ferreira, Adésio; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y8
    Estudos de divergência genética entre indivíduos ou populações de plantas e sua trajetória de crescimento são de grande importância em programas de melhoramento, sendo essenciais para a obtenção de informações relevantes para um manejo adequado das plantas. Das técnicas empregadas para tal, a análise de agrupamento e modelos de regressão são amplamente utilizados. Assim, o objetivo deste estudo foi identificar e agrupar modelos de regressão não linear que melhor se ajustam na descrição do acúmulo de matéria seca total da planta do alho ao longo do tempo (60, 90, 120 e 150 dias após plantio). Foram utilizados 15 acessos de alho pertencentes ao Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa (BGH/UFV). Os modelos de regressão não linear ajustados para cada um dos acessos foram: Brody, Gompertz, Logístico, Mitscherlich e von Bertalanffy. A qualidade de ajuste dos modelos foi determinada pelo coeficiente de determinação ( R 2 ); quadrado médio do resíduo ( QMR ); desvio médio absoluto dos resíduos ( DMA ); critério de informação de Akaike ( AIC ); e critério de informação Bayesiano ( BIC ). Então, para cada acesso, os modelos foram submetidos a análise de agrupamento, com os avaliadores de qualidade de ajuste considerados como variáveis, utilizando o algoritmo UPGMA, a distância generalizada de Mahalanobis como medida de dissimilaridade, e número de grupos determinado pelo método de Mojena. Depois, os modelos ajustados para cada acesso foram novamente agrupados seguindo o mesmo critério, mas utilizando os parâmetros com interpretação biológica como variáveis, e os resultados dos diferentes agrupamentos foram então confrontados. Comparando os resultados dos agrupamentos, observou-se que os modelos Gompertz, Logístico, e von Bertalanffy apresentaram melhores resultados quanto aos avaliadores de qualidade de ajuste, e tiveram resultados próximos quanto a estes e quanto as estimativas dos parâmetros. Estes três modelos se mostraram eficientes para descrição de matéria seca total da planta em acessos de alho, especialmente o modelo Logístico.
  • Imagem de Miniatura
    Item
    Modelos de regressão não linear para descrição do crescimento de plantas de alho
    (Universidade Federal de Viçosa, 2012-07-16) Reis, Renata Maciel dos; Nascimento, Moysés; http://lattes.cnpq.br/6544887498494945; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; http://lattes.cnpq.br/7023323201468555; Ferreira, Adésio; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y8
    O objetivo deste estudo foi escolher um modelo de regressão não linear que melhor descreve o acúmulo de matéria seca de diferentes partes da planta do alho ao longo do tempo (60, 90, 120 e 150 dias após plantio). Foram utilizados 20 acessos de alho pertencentes ao Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa (BGH/UFV). A fim de se trabalhar apenas com grupos de acessos semelhantes, aplicou-se a análise de agrupamento para a formação desses grupos. As matérias secas da folha, do pseudocaule, do bulbo e da raiz foram definidas como as variáveis nessa análise de agrupamento, que foi realizado por meio do algoritmo de Ward, utilizando como medida de dissimilaridade a distância generalizada de Mahalanobis. O número ótimo de grupos foi determinado por meio do Método de Mojena, o qual indicou três grupos de acessos, cujas médias de matéria seca do bulbo, da raiz e total da planta foram utilizadas para o ajuste de sete modelos de regressão não linear, a saber: Mitscherlich, Gompertz, Logístico, Meloun I, Meloun II, Brody e von Bertalanffy. A identificação do modelo que melhor se ajustou as três características de cada grupo foi realizada mediante coeficiente de determinação (R2), o quadrado médio do resíduo (QMR) e o desvio médio absoluto dos resíduos (DMA). Comparando os valores desses avaliadores observou-se que, para as três caraterísticas dos três grupos, o modelo que melhor se ajustou foi o modelo Logístico.
