Estatística Aplicada e Biometria

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 12
  • Imagem de Miniatura
    Item
    Discriminação de populações com diferentes graus de similaridade por redes neurais artificiais
    (Universidade Federal de Viçosa, 2009-12-15) Pereira, Tiago Martins; Regazzi, Adair José; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783586A7; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6; http://lattes.cnpq.br/1234901953219216; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Carneiro, Pedro Crescêncio Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728227T6
    A correta classificação de indivíduos em grupos pré-estabelecidos tem se tornado de grande importância no melhoramento genético. As técnicas de estatística multivariada usualmente utilizadas nesse tipo de problema são as funções discriminantes de Fisher e as funções discriminantes de Anderson, que são usadas para alocar um indivíduo inicialmente desconhecido em uma das g populações ou grupos pré-definidos. Nas últimas décadas vêm surgindo um novo paradigma de computação, as redes neurais artificiais, que podem ser utilizadas para resolver diversos problemas da Estatística, como agrupamento de indivíduos similares, previsão de séries temporais e em especial, os problemas de classificação. O objetivo dessa pesquisa foi realizar um estudo comparativo entre as funções discriminantes de Fisher e de Anderson e as redes neurais artificiais quanto ao número de classificações erradas de indivíduos sabidamente pertencentes a diferentes populações, com distintos níveis de dissimilaridade. Essa dissimilaridade, medida pela distância de Mahalanobis, foi um conceito de fundamental importância na utilização das técnicas de discriminação, pois quantificou o quanto as populações eram divergentes. Quanto maior o valor observado para essa medida, menos similares foram as populações em análise. A obtenção dos dados foi feita através de simulação utilizando o programa computacional Genes (CRUZ, 2006). As redes neurais artificiais apresentaram uma taxa de indivíduos rejeitados por serem considerados ambíguos quanto às suas características discriminatórias. No entanto, mostraram-se uma técnica promissora no que diz respeito a problemas de classificação, uma vez que apresentaram um número de classificações erradas de indivíduos menor que aqueles dados pelas funções discriminantes.
  • Imagem de Miniatura
    Item
    Avaliação de descritores texturais geoestatísticos e de Haralick para o reconhecimento de plantas daninhas
    (Universidade Federal de Viçosa, 2009-02-17) Barbosa, Danilo Pereira; Pinto, Francisco de Assis de Carvalho; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4784515P9; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Santos, Nerilson Terra; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4237661D4; Vieira, Carlos Antonio Oliveira; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728250D0; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6
    A preocupação em minimizar a quantidade de produtos químicos utilizado em lavouras vem aumentando. O uso de sistemas de visão artificial tem demonstrado um grande potencial para o uso de taxas variadas de insumos, como por exemplo, a aplicação de herbicidas somente em locais onde é detectada a presença de planta daninha. O bom desempenho de um sistema desenvolvido para esta finalidade depende principalmente do uso de descritores que permitam diferenciar padrões de plantas daninhas do padrão da espécie cultivada. Sendo assim, objetivo geral do presente trabalho foi desenvolver e avaliar um descritor para o reconhecimento dos padrões planta de milho e planta daninha. Os objetivos específicos foram: a) identificar qual imagem, excesso de verde ou o índice de vegetação de verde normalizado, tende a proporcionar melhor classificação; b) comparar a classificação obtida por descritores geoestatísticos, com a obtida ao usar os descritores de Haralick. Com esta finalidade, foram adquiridas aos 29 dias após a emergência, período em que normalmente é feita a aplicação de herbicidas, nove imagens de milho (Zea Mays L.) e de três espécies de plantas daninhas avaliadas neste experimento: leiteira (Euphorbia heterophylla L.), capim-milhã (Digitaria horizontalis Willd) timbête (Cenchrus echinatus L.). Seis destas imagens foram utilizadas