Navegando por Autor "Alvarenga, Elson Santiago de"
Agora exibindo 1 - 3 de 3
- Resultados por Página
- Opções de Ordenação
Item Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid(International Journal of Biological Macromolecules, 2019-05-01) Soares, Lucas de Souza; Perim, Rayza Badiani; Alvarenga, Elson Santiago de; Guimarães, Luciano de Moura; Teixeira, Alvaro Vianna Novaes de Carvalho; Coimbra, Jane Sélia dos Reis; Oliveira, Eduardo Basílio deChitosan is a polysaccharide well-known for its applicability as a biocompatible, biodegradable, and non-toxic material to produce drugs excipients and food coatings. Acidic media are required to disperse chitosan, and aqueous solutions of acetic acid have been typically used for this purpose. However, this acid has several sensory drawbacks. In this study, chitosan was dispersed [0.1 g·(100 mL)−1] in aqueous media containing acetic (AA), glycolic (GA), propionic (PA), or lactic (LA) acid, at 10, 20, 30, 40, or 50 mmol·L−1. The increase of acid concentration reduced pH and viscosity of the dispersions, and |ζ potential| of dispersed particles. Conversely, it increased electrical conductivity and density of the dispersions, and hydrodynamic diameter of dispersed particles. At a given concentration, these effects were slightly more pronounced for dispersions formed with GA or LA, compared to AA or PA. FT-IR data suggested more intense attractive interactions of chitosan chains with glycolate and lactate anions, than with acetate and propionate. Chitosan chains interacted more strongly with hydroxylated acids counter-anions than with their non-hydroxylated counterparts, leading to slight quantitative changes of physicochemical properties of these systems. Then, in physicochemical terms, GA, LA or PA are suitable to replace AA when preparing aqueous chitosan dispersions for technological applications.Item Phosphorus transformation in poultry litter and litter-treated Oxisol of Brazil assessed by 31P-NMR and wet chemical fractionation(Revista Brasileira de Ciência do Solo, 2012-07-10) Souza, César Roriz de; Ghosh, Amlan Kumar; Silva, Ivo Ribeiro da; Alvarenga, Elson Santiago de; Novais, Roberto Ferreira; Jesus, Guilherme Luiz deLarge quantities of poultry litter are being produced in Brazil, which contain appreciable amounts of phosphorus (P) that could be of environmental concern. To assess the immediate environmental threat, five poultry litters composed of diverse bedding material were incubated for 43 days under greenhouse conditions. The litters consisted of: coffee bean husk (CH); wood chips (WC); rice husk (RH); ground corn cobs (CC) and ground napier grass (NG) (Pennisetum purpureum Schum.), in which the change in forms of soluble P was evaluated using 31P NMR spectroscopy. On average, 80.2 and 19.8 % of the total P in the extract, respectively, accounted for the inorganic and organic forms before incubation and 48 % of the organic P was mineralized to inorganic P in 43 days of incubation. Wide variation in the organic P mineralization rate (from 82 % -WC to 4 % - NG) was observed among litters. Inorganic orthophosphate (99.9 %) and pyrophosphate (0.1 %) were the only inorganic P forms, whereas the organic P forms orthophosphate monoesters (76.3 %) and diester (23.7 %) were detected. Diester P compounds were mineralized almost completely in all litters, except in the CH litter, within the incubation period. Pyrophosphates contributed with less than 0.5% and remained unaltered during the incubation period. Wood-chip litter had a higher organic P (40 %) content and a higher diester: monoester ratio; it was therefore mineralized rapidly, within the first 15 days, achieving steady state by the 29th day. Distinct mineralization patterns were observed in the litter when incubated with a clayey Oxisol. The substantial decrease observed in the organic P fraction (Po) of the litter types followed the order: CH (45 %) > CC (25 %) > RH (13 %) ≈ NG (12 %) > WC (5 %), whereas the Pi fraction increased. Incubation of RH litter in soil slowed down the mineralization of organic P.Item Synthesis of new phytogrowth-inhibitory substituted Aryl-p-Benzoquinones(Chemistry & Biodiversity, 2006-05-23) Barbosa, Luiz Cláudio de Almeida; Alvarenga, Elson Santiago de; Demuner, Antônio Jacinto; Virtuoso, Luciano Sindra; Silva, Antônio AlbertoReaction of [(2-alkyloxy)methyl]-1,4-dimethoxybenzene 10 (alkyl=butyl, hexyl, decyl, tridecyl, tetradecyl, hexadecyl, and octadecyl) with ceric ammonium nitrate in order to produce p-benzoquinones (=cyclohexa-2,5-diene-1,4-diones) afforded 5-[(alkyloxy)methyl]-2-(4-formyl-2,5-dimethoxyphenyl)benzo-1,4-quinones 12a-12g in yields that varied from 46 to 97%, accompanied by 2-[(alkyloxy)methyl]benzo-1,4-quinones 11a-11g in only small quantities (< or =5%). These quinones resemble the natural phytotoxic compound sorgoleone, found in Sorghum bicolor. This reaction exemplifies a general procedure for the synthesis of novel aryl-substituted p-benzoquinones. The selective effects of compounds 12a-12g, at the concentration of 5.5 ppm, on the growth of Cucumis sativus, Sorghum bicolor, Euphorbia heterophylla, and Ipomoea grandifolia were evaluated. All compounds caused some inhibition upon the aerial parts and root growth of the tested plants. The most active compound, 2-(4-formyl-2,5-dimethoxyphenyl)-5-[(tridecyloxy)methyl]-benzo-1,4-quinone (12d), caused between 3 and 18%, and 12 and 29% inhibition on the roots and aerial parts development of Cucumis sativus and Sorghum bicolor, respectively, and between 77 and 85%, and 34 and 52% inhibition on the roots and aerial parts growth of Euphorbia heterophylla and Ipomoea grandifolia, respectively.