  • Imagem de Miniatura
    Item
    Categorização de dados quantitativos para estudos de diversidade genética
    (Universidade Federal de Viçosa, 2010-12-15) Barroso, Natália Caixeta; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6; http://lattes.cnpq.br/3693450916625203; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Carneiro, Pedro Crescêncio Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728227T6; Bhering, Leonardo Lopes; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764363E6
    O estudo da divergência genética é uma ferramenta importante na identificação de indivíduos geneticamente divergentes que, ao serem combinados, possam aumentar o efeito heterótico na progênie. Uma técnica estatística muito aplicada nesse tipo de estudo é a análise de agrupamento. Entretanto, antes dessa técnica ser empregada, deve ser obtida uma matriz de similaridade (ou distância) entre os genótipos. Essas distâncias podem ser calculadas de diversas maneiras, sendo que diferentes propostas são encontradas na literatura para as variáveis quantitativas, binárias e multicategóricas. A transformação de variáveis quantitativas em multicategóricas pode ser utilizada para facilitar sua caracterização com informações preliminares de grande utilidade. Existem vários métodos para se fazer essa transformação, porém estes precisam ser melhor entendidos para que a perda de informações ocorrida na transformação não prejudique significativamente os resultados da análise. Portanto, este trabalho teve como objetivos: verificar quais desses métodos de categorização de variáveis são eficientes; pesquisar a influência da escolha de diferentes coeficientes de dissimilaridades na análise de agrupamentos, feita a partir de dados simulados utilizando variáveis quantitativas e multicategóricas; e averiguar se alguns métodos hierárquicos agrupam com eficiência os dados simulados. Para isto, foram feitas 50 simulações de dez variáveis quantitativas para vinte genótipos de uma espécie de referência como o milho, cada um com quatro repetições. Estes dados foram transformados em multicategóricos através dos métodos: divisão equitativa da amplitude, percentual equitativo, regra do Quadrado, regra de Sturges e distribuição normal. O número de classes tinha que ser estabelecido para os dois primeiros, no caso, foi utilizado quatro e cinco classes para ambos. Foram utilizadas para construir as matrizes de distâncias, nos dados originais e multicategóricos, as medidas de dissimilaridade: distância euclidiana, euclidiana média, quadrado da distância euclidiana, distância de Mahalanobis e distância ponderada. Posteriormente, o agrupamento foi feito pelo método do vizinho mais próximo e pela ligação média entre grupos (UPGMA). A eficiência destes foi verificada através das estatísticas de eficiência coeficiente de correlação cofenética, estresse e grau de distorção entre as matrizes fenéticas e cofenéticas. Os resultados mostraram que o método de agrupamento UPGMA foi superior ao método do vizinho mais próximo para todas as medidas de distância utilizadas. As distâncias euclidiana e euclidiana média apresentaram a mesma performance em todas as análises de agrupamento feitas. Além disso, essas duas medidas obtiveram os melhores desempenhos em todos os agrupamentos realizados. Todos os métodos de categorização de dados conseguiram um desempenho satisfatório quando agrupados por UPGMA, exceto o método do percentual equitativo com quatro e cinco classes. Contudo, os dados que possuem suas classes estimadas pela regra do Quadrado apresentaram o dendrograma mais semelhante com o obtido pormeio dos dados originais, sendo este, então, o método mais recomendado para se fazer a categorização de dados.
  • Imagem de Miniatura
    Item
    Classificação multivariada de modelos de crescimento para grupos genéticos de ovinos de corte
    (Universidade Federal de Viçosa, 2010-02-11) Silveira, Fernanda Gomes da; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; http://lattes.cnpq.br/0551611721454653; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; Nascimento, Carlos Souza do; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4734058H3
    O objetivo principal desse trabalho foi utilizar a análise de agrupamento para classificar modelos de crescimento não-lineares tendo em vista os resultados de diferentes avaliadores de qualidade de ajuste ao considerar dados dos seguintes grupos genéticos de ovinos de corte: Dorper x Morada Nova (DMN), Dorper x Rabo Largo (DRL) e Dorper x Santa Inês (DSI). Após a indicação do modelo comum adequado aos três grupos, objetivou-se também aplicar a identidade de modelos com o intuito de identificar o grupo genético com maior eficiência de crescimento. Toda a metodologia foi aplicada a duas situações experimentais distintas: com repetição, considerando todos os animais de cada grupo genético, e sem repetição, considerando dados médios de cada um destes grupos. Ajustaram-se doze modelos não-lineares, cuja qualidade de ajuste foi medida pelo coeficiente de determinação ajustado (R2 aj), critério de informação de Akaike (AIC), critério de informação Bayesiano (BIC), erro quadrático médio de predição (MEP) e coeficiente de determinação de predição (R2 p). Os modelos Richards e von Bertalanffy foram, respectivamente, os que apresentaram os melhores ajustes para os conjuntos de dados médios e individuais. De acordo com testes de identidade de modelos, o grupo genético DSI foi o que apresentou maior peso adulto, sendo este, portanto, o mais recomendado para exploração de carne.