Navegando por Autor "Santos, Vinicius Silva dos"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Genomic prediction models with additive and dominance effects for censored traits(Universidade Federal de Viçosa, 2017-03-31) Santos, Vinicius Silva dos; Martins Filho, Sebastião; http://lattes.cnpq.br/5809878805245760Recently, dominance effects have been included in the genomic selection of several species, with the GBLUP-D method being the most used. This method consists in replacing, in the REML / BLUP procedure, the pedigree-based relationship matrices by marker-based relationship matrices. This method can be performed using the GVCBLUP software or through BGLR R-package, which is based on Bayesian regression via the Reproduction Kernel Hilbert Space. The objective of this work was to evaluate the possibility and effectiveness of GBLUP-D implementation via the lmekin function implemented in the coxme package of R through the inclusion of additive and dominance genomic matrices. Thus, through simulated data analyzes, the results obtained by the lmekin function were compared with those obtained by the GVCBLUP software and the BGLR package. Subsequently, the analysis was extended considering phenotypes with censored observations in a F 2 population of pigs, where the time (in days) of the birth to the slaughter of the animal was evaluated through the Cox model and the truncated normal model, in that the censoring was considered or not in the analysis. Finally, the inclusion of the polygenic effect in the additive-dominant models was evaluated in three traits with complete and normally distributed observations of a mice population, and in censored data from a F 2 population of pigs. The results showed that the lmekin function is an efficient alternative for the fit of genomic linear models with additive and dominance effects, since it results were identical to those obtained through GVBLUP software. For the censored data, it was observed a high agreement between the Cox model and the truncated normal model in selecting the best individuals and the highest marker effects. Thus, it was possible to show the possibility of predicting genomic genetic values for censored data, considering the Cox survival model with additive and dominance effects. The inclusion of the polygenic effect in the evaluated models allowed a significative increase in the additive heritabilities of the evaluated traits.Item Seleção genômica ampla em suínos usando o modelo de sobrevivência de Cox(Universidade Federal de Viçosa, 2013-02-26) Santos, Vinicius Silva dos; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Resende, Marcos Deon Vilela de; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4709374E4; Martins Filho, Sebastião; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282T5; http://lattes.cnpq.br/5809878805245760; Nascimento, Carlos Souza do; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4734058H3A seleção genômica ampla (GWS) surgiu em 2001 com o objetivo de aumentar a eficiência e acelerar o ganho de seleção no melhoramento genético baseando-se exclusivamente em marcadores após terem seus efeitos genéticos estimados a partir de dados fenotípicos. No contexto de análise de sobrevivência, o modelo de riscos proporcionais de Cox com efeito aleatório foi comparado ao modelo linear misto, ambos usando a matriz de parentesco baseada em marcadores em substituição à baseada em pedigree, método esse denominado GBLUP. A aplicação foi feita aos dados reais de uma população F2 de suínos em que a variável resposta foi o tempo em dias, do nascimento até o abate do animal e as covariáveis: marcadores SNPs (238), sexo e lote de manejo. Os dados foram previamente corrigidos para seus efeitos fixos e a acurácia do método foi calculada com base na correlação dos postos dos valores genéticos genômicos preditos em ambos os modelos com os valores fenotípicos corrigidos. A análise foi repetida considerando menor número de marcadores SNPs que apresentassem maiores efeitos em módulo. Os resultados demonstraram concordância na predição dos valores genéticos genômicos e na estimação dos efeitos de marcadores para ambos os modelos na situação de dados não censurados e normalidade. No entanto, ao considerar a censura, o modelo de Cox com efeito aleatório normal foi o mais apropriado, uma vez que não houve concordância na predição dos valores genéticos genômicos e na estimação dos efeitos de marcadores com o modelo linear misto com dados imputados. A seleção de marcas permitiu um aumento nas correlações entre os postos dos valores genéticos genômicos preditos pelo modelo linear e pelo modelo de fragilidade de Cox com os valores fenotípicos corrigidos, sendo que para a característica analisada, 120 marcadores foram suficientes para maximizar a capacidade preditiva.