para a seleção do descritor que promove melhor desempenho na classificação. As três restantes foram utilizadas para a validação do descritor selecionado. Cada uma das seis imagens de treinamento foi recortada em 100 blocos de 68x68 pixels. Para cada um dos blocos foi obtido o valor dos descritores texturais geoestatísticos (variograma, o madograma, variograma cruzado e pseudo variograma cruzado) e os de Haralick (momento angular, média, variância, entropia, correlação, momento do produto, momento inverso da diferença e medidas de correlação). Adicionalmente, descritores geoestatísticos e não-geoestatísticos foram obtidos considerando diferentes ângulos (0, 45, 90 e 135°) de relacionamento entre pixels. Descritores geoestatísticos foram, também, obtidos para diferentes distâncias (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) de pareamento entre pixels. Os descritores variograma e madograma foram calculados partir da imagem excesso de verde e GNDVI. Já os descritores variograma cruzado e pseudo variograma cruzado foram calculados com o uso do Greenness Method nos blocos usando as combinações das bandas RxG, GxB e IVxG. Os descritores de Haralick foram calculados a partir das imagens do excesso de verde e GNDVI. O desempenho dos descritores, assim propostos, foi avaliado usando análise discriminante. Os descritores selecionados foram aqueles que apresentaram maior valor para o índice kappa. Adicionalmente, novos descritores foram obtidos a partir de combinações dos descritores selecionados. Estas combinações, também, tiveram o seu desempenho avaliado usando a análise discriminante com o objetivo de identificar qual combinação proporciona melhor desempenho na classificação. Posteriormente, o poder de generalização da combinação selecionada foi avaliado usando as três imagens de cada espécie reservadas para a etapa de validação. As conclusões obtidas com relação aos objetivos propostos nesta pesquisa foram a) a imagem que tendeu a apresentar os melhores resultados do índice kappa foi a imagem excesso de verde; b) os descritores obtidos a partir da função madograma e os de Haralick foram os que forneceram os melhores resultados; c) o descritor geoestatístico madograma nas 10 distâncias e ângulo 0° apresentou melhores resultados de classificação quando usado sem combinação de outros descritores; d) os descritores geoestatísticos e os de Haralick, quando usados isoladamente não apresentaram resultados tão bons quanto combinados; e) o uso de descritores que consideram a continuidade dos valores de pixel, no reconhecimento de padrões pode ser uma ferramenta fundamental no processo de classificação.
  • Imagem de Miniatura
    Item
    Análise conjunta de fatores: distribuição amostral da importância relativa por simulação de dados
    (Universidade Federal de Viçosa, 2008-11-17) Temoteo, Alex da Silva; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4255477U5; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; Minim, Valéria Paula Rodrigues; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4761407T6; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5
    Conjoint analysis ou análise conjunta de fatores (ANCF) é uma análise de regressão que utiliza um modelo com variáveis explicativas indicadoras ou dumnmy, para se estudar a preferência de consumidores por tratamentos que podem ser servidos ou produtos, e que são definidos pela combinação de níveis de diversos atributos ou fatores. Com essa técnica estima-se a Importância Relativa (IR) de cada fator que compõe os tratamentos avaliados. Tais estudos são importantes por permitir decidir, com base nas estimativas das IR de cada fator, quais devem ser observados com maior atenção na definição do tratamento. No presente trabalho foi realizado um estudo por simulação para se investigar a robustez da distribuição amostral do estimador da IR de um fator, à variação na distribuição do erro aleatório do modelo de regressão empregado na ANCF. Foram gerados erros aleatórios com a distribuição normal e também três outras distribuições alternativas obtidas por uma transformação de locação e escala da beta: uma distribuição assimétrica à direita, outra assimétrica à esquerda e uma com forma U. Para cada distribuição, utilizou-se desvio-padrão σ = 2,8 e σ = 0,5, portanto para oito condições foram simulados 100 conjuntos de dados