Microbiologia Agrícola
URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/190
Navegar
4 resultados
Resultados da Pesquisa
Item Análise genômica de Serratia liquefaciens isolada de leite e inibição da proteólise e lipólise por nisina(Universidade Federal de Viçosa, 2023-05-12) Ribeiro, Leandro Cardoso; Vanetti, Maria Cristina Dantas; http://lattes.cnpq.br/6601616143350350Serratia é um gênero de bactérias Gram-negativas que pode ser encontrado em diversos ambientes como solo, água, plantas, animais e humanos. Algumas espécies são relatadas como contaminantes de alimentos, sendo associadas à deterioração de produtos alimentícios, resultando em prejuízos econômicos e ambientais devido ao desperdício. A espécie S. liquefaciens é frequentemente mencionada como deterioradora de alimentos refrigerados, como frutos do mar, queijos e leite cru. É considerada um problema para a indústria de alimentos devido à síntese de enzimas extracelulares termorresistentes, como proteases e lipases, que permanecem ativas mesmo após o processamento térmico. Estudos prévios mostraram o efeito inibidor da bacteriocina nisina sobre a atividade de proteases e lipases de S. liquefaciens. Nisina é um peptídeo catiônico com amplo espectro de ação contra bactérias Gram-positivas, e seu uso como conservante de alimentos é permitido desde 1950. Este trabalho objetivou investigar as características moleculares de S. liquefaciens L211 isolada de leite, por meio de análises genômicas utilizando ferramentas de bioinformática e avaliar o efeito da nisina nas atividades proteolítica e lipolítica da bactéria em questão. Para isso, foi realizado o sequenciamento do genoma de S. liquefaciens L211 utilizando a plataforma MinION. Em seguida a montagem e anotação do genoma foram realizadas, destacando as características funcionais dos genes da bactéria. Foram realizadas análises comparativas do genoma do isolado L211 com outros genomas S. liquefaciens, completos e anotados, disponíveis no banco de dados do NCBI. Análises fenotípicas evidenciaram que o S. liquefaciens L211 possui a capacidade de se locomover, utilizando os motilidades do tipo swarming, swimming e twitching. Além disso, foi constatada a capacidade de síntese de sideróforos, proteases e poliuretanase com atividade de lipase no isolado. As atividades proteolítica e lipolítica de S. liquefaciens L211 foram avaliadas e quantificadas em leite desnatado reconstituído à 10% (p/v) com e sem a adição de nisina (400 UA/mL) para verificar o efeito inibitório de nisina sobre a atividade enzimática. Posteriormente, foi avaliado se a inibição da atividade enzimática por nisina é decorrente da diminuição da expressão dos genes ser1, ser2 e lipA relacionados com a síntese das proteases e lipase de S. liquefaciens. As análises do genoma de S. liquefaciens L211 revelaram que a espécie apresenta características genéticas preservadas, ao passo que as variações entre os indivíduos da espécie S. liquefaciens possibilitam sua adaptação a diferentes ambientes. Além disso, também foi observado que S. liquefaciens possui genes que codificam enzimas associadas à deterioração de alimentos. Foi demonstrado que, apesar de não ter atividade bactericida contra S. liquefaciens, a concentração 400 UA/mL de nisina inibe a atividade proteolítica e lipolítica. Não foram encontradas referências na literatura que relatem a inibição das atividades enzimáticas por nisina em S. liquefaciens. Nisina inibiu a transcrição de genes de proteases e lipase de S. liquefaciens L211 e o mecanismo de regulação envolvido ainda precisa ser elucidado. Este trabalho destaca a versatilidade do repertório genético de S. liquefaciens, a relevância da bactéria como deterioradora de alimentos e revela o potencial inibitório de nisina sobre a atividade enzimática. Palavras-chave: Tese. Pós-graduação. Leite. Microbiologia. Serratia liquefaciens. Bactérias Gram-negativas. Nisina. Proteólise. Lipólise. Genômica.Item The known unknowns: understanding slow-growing bacteria and their plant interaction through reverse ecology approaches(Universidade Federal de Viçosa, 2023-07-18) Gonçalves, Osiel Silva; Santana, Mateus Ferreira; http://lattes.cnpq.br/5810415406152941The cultivation of bacteria that exhibit slow growth rates has posed a longstanding challenge in microbiology, resulting in a significant number of unculturable bacterial species. This phenomenon, known as the "great plate count anomaly", represents one of the oldest unresolved topics in the field. Recent advancements in cultivation techniques have shown promise in overcoming this challenge. In addition, the study of slow-growing bacteria and their interactions with plants has gained significant attention due to their ecological importance and potential applications in agriculture. Genomics techniques have provided valuable insights into the genetic characteristics underlying microbe-plant interactions. In this context, by examining the in-cultivation techniques, genomics, and computational modeling, we seek to shed light on the slow-growing bacteria and uncover their contributions to ecosystem functioning and plant interaction. Our initial understanding was obtained through the study of 92 slow-growing bacteria isolated from the Brazilian Cerrado soil during a four week-long isolation period. These bacteria can thrive in low-water conditions, promote plant growth, and belong to a novel species group. Genome analysis of five strains revealed their potential in biogeochemical cycles, plant growth promotion, and biosynthesis of secondary metabolites. Next, we conducted greenhouse experiments to assess the efficacy of these bacteria in soybean cultivation, employing a carefully designed bacterial consortium based on our comprehensive understanding of microbial-microbe and plant-microbe interactions. The results showed promising outcomes for improving soybean productivity. In the third chapter of this thesis, we employed in-silico modeling to design a synthetic microbial community aimed at enhancing the yield of important crop plants. By selecting six hub species with essential plant growth-promoting traits from the dominant plant species found in the Campos rupestres, we aimed to optimize the plant-microbe interactions and maximize crop productivity. Lastly, our analysis of 758 metagenome- assembled genomes shed light on the global distribution of the Acidobacteriota phylum and its interactions with plants and biogeochemical processes. This exploration revealed distinct ecological roles for individual taxonomic groups within this phylum, providing valuable insights for future research. Overall, our thesis contributes to a better understanding of slow-growing bacteria, their ecological significance, and their potential applications in agriculture, offering insights into ecosystem functioning and plant interactions. Keywords: Agriculture. Slow-growing bacteria. Ecosystems. Genomics. Microbe-plant interactions. MicrobiologyItem Endophytic Trichoderma spp. for the control of common bean anthracnose(Universidade Federal de Viçosa, 2021-08-30) Alvarado Moreno, Hanna Lorena; Queiroz, Marisa Vieira de; http://lattes.cnpq.br/7669413148255144Fungi of the Trichoderma genus can protect plants by mechanisms of action such as mycoparasitism, antibiosis, competition and/or systemic resistance induction. Isolates from megadiverse environments such as the Amazon rainforest may have the potential to protect plants of agronomic interest and provide information that amplify the current knowledge of the Trichoderma genus. The objective of the present work was to select Trichoderma spp. endophytes from the Amazon Forest with potential for use as biological control (BC) agents of common bean anthracnose caused by the phytopathogen Colletotrichum lindemuthianum and to know the mechanisms of action by which these selected isolates were able to protect the plants against the phytopathogen. First, 20 Trichoderma spp. isolates were evaluated in a greenhouse and four isolates were selected: Trichoderma sp. VIC44363 17F (T17F), Trichoderma sp. VIC44364 22F (T22F), Trichoderma koningiopsis 24F (Tk24F) and Trichoderma erinaceum 610F (Te610F) which also promoted the growth of common bean. The isolates T22F, Tk24F and Te610F were studied regarding the mechanism of action, whether it is mycoparasitism, antibiosis, competition and/or resistance induction. For this, it was evaluated whether the application site of the antagonist, before the application of the phytopathogen, would influence the BC efficiency. Isolates T22F, Tk24F and Te610F protected the plant when they were applied to the root and leaves in a preventive way, but the isolate Tk24F stood out because it protected the plant in a systemic way when it was applied only to the root and locally when it was applied in the aerial part; similarly, the isolate Te610F stood out because it had a local effect as the disease severity was reduced by application to the aerial part. Subsequently, with the in vitro experiments, it was determined that the isolates Tk24F and Te610F were the most efficient antagonists to C. lindemuthianum due to the mechanisms of mycoparasitism, antibiosis and competition. Finally, with the T17F isolate, a separate study was carried out due to the possibility of it producing mycotoxins that limit its use as a BC agent, as it belongs to the Brevicompactum clade, which is recognized for producing mycotoxins of the trichothecenes type. The characterization of the T17F isolate was carried out through in vitro experiments in which the mechanisms of mycoparasitism, antibiosis and competition were evaluated, and the genome was sequenced to perform a comparative analysis with genomes from other species belonging to the same clade. By in vitro test it was determined that antibiosis is the mechanism used by the T17F isolate to antagonize C. lindemuthianum and other phytopathogenic fungi. By comparing trichothecenes cluster of the isolate Trichoderma sp. VIC44363 with the cluster of T. brevicompactum and T. arundinaceum, it was concluded that Trichoderma sp. VIC44363 can produce the mycotoxin trichodermin, as it lacks the tri23 gene. Trichoderma sp. VIC44363 has the potential to produce new compounds, as it has a cluster that is different from those found in T. brevicompactum. Trichoderma erinaceum 610F and T. koningiopsis 24F are potential biocontrol agents for C. lindemuthianum, due to the joint use of mechanisms that inhibit the infection of C. lindemuthianum. Keywords: Endophytes. Transformation with RFP. Colonization. qPCR. Transcriptomics. Genomics. Brevicompactum. Viride.Item Characterization of prophage-like elements in plant pathogenic Xanthomonas species(Universidade Federal de Viçosa, 2022-03-04) Ferreira, Nataly Figueiredo; Alfenas-Zerbini, Poliane; http://lattes.cnpq.br/0465447261980949Bacteriophages are viruses that infect prokaryotes that are present in diverse environments. Prophages are bacteriophages with genome into the host genome and have been considered part of bacteria mobilome. For instance, bacteriophages may encode proteins that increase bacteria toxicity and virulence, confer genetic variability, and facilitate horizontal gene transfer, improving bacterial fitness. The Xanthomonas genus harbors many phytopathogenic bacteria that impair many crops worldwide. However, there is a scarcity of studies that describes bacteriophage distribution and diversity within this genus. Given this, our study aims to identify and characterize the presence of prophage-like elements in three species belonging to the Xanthomonas genus: X. axonopodis, X. campestris and X. citri. We found prophage-like sequences in 98% of the analyzed genomes, whereby more than one prophage-like was detected within the same bacterial genome, event denominated as polilysogen. The prophages-like from Xanthomonas spp. belonged to four viral families (Myoviridae, Siphoviridae, Podoviridae, Inoviridae), three families belonging to the Caudovirales order and one belonging to the Tubulavirales order (Inoviridae). Furthermore, many prophages-like harbored genes of putative bacterial origin, indicating horizontal gene transfer between the virus and host, such as genes encoding virulence factors. Taken together, these results indicated that prophages-like are widespread in Xanthomonas spp., influencing the genome diversity and fitness of these bacteria. Keywords: Bacteriophage. PHASTER. Genome plasticity. Bacteria fitness.