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RESUMO 

 

ALMEIDA FILHO, Janeo Eustáquio de, D.Sc., Universidade Federal de Viçosa. fevereiro de 2016. 
Predição genômica de efeitos aditivos e não aditivos em uma população de melhoramento 
de pinus e em populações simuladas. Orientador: Fabyano Fonseca e Silva. Coorientadores: 
Marcos Deon Vilela de Resende e Matias Kirst. 
 
A predição do ḿrito geńtico dos indivíduos ́ um dos maiores desafios no 

melhoremento de plantas e animais. A predição ́ difícil por que as características 

importantes possuem natureza complexa, onde alguns caracteres possuem poucos 

genes de efeito maior, enquanto que outros são controlados por um elevado número de 

genes de efeito pequeno, aĺm disso, efeitos não-additivos como dominância e epistasia 

podem ser importantes para o controle da variação geńtica. Para obter altas acurácias 

na predição ́ importante usar o modelo que corresponde com a arquitetura geńtica da 

característica e adicionalmente a adequada partição das várias fontes de variação 

geńtica (aditiva, dominancia e epistasia) ́ desejada para várias aplicações como 

capacidade geral e específica de combinação. No capítulo 1 foi revisado os aspectos 

gerais da predição genômica (GP), a aplicação dessa abordagem com diferentes 

propósitos em características com distintas arquiteturas geńticas e no final alguns 

modelos estatísticos aplicado na GP. No capítulo 2 foi avaliado modelos de regressão 

genômica (WGR) aditivos e aditivo-dominante com diferentes prioris, essas são 

premissas sobre a presença ou não de marcas com efeito maior. Adicionalmente no 

capítulo 3 foi avaliado a inclusão da informação oriunda do pedigree na predição 

genômica, usando os modelos BayesA aditivo e aditivo-dominante e tamb́m com o 

RKHS, que teoricamente pode predizer os efeitos aditivo e não aditivos confundidos. 

Esses modelos foram aplicados na altura de árvores (HT) aos 6 anos de idade, diâmetro 

na altura do peito (DBH) e resistência a ferrugem, mesurados em 923 indivíduos de pinos 

oriundos de uma população estruturada em 71 irmãos completos e genotipados com 

4722 marcadores geńticos. Tamb́m foram simulados 6 características com distintas 

arquiteturas geńticas (poligenica e oligogênica com três leveis de dominância) para 

esses estudos. As populações simuladas usadas nessas características foram derivadas 

a partir de um programa de melhoramento padrão de pinos. No capítulo 2 para as 
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caracteríticas oligogenica simuladas e para resistência a ferrugem o BayesA e BayesB 

forneceram as melhores acurácias para predição genotípica, porem as diferentes priores 

usadas em WGR produziram resultados similares para HT e para característica 

poligênicas simuladas. Contudo a inclusão da dominância nos modelos WGR 

aumentaram a acurácia apenas para características simuladas com elevado efeito de 

dominância e para HT. Quando o BayesB foi ajustado em uma geração para predizer na 

geração seguinte, a inclusão da dominância aumentou as acurácias apenas para 

características oligogenicas simuladas com elevada dominancia. Independente do 

modelo adotado, a acurácia da predição genotípica total decresceu com o aumento dos 

efeitos de dominancia nas características simuladas. Então esses resultados refletem 

que a predição da dominancia foi complexa quando comparado com a predição dos 

efeitos aditivos, e para a aplicações posteriores dos efeitos de dominância, algumas 

propriedades geńticas da população devem ser avaliadas como MAF e número de 

meios irmãos e irmãos completos. No capítulo 3, a inclusão do informação oriunda do 

pedigree no modelo genômico, não produziu acurácias mais elevadas quando 

comparado com os modelos que usaram apenas informações de marcadores, e ambos 

modelos foram substancialmente mais acurados que o modelo baseado apenas em 

informação de pedigree. Em HT, DBH e características poligênicas simuladas com efeitos 

aditivos e dominantes, os modelos baseados em RKHS mostraram acurácias 

ligeiramente superiores que o BayesA para predição genotípica total, enquanto que o 

BayesA foi a melhor opção para resistência a ferrugem e características oligogenicas. 

Para a predição dos valores de melhoramento o BayesA aditivo foi o melhor modelo. 
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ABSTRACT 

 

ALMEIDA FILHO, Janeo Eustáquio de, D.Sc., Universidade Federal de Viçosa. February, 
2016. Genomic prediction of additive and non-additive effects in a pine breeding 
and simulated population. Adviser: Fabyano Fonseca e Silva. Co-advisers: Marcos 
Deon Vilela de Resende and Matias Kirst. 
 