referentes a avaliações (notas de aceitação) de 108 consumidores para cada um dos 36 tratamentos formados pela combinação de 4 fatores (A, B, C e D) num esquema fatorial completo 32 x 22. Definiu-se com base em um modelo de regressão para ANCF, valores de referências para as IR's iguais a 44,25%, 25,66%, 26,55% e 3,54%, respectivamente para os fatores A, B. C e D. Na avaliação dos resultados com base em intervalos de confiança percentil e pela aproximação normal, ambos a 95%, verificou-se intervalos mais estreitos pela aproximação normal. Conforme esperado, verificou-se intervalos de confiança para as IR´s mais amplos quando σ = 2,8. Observou-se que todos os intervalos de confiança incluíram os valores das IR's tomados como referência, exceto para os seguintes casos: (i) intervalo de confiança pela aproximação normal para a simulação de erros com distribuição normal e σ = 2,8, para os fatores A e B; (ii) com intervalo pela aproximação normal e σ = 0,5, (iia) para os fatores A e C com distribuição normal, em forma de U e assimétrica à esquerda; (iib) para o fator B com distribuição em forma de U; e (iic) para o fator D com distribuição normal e em forma de U . Entretanto, neste casos de não inclusão do valor IR de referência nos intervalos, observou-se que o valor estava próximo ao limite do IC, tanto à esquerda quanto à direita. As estimativas de IR obtidas no estudo por simulação também foram avaliadas pelo Erro Médio Relativo (EMR) com relação aos respectivos valores de referência. Exceto para o fator D na simulação com erros normais e σ = 2,8, na qual se obteve EMR = 7,91%, em todas as demais situações simuladas obteve-se EMR < 5%. Adicionalmente, o teste de Kolmogorov-Smirnov indicou normalidade (p > 0,05) das distribuições amostrais em todos os casos. Concluiu-se que o estimador da IR pode ser considerado como robusto à não nor-malidade da distribuição do erro aleatório do modelo de regressão utilizado na ANCF. Adicionalmente, pode-se considerar que a distribuição amostral da IR seja normal e que portanto métodos inferenciais que requerem normalidade podem ser aplicados às estimativas de lR's obtidas na ANCF.
  • Imagem de Miniatura
    Item
    O uso de simulação de Monte Carlo via cadeias de Markov no melhoramento genético
    (Universidade Federal de Viçosa, 2009-02-20) Nascimento, Moysés; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6; http://lattes.cnpq.br/6544887498494945; Ferreira, Adésio; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4777896Y8; Viana, José Marcelo Soriano; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4786170D5
    Este trabalho teve por objetivo fornecer um referencial teórico e aplicado sobre os principais métodos de simulação de Monte Carlo via cadeias de Markov (MCMC), buscando dar ênfase em aplicações no melhoramento genético. Assim, apresentaram-se os algoritmos de Metropolis-Hastings, simulated annealing e amostrador de Gibbs. Os aspectos teóricos dos métodos foram abordados através de uma discussão detalhada de seus fundamentos com base na teoria de cadeias de Markov. Além da discussão teórica, aplicações concretas foram desenvolvidas. O algoritmo de Metropolis- Hastings foi utilizado para obter estimativas das freqüências de recombinação entre pares de marcadores de uma população F2, de natureza codominante, constituída de 200 indivíduos. O simulated annealing foi aplicado no estabelecimento da melhor ordem de ligação na construção de mapas genéticos de três populações F2 simuladas, com marcadores de natureza codominantes, de tamanhos 50, 100 e 200 indivíduos respectivamente. Para cada população foi estabelecido um genoma com quatro grupos de ligação, com 100 cM de tamanho cada. Os grupos de ligação possuem 51, 21, 11 e 6 marcadores, com uma distância de 2, 5, 10 e 20 cM entre marcas adjacentes respectivamente, ocasionando diferentes graus de saturação. Já o amostrador de Gibbs foi utilizado na obtenção das estimativas dos parâmetros de adaptabilidade e estabilidade, do modelo proposto por Finlay e Wilkinson (1963), através da inferência bayesiana. Foram utilizados os dados de médias de rendimento de cinco genótipos avaliados em nove ambientes, provenientes de ensaios em blocos ao acaso com quatro repetições. Em todas as aplicações os algoritmos se mostraram computacionalmente viáveis e obtiveram resultados satisfatórios.
