Navegando por Autor "Mendes, André"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Determinação do tamanho de amostra para a geoestatística(Universidade Federal de Viçosa, 2020-02-21) Mendes, André; Santos, Gerson Rodrigues dos; http://lattes.cnpq.br/6645099142656304A estimativa do tamanho da amostra na geoestatística é de grande importância para o planejamento e tomada de decisão, especialmente quando se objetiva a reconstrução total da população estudada. Por este motivo, muitos trabalhos sobre o tamanho da amostra geoestatística surgem com este propósito. Assim, o objetivo geral deste trabalho é utilizar a geoestatística associada ao teorema da taxa Nyquist para determinar um tamanho de amostra ideal quando se utiliza uma grade regular quadrática, na qual o modelo de dependência espacial ajustado é o gaussiano, identificando especificamente mudanças no tamanho ideal da amostra na presença de outliers. Dois conjuntos de dados altimétricos (Viçosa-MG, Brasil e Treynor-Iowa, EUA) foram analisados e o tamanho amostral ideal para ambos os conjuntos foi obtido. Posteriormente, os outliers foram removidos do conjunto de dados norte- americano e comparados os tamanhos de amostra ideais obtidos anteriormente. Além disso, utilizando os softwares R e ArcGIS, as estimativas dos parâmetros do modelo gaussiano, da média e da variância dos resíduos, provenientes da validação cruzada, foram comparadas através da construção de intervalos de confiança. Com o presente estudo concluiu-se que: (i) a distância máxima entre os pontos da grade regular quadrática é de aproximadamente 30% do alcance prático observado no semivariograma da primeira amostragem experimental; (ii) o tamanho amostral ideal obtido na presença de outliers é praticamente o dobro do tamanho de amostra ideal na ausência de outliers; (iii) o software R é o mais adequado na comparação das estimativas da média e da variância dos resíduos pois apresentou uma menor variabilidade (menores amplitudes dos intervalos de confiança construídos). Palavras-chave: Tamanho de amostra. Taxa Nyquist. Geoestatística. Outliers.Item Um estudo do teste não paramétrico de Kohli aplicado em Conjoint Analysis(Universidade Federal de Viçosa, 2011-08-05) Mendes, André; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; http://lattes.cnpq.br/6645099142656304; Lopes, Jaques Silveira; http://lattes.cnpq.br/1605698945852448; Nascimento, Moysés; http://lattes.cnpq.br/6544887498494945Neste trabalho avaliou-se o teste não paramétrico proposto por Kohli (1988), denominado teste h, para acessar a significância de atributos na Conjoint Analysis (CA). O referido teste foi comparado ao teste F da ANOVA (Análise de variância) com a execução de ambas as metodologias em 48 conjuntos de dados, sendo cada um a simulação da avaliação por 48 consumidores para oito tratamentos. Foram geradas notas de intenção de compra (ou preferência) numa escala ordinal formada pelos números inteiros de 1 a 9, sendo nota 1 para o tratamento menos preferido e 9 para o mais preferido, à semelhança de estudos realizados na área de Ciência e Tecnologia de Alimentos. Tomou-se como referência um modelo de CA aditivo e sem interação entre os atributos, com três atributos (A, B e C) e dois níveis cada, para formar os oito tratamentos num esquema fatorial completo 23. Foram definidos quatro cenários especificados por suas distintas Importâncias Relativas (IR%) entre os três atributos (e consequentemente amplitudes distintas entre os coeficientes de preferência): Cenário 1 – IRA = 60%, IRB = 30% e IRC = 10%; Cenário 2 – IRA= 40%, IRB = 40% e IRC = 20%; Cenário 3 – IRA = 35%, IRB = 35% e IRC = 30% e Cenário 4 – IRA = 5%, IRB = 45% e IRC = 50%. Para cada cenário, as notas foram geradas com erro aleatório seguindo duas distribuições de probabilidades distintas, ambas com média zero e desvio-padrão sigma (σ): distribuição normal e não normal (em forma de U). Adicionalmente, para cada uma destas duas distribuições foram utilizados diferentes valores de sigma (σ = 1,5; 2,0; 2,5; 3,0; 3,5 e 4,0). Concluiu-se que o teste h proposto por Kohli (1988) não deve ser recomendado com o intuito de apontar um atributo como significativo ou não, pois a utilização desse teste não permitiu relacionar a significância de um atributo com: (1) magnitude da importância relativa estimada na CA, (2) amplitude das estimativas dos coeficientes do modelo de regressão utilizado na CA comparada à magnitude da variância do erro aleatório do modelo, (3) ambas (1) e (2). Surpreendentemente, mesmo na ausência de normalidade do erro aleatório do modelo, o que teoricamente deveria desfavorecer o teste F da ANOVA em favor do teste h de Kohli (1988), este não se sobressaiu.