The prediction of individual genetic merit is one of most important challenges in plant and 

animal breeding. Prediction is difficult because the important traits have a complex nature, 

where some traits have few genes with major effects, while others are controlled by a 

large number of genes with small effects. Non-additive effects such as dominance and 

epistasis can also be important for controlling the genetic variation. In order to achieve 

higher accuracies in the prediction, it is important to use the model that matches the 

genetic architecture of trait. The proper partition of the various sources of genetic variation 

(additive, dominance and epistasis) is desired for several applications, such as exploring 

the overall and specific combination ability. In Chapter 1, the general remarks of genomic 

prediction (GP) are reviewed, with the application of this approach with different proposals 

in distinct genetic architecture traits, together with some statistic models applied in GP. In 

Chapter 2, the additive and additive-dominance whole-genomic-regression (WGR) 

models are evaluated with different priors, together with assumptions regarding the 

presence or not of markers with major effects. Chapter 3 evaluates the inclusion of 

pedigree information in genomic prediction with additive- and additive-dominance BayesA 

and also with RKHS model that can theoretically predict confused additive and non-

additive effects. These models were applied in tree height (HT), diameter at breast height 

(DBH) and rust resistance in 923 loblolly pine individuals at 6 years of age from a 

structured population of 71 full-sib families genotyped with 4722 genetic markers. Six traits 

were also simulated with distinct genetic architectures (polygenic and oligogenic traits with 

three dominance levels) for these studies. The simulated population for these traits was 

derived from a standard pine breeding program. In the oligogenic simulated traits and rust 

resistance in chapter 2, BayesA and BayesB provided greater accuracies for genotypic 

prediction; however, the different priors of WGR yielded similar results for HT and 

simulated polygenic traits. Therefore, the inclusion of dominance effects in WGR 



xiv 

 

increases the accuracy only for simulated traits with high dominance effects and HT. 

When BayesB was fitted in one generation for predicting the next generation, the 

dominance inclusion increased the accuracies only for the oligogenic simulated trait with 

high dominance. Regardless of the model adopted, the accuracy of whole genotypic 

prediction decreased with the increase of dominance effects in simulated traits. Thus, 

these results reflect that dominance prediction is complex when compared to additive 

prediction, and for downstream applications of dominance effects, some genetic 

properties of the population should be evaluated, such as MAF and the number of half 

and full-sibs. In chapter 3, the inclusion of pedigree information in genomic model did not 

yield higher accuracies than models based in only marker information, and both models 

were substantially more accurate than models basedonly on pedigree. In HT, DBH and in 

polygenic traits simulated with additive-dominance effects, the RKHS-based models 

showed slightly higher accuracies than BayesA for whole genotypic prediction, while 

BayesA-based models were the best option for rust resistance and oligogenic simulated 

traits. For the prediction of breeding values, the BayesA additive was the best model. 
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GENERAL INTRODUCTION 

 The selection of superior individuals is one of greatest challenge in breeding 

programs. Traditionally this selection is based on genetic merit that can be estimated from 

pedigree information. However, with the dense genetic markers currently available, the 

genomic prediction (GP) approach proposed by Meuwissen et al. (2001) has received 

much attention in the breeding of plants (Bernardo 2008; Heffner et al. 2009; Resende Jr 

et al. 2012a; Resende et al. 2012) and animals (Goddard and Hayes 2009; Hayes et al. 

2009; Wiggans et al. 2011), with the possibility of earlier selection, as well as more 

accurate genetic predictions. This approach has also been applied in human science 

(Yang et al. 2010; de los Campos et al. 2010a; Wray et al. 2013) for clinical outcomes 

and/or response to drug treatments. 

 The prediction models traditionally applied in breeding were based on pedigree, 

but different from GP that provides genetic markers, the  pedigree base-line model 

considers the expected relationship of individuals that cannot follow Mendelian 

segregation (de Los Campos et al. 2009). In addition, the models based on pedigree 

information consider infinitesimal assumptions, whereas the number of genes that control 

the trait tends to infinite and explains the same portion of genetic variance. However, GP 

models can directly infer genome variations, which allows for the computing of the locus 

with major effects (Meuwissen et al. 2001; Gianola 2013; de los Campos et al. 2013). 

 The prediction of locus effect can be achieved with Whole-Genome Regressions 

(WGR), there are several Bayesian WGRs, and since letters are used for their 

differentiation (e.g. BayesA, BayesB, BayesCπ …), such variations are usually known as 

Bayesian alphabet (Gianola et al. 2009; Gianola 2013). These approaches share the 

same model but differ regarding prior distribution assumed for marker effects (Gianola 

2013; de los Campos et al. 2013). This allows WGRs to be much more flexible in 

explaining quantitative traits. For instance, the Bayesian Ridge Regression (BRR) 

assumes that all covariates (markers) have common variance (Pérez and de los Campos 

2014) and consequently, markers with the same allele frequency express the same 

genetic variance portion (Gianola et al. 2009). This assumption matches the infinitesimal 

model and consequently is desired for polygenic traits. There are other more parametrized 

priors of WGR, these priors were formulated to better explain the traits with major-effect 
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genes that explain considerable part of the genetic variation (Meuwissen et al. 2001). 

