Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Discriminação de populações com diferentes graus de similaridade por redes neurais artificiais
    (Universidade Federal de Viçosa, 2009-12-15) Pereira, Tiago Martins; Regazzi, Adair José; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783586A7; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6; http://lattes.cnpq.br/1234901953219216; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Carneiro, Pedro Crescêncio Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728227T6
    A correta classificação de indivíduos em grupos pré-estabelecidos tem se tornado de grande importância no melhoramento genético. As técnicas de estatística multivariada usualmente utilizadas nesse tipo de problema são as funções discriminantes de Fisher e as funções discriminantes de Anderson, que são usadas para alocar um indivíduo inicialmente desconhecido em uma das g populações ou grupos pré-definidos. Nas últimas décadas vêm surgindo um novo paradigma de computação, as redes neurais artificiais, que podem ser utilizadas para resolver diversos problemas da Estatística, como agrupamento de indivíduos similares, previsão de séries temporais e em especial, os problemas de classificação. O objetivo dessa pesquisa foi realizar um estudo comparativo entre as funções discriminantes de Fisher e de Anderson e as redes neurais artificiais quanto ao número de classificações erradas de indivíduos sabidamente pertencentes a diferentes populações, com distintos níveis de dissimilaridade. Essa dissimilaridade, medida pela distância de Mahalanobis, foi um conceito de fundamental importância na utilização das técnicas de discriminação, pois quantificou o quanto as populações eram divergentes. Quanto maior o valor observado para essa medida, menos similares foram as populações em análise. A obtenção dos dados foi feita através de simulação utilizando o programa computacional Genes (CRUZ, 2006). As redes neurais artificiais apresentaram uma taxa de indivíduos rejeitados por serem considerados ambíguos quanto às suas características discriminatórias. No entanto, mostraram-se uma técnica promissora no que diz respeito a problemas de classificação, uma vez que apresentaram um número de classificações erradas de indivíduos menor que aqueles dados pelas funções discriminantes.
  • Imagem de Miniatura
    Item
    Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
    (Universidade Federal de Viçosa, 2009-02-17) Barbosa, Danilo Pereira; Pinto, Francisco de Assis de Carvalho; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784515P9; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Santos, Nerilson Terra; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4237661D4; Vieira, Carlos Antonio Oliveira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728250D0; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6
    A preocupação em minimizar a quantidade de produtos químicos utilizado em lavouras vem aumentando. O uso de sistemas de visão artificial tem demonstrado um grande potencial para o uso de taxas variadas de insumos, como por exemplo, a aplicação de herbicidas somente em locais onde é detectada a presença de planta daninha. O bom desempenho de um sistema desenvolvido para esta finalidade depende principalmente do uso de descritores que permitam diferenciar padrões de plantas daninhas do padrão da espécie cultivada. Sendo assim, objetivo geral do presente trabalho foi desenvolver e avaliar um descritor para o reconhecimento dos padrões planta de milho e planta daninha. Os objetivos específicos foram: a) identificar qual imagem, excesso de verde ou o índice de vegetação de verde normalizado, tende a proporcionar melhor classificação; b) comparar a classificação obtida por descritores geoestatísticos, com a obtida ao usar os descritores de Haralick. Com esta finalidade, foram adquiridas aos 29 dias após a emergência, período em que normalmente é feita a aplicação de herbicidas, nove imagens de milho (Zea Mays L.) e de três espécies de plantas daninhas avaliadas neste experimento: leiteira (Euphorbia heterophylla L.), capim-milhã (Digitaria horizontalis Willd) timbête (Cenchrus echinatus L.). Seis destas imagens foram utilizadas para a seleção do descritor que promove melhor desempenho na classificação. As três restantes foram utilizadas para a validação do descritor selecionado. Cada uma das seis imagens de treinamento foi recortada em 100 blocos de 68x68 pixels. Para cada um dos blocos foi obtido o valor dos descritores texturais geoestatísticos (variograma, o madograma, variograma cruzado e pseudo variograma cruzado) e os de Haralick (momento angular, média, variância, entropia, correlação, momento do produto, momento inverso da diferença e medidas de correlação). Adicionalmente, descritores geoestatísticos e não-geoestatísticos foram obtidos considerando diferentes ângulos (0, 45, 90 e 135°) de relacionamento entre pixels. Descritores geoestatísticos foram, também, obtidos para diferentes distâncias (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) de pareamento entre pixels. Os descritores variograma e madograma foram calculados partir da imagem excesso de verde e GNDVI. Já os descritores variograma cruzado e pseudo variograma cruzado foram calculados com o uso do Greenness Method nos blocos usando as combinações das bandas RxG, GxB e IVxG. Os descritores de Haralick foram calculados a partir das imagens do excesso de verde e GNDVI. O desempenho dos descritores, assim propostos, foi avaliado usando análise discriminante. Os descritores selecionados foram aqueles que apresentaram maior valor para o índice kappa. Adicionalmente, novos descritores foram obtidos a partir de combinações dos descritores selecionados. Estas combinações, também, tiveram o seu desempenho avaliado usando a análise discriminante com o objetivo de identificar qual combinação proporciona melhor desempenho na classificação. Posteriormente, o poder de generalização da combinação selecionada foi avaliado usando as três imagens de cada espécie reservadas para a etapa de validação. As conclusões obtidas com relação aos objetivos propostos nesta pesquisa foram a) a imagem que tendeu a apresentar os melhores resultados do índice kappa foi a imagem excesso de verde; b) os descritores obtidos a partir da função madograma e os de Haralick foram os que forneceram os melhores resultados; c) o descritor geoestatístico madograma nas 10 distâncias e ângulo 0° apresentou melhores resultados de classificação quando usado sem combinação de outros descritores; d) os descritores geoestatísticos e os de Haralick, quando usados isoladamente não apresentaram resultados tão bons quanto combinados; e) o uso de descritores que consideram a continuidade dos valores de pixel, no reconhecimento de padrões pode ser uma ferramenta fundamental no processo de classificação.