  • Imagem de Miniatura
    Item
    Metodologias alternativas aos gráficos de controle na caracterização de processos univariados
    (Universidade Federal de Viçosa, 2008-11-07) Gonçalves, Thiago da Costa; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4241556H4; Santos, Nerilson Terra; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5
    As empresas têm investido cada vez mais na qualidade, no sentido de buscar maior sobrevivência no mercado, ganhar mais clientes satisfeitos e aumentar a produtividade e a lucratividade. Para buscá-la com mais êxito com auxilio do controle estatístico, faz-se uso dos gráficos de controle que monitoram o processo e sinalizam se há necessidade de corrigi-lo, de maneira que o produto final possa estar dentro dos padrões exigidos pelos consumidores. Na entanto, metodologias alternativas aos gráficos de controle, também podem ser utilizadas para classificar ou discriminar se o processo está ou não sob controle. Neste trabalho foram aplicadas as seguinte: análise discriminante, regressão logística e redes neurais artificiais. Para aplicar cada um dos métodos propostos utilizaram-se dados simulados, onde as medidas de comparação entre eles foram baseadas nas incidências dos alarmes falsos e verdadeiros sobre a classificação desses valores em dentro ou fora de controle estatístico. Foram simulados valores normais e independentemente distribuído sob controle estatístico. Posteriormente, foram impostas variações para que ao final do conjunto de dados saíssem de controle ou que apresentassem autocorrelações. As redes neurais artificiais e regressão logística se mostraram capazes de substituírem os melhores tipos de gráficos de controle, em sinalizarem pontos fora de controle situados ao meio ou ao final do conjunto de dados, sob diferentes distâncias da média de controle e distribuído de forma independente ou não.
  • Imagem de Miniatura
    Item
    Verificação dos efeitos das variâncias e das relações de variáveis ligadas à pecuária de leite no agrupamento dos produtores
    (Universidade Federal de Viçosa, 2009-02-16) Campana, Ana Carolina Mota; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4717195U4; Santos, Nerilson Terra; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2; Campos, José Maurício de Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4798551U0
    Com o aumento substancial na quantidade de dados armazenados, surge a necessidade da utilização de métodos que permitam analisar simultaneamente várias variáveis medidas em cada elemento amostral, e ainda com a possibilidade de reduzir a dimensionalidade desse conjunto sem perda significativa de informação. Entre eles, pode-se citar o método dos componentes principais, cuja obtenção pode envolver a matriz de covariâncias (S) ou a de correlações (R) das variáveis de interesse. Como a utilização dessas matrizes pode fornecer diferentes componentes, objetivou-se investigar, por meio da simulação de dados, os efeitos das escalas das características sobre a qualidade e a viabilidade da classificação dos elementos amostrais, buscando assim, indicar estratégias de análise mais adequadas em diferentes casos. Além do estudo de simulação, foi realizado outro com variáveis zootécnicas e econômicas referentes a 255 produtores de leite de três regiões do estado de Minas Gerais, com o objetivo de verificar qual a melhor estrutura de dados em classificar de forma mais apropriada os produtores mais viáveis economicamente. Em ambos os estudos, foi efetuada uma transformação nos valores das variáveis baseada nos respectivos coeficientes de variação, cuja matriz de covariâncias foi denominada de S*. Observou-se que a utilização da matriz S privilegiou as variáveis econômicas de maiores variâncias, enquanto a matriz R considerou as variáveis mais correlacionadas entre si como as mais importantes. A obtenção dos CPs com base na matriz S* minimizou os problemas das escalas inerentes aos usos das matrizes S e R. A primeira, por considerá-la totalmente e, a segunda, por desconsiderá-la. Desta forma, considerou-se a matriz S* como a mais indicada no presente estudo de caso, uma vez que priorizou como mais importantes, as variáveis econômicas mais relacionadas às variáveis zootécnicas.
