Fisiologia Vegetal

URI permanente para esta coleçãohttps://locus.ufv.br/handle/123456789/185

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Physiological and hydraulic mechanisms of drought tolerance in plants : implications of CO2 and irradiance
    (Universidade Federal de Viçosa, 2020-02-17) Avila, Rodrigo Teixeira; DaMatta, Fabio Murilo; http://lattes.cnpq.br/6404622647636394
    Herein, it is present a series of experiments divided into four chapters with the purpose to immerse deep into some physiological and hydraulic responses to drought and also how some of them interact with environmental variability such as elevated [CO2] and irradiance. On the first two chapters it is presented drought responses of coffee plants, one of the most important commodities worldwide, under elevated (700 ppm) and ambient (400 ppm) [CO2] On the first chapter we found that drought-stressed 700-plants were able to keep hydraulic conductance for longer, transpiring more than 400-plants. Correlative evidence is shown that aquaporins may play major roles in these processes. In addition, Well-watered 700-plants displayed lower whole-plant transpiration rates than their 400- counterparts. This was not associated with maximum gs per se, but rather with an increased stomatal closure rate upon vapor pressure deficit transitions, which occur innumerous times over the course of the day. On the second chapter we found that elevated [CO2] improved carbon assimilation, water use-efficiency and biomass accumulation regardless watering, in addition to decreasing the oxidative pressure under drought conditions. Elevated [CO2] also promoted key allometric adjustments linked to drought tolerance, e.g. more biomass partitioning towards roots with a deeper root system. Improved growth under enhanced air [CO2] was unlikely to have been associated with global changes on hormonal pools but rather with shifts on carbon fluxes. Altogether, results from the chapters 1 and 2 suggest that [CO2] is perceived by the plant as a key environmental factor having profound implications on how plants respond to drought, thus permitting 700-plants to have an improved fitness under drought when compared to 400- plants. In the third and fourth chapters, efforts were focused on analyzing hydraulic aspects of several different species. O the third chapter, we focused on finding anatomical drivers related to inter- and intraspecific xylem embolism resistance. Vessel lumen fraction was the only anatomical trait measured that correlated with xylem embolism resistance across scales and species. Light was found to drive only minor differences in stem and not leaf embolism resistance. Our data suggest that conduits highly dispersed in a matrix of imperforate elements may be better protected against the spread of embolism than conduits that are packed in close proximity, which may contribute to our understanding of the mechanisms behind air-seeding. Finally at the fourth chapter, it is presented deep insights into the possible existence of a well-established water potential threshold beyond which vessels and tracheids will embolize We found that, in vessel-based xylem species, individual xylem conduits had a more well-defined water potential at which embolism occur, with considerable pre-existing embolism being able to influence the vulnerability of the xylem. In contrast, conduits in tracheid-based xylem did not display a well-defined individual water potential threshold at which embolism occurs and thus pre-existing embolism did not alter the vulnerability of xylem. Keywords: Elevated CO2. Drought. Coffee. Embolism, Xylem.
  • Imagem de Miniatura
    Item
    Manipulation of source-to-sink ratios in girdled coffee branches evidences lack of photosynthetic down-regulation: the interplay of photosynthesis with respiration and photorespiration pathways and amino acid metabolism
    (Universidade Federal de Viçosa, 2016-02-25) Avila, Rodrigo Teixeira; Matta, Fábio Murilo da; http://lattes.cnpq.br/6404622647636394
    We aimed to gain a better understanding on how the regulation of photosynthesis in coffee depends on sink activity or carbohydrate build-up in source leaves and how the coffee tree adjusts its photosynthetic performance and primary metabolism to varying source-to-sink ratios. For these purposes, we use integrative approaches combining gas- exchange and chlorophyll a fluorescence measurements, analyses of carbohydrates and major metabolites, activities of a range of enzymes and the expression of some genes encoding for key enzymes of the carbon metabolism to achieve a holistic view of the whole leaf metabolism in response to long-term source-to-sink manipulation. We designed a field experiment by girdling coffee branches that were further manipulated by controlled defoliation and/or defruiting so that three highly varying source-to-sink ratios were created. We found that under remarkably high source-to-sink ratios photosynthesis rates were chiefly limited by diffusive factors (that were apparently unrelated to whole-leaf abscisic acid) with no apparent signs of feedback down- regulation. Lack of down-regulation was associated with an enormous capacity for starch accumulation coupled with maintenance of low levels of soluble sugars. Chronic Chronic photoinhibition and photodamage could be avoided through adjustments in leaf photochemistry, photorespiration and respiration amongst other processes. No major metabolic reprograming was found at the level of key enzymes associated with carbon metabolism. Metabolic adjustments in source leaves were more evident under high-sink demand conditions and centered more on nitrogen metabolism than on carbon metabolism. In conclusion, our results offer novel insights on the high coordination between the source supply and sink demand in coffee trees, with no evident signs of photosynthetic down-regulation even under dramatically low-sink conditions.