Navegando por Autor "Pereira, Welison A."
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Geminivirus data warehouse: a database enriched with machine learning approaches(BioMed Central Bioinformatics, 2017-05-05) Silva, Jose Cleydson F.; Carvalho, Thales F. M.; Basso, Marcos F.; Deguchi, Michihito; Pereira, Welison A.; Vidigal, Pedro M. P.; Brustolini, Otávio J. B.; Silva, Fabyano F.; Dal-Bianco, Maximiller; Fontes, Renildes L. F.; Santos, Anésia A.; Zerbini, Francisco Murilo; Cerqueira, Fabio R.; Fontes, Elizabeth P. B.; R. Sobrinho, RobertoThe Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.Item NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism(Nature, 2015-04-30) Zorzatto, Cristiane; Machado, João Paulo B.; Lopes, Kênia V. G.; Nascimento, Kelly J. T.; Pereira, Welison A.; Brustolini, Otávio J. B.; Reis, Pedro A. B.; Calil, Iara P.; Deguchi, Michihito; Sachetto-Martins, Gilberto; Gouveia, Bianca C.; Loriato, Virgílio A. P.; Silva, Marcos A. C.; Silva, Fabyano F.; Santos, Anésia A.; Chory, Joanne; Fontes, Elizabeth P. B.Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security^ 1–3 . In virus– plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts^ 1 . In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections^ 2,3 . Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses^ 1,2 . Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP)^ 4–6 , leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.Item Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants(Plant Biotechnology Journal, 2015-01-06) Brustolini, Otávio J.B.; Machado, Joao Paulo B.; Condori-Apfata, Jorge A.; Coco, Daniela; Deguchi, Michihito; Loriato, Virgílio A.P.; Pereira, Welison A.; Alfenas-Zerbini, Poliane; Zerbini, Francisco M.; Inoue-Nagata, Alice K.; Santos, Anesia A.; Chory, Joanne; Silva, Fabyano F.; Fontes, Elizabeth P.B.Begomovirus-associated epidemics currently threaten tomato production worldwide due to the emergence of highly pathogenic virus species and the proliferation of a whitefly B biotype vector that is adapted to tomato. To generate an efficient defence against begomovirus, we modulated the activity of the immune defence receptor nuclear shuttle protein (NSP)-interacting kinase (NIK) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Mutation of T474 within the kinase activation loop promoted the constitutive activation of NIK-mediated defences, resulting in the down-regulation of translation-related genes and the suppression of global translation. Consistent with these findings, transgenic lines harbouring an activating mutation (T474D) were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. This phenotype was associated with reduced loading of coat protein viral mRNA in actively translating polysomes, lower infection efficiency and reduced accumulation of viral DNA in systemic leaves. Our results also add some relevant insights into the mechanism underlying the NIK-mediated defence. We observed that the mock-inoculated T474D-overexpressing lines showed a constitutively infected wild-type transcriptome, indicating that the activation of the NIK- mediated signalling pathway triggers a typical response to begomovirus infection. In addition, the gain-of-function mutant T474D could sustain an activated NIK-mediated antiviral response in the absence of the virus, further confirming that phosphorylation of Thr-474 is the crucial event that leads to the activation of the kinase.