Logo do repositório
Comunidades & Coleções
Navegar
Normas e Regulamentos
Ajuda
  • English
  • Español
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Mendes, André"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Determinação do tamanho de amostra para a geoestatística
    (Universidade Federal de Viçosa, 2020-02-21) Mendes, André; Santos, Gerson Rodrigues dos; http://lattes.cnpq.br/6645099142656304
    A estimativa do tamanho da amostra na geoestatística é de grande importância para o planejamento e tomada de decisão, especialmente quando se objetiva a reconstrução total da população estudada. Por este motivo, muitos trabalhos sobre o tamanho da amostra geoestatística surgem com este propósito. Assim, o objetivo geral deste trabalho é utilizar a geoestatística associada ao teorema da taxa Nyquist para determinar um tamanho de amostra ideal quando se utiliza uma grade regular quadrática, na qual o modelo de dependência espacial ajustado é o gaussiano, identificando especificamente mudanças no tamanho ideal da amostra na presença de outliers. Dois conjuntos de dados altimétricos (Viçosa-MG, Brasil e Treynor-Iowa, EUA) foram analisados e o tamanho amostral ideal para ambos os conjuntos foi obtido. Posteriormente, os outliers foram removidos do conjunto de dados norte- americano e comparados os tamanhos de amostra ideais obtidos anteriormente. Além disso, utilizando os softwares R e ArcGIS, as estimativas dos parâmetros do modelo gaussiano, da média e da variância dos resíduos, provenientes da validação cruzada, foram comparadas através da construção de intervalos de confiança. Com o presente estudo concluiu-se que: (i) a distância máxima entre os pontos da grade regular quadrática é de aproximadamente 30% do alcance prático observado no semivariograma da primeira amostragem experimental; (ii) o tamanho amostral ideal obtido na presença de outliers é praticamente o dobro do tamanho de amostra ideal na ausência de outliers; (iii) o software R é o mais adequado na comparação das estimativas da média e da variância dos resíduos pois apresentou uma menor variabilidade (menores amplitudes dos intervalos de confiança construídos). Palavras-chave: Tamanho de amostra. Taxa Nyquist. Geoestatística. Outliers.
  • Imagem de Miniatura
    Item
    Um estudo do teste não paramétrico de Kohli aplicado em Conjoint Analysis
    (Universidade Federal de Viçosa, 2011-08-05) Mendes, André; Ribeiro Junior, José Ivo; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4723282Y6; Silva, Fabyano Fonseca e; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4766260Z2; Silva, Carlos Henrique Osório; http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4785396A6; http://lattes.cnpq.br/6645099142656304; Lopes, Jaques Silveira; http://lattes.cnpq.br/1605698945852448; Nascimento, Moysés; http://lattes.cnpq.br/6544887498494945
    Neste trabalho avaliou-se o teste não paramétrico proposto por Kohli (1988), denominado teste h, para acessar a significância de atributos na Conjoint Analysis (CA). O referido teste foi comparado ao teste F da ANOVA (Análise de variância) com a execução de ambas as metodologias em 48 conjuntos de dados, sendo cada um a simulação da avaliação por 48 consumidores para oito tratamentos. Foram geradas notas de intenção de compra (ou preferência) numa escala ordinal formada pelos números inteiros de 1 a 9, sendo nota 1 para o tratamento menos preferido e 9 para o mais preferido, à semelhança de estudos realizados na área de Ciência e Tecnologia de Alimentos. Tomou-se como referência um modelo de CA aditivo e sem interação entre os atributos, com três atributos (A, B e C) e dois níveis cada, para formar os oito tratamentos num esquema fatorial completo 23. Foram definidos quatro cenários especificados por suas distintas Importâncias Relativas (IR%) entre os três atributos (e consequentemente amplitudes distintas entre os coeficientes de preferência): Cenário 1 – IRA = 60%, IRB = 30% e IRC = 10%; Cenário 2 – IRA= 40%, IRB = 40% e IRC = 20%; Cenário 3 – IRA = 35%, IRB = 35% e IRC = 30% e Cenário 4 – IRA = 5%, IRB = 45% e IRC = 50%. Para cada cenário, as notas foram geradas com erro aleatório seguindo duas distribuições de probabilidades distintas, ambas com média zero e desvio-padrão sigma (σ): distribuição normal e não normal (em forma de U). Adicionalmente, para cada uma destas duas distribuições foram utilizados diferentes valores de sigma (σ = 1,5; 2,0; 2,5; 3,0; 3,5 e 4,0). Concluiu-se que o teste h proposto por Kohli (1988) não deve ser recomendado com o intuito de apontar um atributo como significativo ou não, pois a utilização desse teste não permitiu relacionar a significância de um atributo com: (1) magnitude da importância relativa estimada na CA, (2) amplitude das estimativas dos coeficientes do modelo de regressão utilizado na CA comparada à magnitude da variância do erro aleatório do modelo, (3) ambas (1) e (2). Surpreendentemente, mesmo na ausência de normalidade do erro aleatório do modelo, o que teoricamente deveria desfavorecer o teste F da ANOVA em favor do teste h de Kohli (1988), este não se sobressaiu.
Logo UFVLogo BBTLogo FAPEMIGB14 – FAO AGRIS data provider 2025

DSpace software copyright © 2002-2025 LYRASIS

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify