Estatística Aplicada e Biometria
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/195
Navegar
1 resultados
Resultados da Pesquisa
Item Regressão quantílica: aplicações em seleção genômica ampla(Universidade Federal de Viçosa, 2018-02-02) Barroso, Laís Mayara Azevedo; Nascimento, Moysés; http://lattes.cnpq.br/8587813175766141A principal contribuição da genética molecular no melhoramento é a utilização direta das informações de DNA no processo de identificação de indivíduos geneticamente superiores. Sob esse enfoque, idealizou-se a seleção genômica ampla (Genome Wide Selection – GWS), a qual consiste no uso de um grande número de marcadores SNPs (Single Nucleotide Polymorphisms) amplamente distribuídos no genoma para predizer o mérito genético de indivíduos. Diversas abordagens estatísticas foram propostas para a predição de valores genéticos permitindo estimar os efeitos dos marcadores com base apenas na média condicional da variável dependente. Uma metodologia ainda pouco explorada em GWS é a regressão quantilica (RQ). Diferentemente das outras metodologias, a RQ permite avaliar os fenótipos de interesse em diferentes níveis da distribuição. Desta forma, este trabalho tem como objetivo apresentar duas aplicações de GWS utilizando a RQ. Na primeira aplicação foi proposto e avaliado o uso da Regressão Quantílica Regularizada (RQR) para estimar os efeitos marcadores SNPs para curvas de crescimento em suínos. O modelo proposto permitiu a descoberta, em diferentes níveis de interesse (quantils), de marcadores relevantes para cada característica e suas respectivas posições cromossômicas. Além disso, RQR permitiu a construção de curvas de crescimento genômico, que identificaram indivíduos geneticamente superiores em relação à eficiência de crescimento. Na segunda aplicação utilizou-se a RQR para predizer valores genéticos de conjuntos de dados simulados com diferentes proporções de epistasia na variância genética e valores fenótipos com distribuições simétrica e assimétrica a direita. Neste trabalho verificou-se que a RQR teve, em geral, maiores acurácias do que as outras metodologias avaliadas quando a característica é de baixa herdabilidade. Além disso, quando tem-se 100% da variância genética como sendo epistática, a RQR foi, na maioria dos casos, melhor do que os métodos tradicionais. Desta forma, avaliando as duas aplicações apresentadas, tem-se que a RQR é uma alternativa interessante em estudos de GWS, uma vez que possibilita a descoberta do modelo que melhor representa a relação entre as variáveis dependentes (fenótipos) e independentes (efeitos dos marcadores) aumentando o desempenho preditivo do modelo.