  • Imagem de Miniatura
    Item
    Análise estatística espacial na avaliação de produtividade no melhoramento genético do feijoeiro
    (Universidade Federal de Viçosa, 2009-02-18) Feres, Andréia Luiza Gonzaga; Carneiro, José Eustáquio de Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783648T9; Santos, Nerilson Terra; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782537A2; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4248084A7; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5
    A dependência espacial é a propensão pela qual o valor de uma variável observada em certa posição tende a assemelhar-se mais aos valores vizinhos do que ao restante das observações do conjunto amostral. O objetivo deste trabalho foi a avaliação da eficiência de alguns métodos de análise estatística espacial para melhorar a precisão experimental em ensaios de seleção de famílias em programa de melhoramento genético do feijoeiro. Foram utilizados dados para produtividade de oito experimentos montados em látice, conduzidos na estação experimental de Coimbra, pertencente ao Departamento de Fitotecnia da Universidade Federal de Viçosa (UFV). Para cada análise, foram analisados os métodos de análise de vizinhança: método das médias móveis, método de Papadakis, reaplicação das médias móveis, reaplicação do método Papadakis e o método com erros dependentes em comparação com a análise tradicional em látice, que desconsidera a dependência espacial entre parcelas quanto ao ajuste dos modelos e à classificação das famílias avaliadas. Foi verificada a existência da dependência espacial nos experimentos pelo teste de Durbin-Watson, semivariograma empírico e teórico com o ajustamento de um modelo geoestatístico para resíduos, verificando a coerência dos dados e percebendo a ocorrência da dependência espacial em seis dos oito experimentos avaliados (capítulo 1). Dos seis experimentos, cinco apresentaram dependência espacial para análise em blocos e um para análise em látice e em blocos, com alcance variando de 2,6 a 33,3 m. No capítulo 2, foram utilizados o teste de Durbin-Watson para verificar a dependência espacial entre resíduos para as diferentes metodologias, além do critério de informação de Akaike (AIC) e do teste da razão da verossimilhança (LRT) para comparar o ajuste dos modelos. Utilizaram-se o coeficiente de variação e a eficiência relativa para comparar a eficiência das metodologias testadas em relação à análise em látice. Também foram utilizados o coeficiente de correlação de Spearman e a eficiência de seleção para comparar as classificações de famílias do feijoeiro obtidas na análise em látice e pelos métodos de análise espacial. Verificou-se que os métodos de análise espacial ajustaram-se melhor aos dados em relação aos métodos que assumem erros independentes. Quanto à precisão experimental, a eficiência da análise em látice foi maior em relação à análise em blocos quando há maior dependência espacial. Os métodos de análise espacial, médias móveis, Papadakis e o método com erros dependentes apresentaram razoável eficiência, enquanto as metodologias propostas, reaplicações das médias móveis e Papadakis foram altamente eficientes em relação à análise em látice, sendo mais eficiente o método reaplicação de Papadakis cuja vizinhança é composta por uma parcela superior e uma inferior em relação à parcela referência. Os métodos testados apresentaram razoável nível de concordância em relação às famílias selecionadas na análise em látice. As metodologias de reaplicação de médias móveis e reaplicação de Papadakis mostram-se altamente eficientes para melhorar a precisão experimental, além de conseguir garantir a independência entre resíduos, sendo uma excelente alternativa de análise em relação à análise em látice.
  • Imagem de Miniatura
    Item
    Abordagem Bayesiana do modelo AR(1) para dados em painel: uma aplicação em dados temporais de microarray
    (Universidade Federal de Viçosa, 2008-12-05) Morais, Telma Suely da Silva; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4248026D5; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5; Caetano, Sidney Martins; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4706384A9
    Considerou-se uma análise Bayesiana do modelo auto- regressivo de primeira ordem, AR(1), para dados em painel, de forma a utilizar a função de verossimilhança exata, a análise de comparação de distribuições a priori e a obtenção de distribuições preditivas de dados futuros. A eficiência da metodologia proposta foi avaliada mediante um estudo de simulação, no qual a distribuição Beta Generalizada foi usada para representar 3 diferentes prioris: simétrica, assimétrica e constante. Realizou-se uma aplicação em dados reais de expressão gênica temporal de células HeLa gerados por microarray. Os resultados mostraram alta eficiência na previsão da expressão gênica para um instante futuro.
  • Imagem de Miniatura
    Item
    Avaliação de métodos para determinação do número ótimo de clusters em estudo de divergência genética entre acessos de pimenta
    (Universidade Federal de Viçosa, 2009-01-19) Faria, Priscila Neves; Cruz, Cosme Damião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Cecon, Paulo Roberto; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4759955H9; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; Finger, Fernando Luiz; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783681Y0
    Muitas vezes, a interpretação dos resultados em análise de agrupamentos é feita de forma subjetiva, isto é, através da inspeção de dendrogramas. Isto se deve ao fato de haver dificuldade em se encontrar na literatura um critério objetivo de fácil aplicação para identificar o número ideal de grupos formados. Diante deste problema, o presente trabalho teve por objetivos: 1) Avaliar a aplicabilidade de critério objetivo de se obter o ponto de corte (número ótimo de clusters) num dendrograma para a tomada de decisão; 2) trabalhar os conceitos de índices como RMSSTD (root mean square standard deviation) e RS (R-Squared), discutindo a contribuição de cada um destes na obtenção do número ótimo de clusters em acessos de Capsicum chinense; 3) aplicação do método, visando a identificar acessos divergentes de Capsicum chinense para serem utilizados em programas de melhoramento. Os índices RMSSTD e RS são calculados de acordo com as variáveis entre e dentro dos grupos formados, caracterizando uma forma objetiva para determinar o número ótimo. Para se obter o ponto de máxima curvatura da trajetória dos índices RMSSTD e RS em função do aumento do número de grupos (X), utilizou-se o Método da Máxima Curvatura Modificado. Foram analisadas, por meio da análise de agrupamentos, algumas características morfológicas de quarenta e nove acessos da espécie Capsicum chinense Jacq. do Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa. A partir das técnicas propostas agrupou-se os acessos, obtendo um número ótimo de grupos. Os resultados classificam os 49 acessos avaliados em apenas sete grupos de acordo com o gráfico do RMSSTD versus o número de grupos e o gráfico do RS versus o número de grupos.
  • Imagem de Miniatura
    Item
    Análise de agrupamento para a avaliação de identidade de modelos não-lineares em análise de sobrevivência
    (Universidade Federal de Viçosa, 2009-02-19) Tomaz, Flávia Sílvia Corrêa; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Peternelli, Luiz Alexandre; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723301Z7; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4248223A9; Carneiro, Antônio Policarpo Souza; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4799449E8; Silva, Gilson Fernandes da; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4768528D0; Faria, Mercio Botelho; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4183550E7
    O objetivo desse trabalho foi comparar modelos não-lineares ajustados aos dados de sobrevivência de formigas submetidas a diferentes tratamentos através de metodologia alternativa. Essa metodologia consistiu no uso da técnica de análise de agrupamento, método de Ward, para a identidade de modelos usados em análise de sobrevivência. Os dados utilizados neste trabalho são referentes a um experimento realizado no laboratório de entomologia da Universidade Federal de Viçosa. Foi também utilizado um conjunto de dados simulado com base na distribuição de Weibull. Inicialmente aplicou-se técnica não paramétrica, estimador Kaplan-Meier, a fim de estimar as curvas de sobrevivência de cada tratamento e, em seguida, o teste logrank para a comparação dessas curvas. Para os dados reais foi ajustado o modelo logístico aos tempos de sobrevivência, enquanto que, para os dados simulados foi ajustado o modelo de Weibull. Para cada caso agrupou-se os parâmetros estimados de cada modelo utilizando-se as técnicas de análise de agrupamento. Os resultados encontrados pelo agrupamento foram equivalentes aos do teste logrank. Concluiu-se que a metodologia proposta mostrou ser eficiente e menos trabalhosa, quando várias curvas de sobrevivência precisam ser comparadas.