Some of these models assume a heterogeneity variance component for marker effects 

(e.g. Bayes A, BayesB, Bayesian Lasso) while others induce covariate selection (e.g. 

BayesB and BayesCπ) to markers that are not in linkage disequilibrium with any gene. 

For oligogenic traits, the correct choice of prior implemented in additive WGR has been 

considered important to achieve higher accuracies with real and simulated data (Coster 

et al. 2010; Daetwyler et al. 2010; Clark et al. 2011; Habier et al. 2011; Resende Jr et al. 

2012b). 

 Initially, the GP models accounted only for additive effects (Meuwissen et al. 2001). 

These models are useful in breeding systems that explore mainly additive effects where 

the selected individuals are allocated in matting with several other individuals and specific 

crosses are not explored. For instance, in recurrent intra-population selection, or in cattle 

breeding where bulls provide semen for a large number of cows, the alleles a given 

individual carry are more important than the individual itself. However, in large numbers 

of plant and animal species, breeding presents benefits in the exploitation of hybrid vigor 

(heterosis) and the inclusion of dominance in prediction models can improve the accuracy 

of genomic hybrid predictions (Zeng et al. 2013), allowing an extra genetic gain with the 

best mate-pair allocation (Toro and Varona 2010). Regarding the inclusion of dominance 

in GP, one should also consider that the genetic architecture. For deal with the different 

genetic architecture, the different priors formulated primarily for additive models can be 

extended for additive-dominant models. Therefore, the contribution of these priors to 

accuracy in models with dominance inclusion and for traits with different genetic 

architecture has not been extensively explored. 

 Despite the benefits of dominance prediction, consideration should be given to the 

statistical challenge. In traditional additive GP models, it is already an issue, since there 

are much more parameters than observations, and these issues are even greater with the 

inclusion of non-additive effects (e.g. dominance and epistasis), since the parameters to 

be estimated increase substantially (Gianola 2013). One option to avoid estimating large 

numbers of parameters would be to use direct prediction of individuals instead of 

predictions by marker effects. The direct individual predictions can be achieved with 

models based on the relationship measured from markers, such as GBLUP (VanRaden 
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2008) and RKHS. In GBLUP, non-additive effects can also be included (Su et al. 2012; 

Resende Jr et al. 2012b; Vitezica et al. 2013; Morota et al. 2014), but under the 

assumptions of no linkage, linkage equilibrium (Morota et al. 2014) and Hardy-Weinberg 

equilibrium, similar to base-line pedigree models. The RKHS predicts the whole-genotypic 

value of individuals (Gianola et al. 2006; Gianola and van Kaam 2008), but in a non-explicit 

manner (Morota et al. 2014), which can be explored for clonal selection. The 

computational advantage of direct individual prediction is higher if there is an increase in 

the number of markers. However, unlike GBLUP- and RKHS-based models, considers 

that loci with the same allele frequency explain the same portion of genetic variance, which 

is undesired for genes with major effects. Therefore, the performance of these models 

should be compared with WGR-based models under traits with distinct genetic 

architecture. 

 Ideally, in GP, the genome is widely covered by genetic markers and all genes are 

in LD with at least one marker. However, in practical applications, important genes may 

not be completely explained by any of the markers, thus the inclusion of polygenic effects 

is recommended for capturing any genetic variance not associated with the genetic 

markers, and to impose some selection pressure on low-frequency QTL that may not be 

captured by the markers (Hayes et al. 2009). 

 Given the stated above, the first chapter of this work is a review about general 

remarks of genomic prediction, the application of this prediction approach with distinct 

proposes, in different genetic architecture traits, and finally the statistic models applied in 

GP in face of these demands. The second and third chapter are an investigation of 

genomic prediction of traits with distinct genetic architecture using real traits measured in 

a standard breeding population of loblolly pine, using simulated data with similar 

proprieties from the real population. In the second chapter, different genetic-statistics 

assumptions of WGR using additive- and additive-dominance effects are evaluated. In the 

third chapter, RKHS based models, traditional BayesA, additive-dominance BayesA and 

the pedigree inclusion in genomic prediction models are evaluated. 
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CHAPTER I 

LITERATURE REVIEW 

GENOMIC SELECTION 

Genomic prediction (GP) was proposed by Meuwissen et al. (2001), this approach 

aims to predict the genetic merit of individuals in a population using information from 

genetic markers. Most of the GP models currently available may be used to predict the 

clinical outcome of diseases (Wray et al. 2013), and also to predict other medical science 

approaches (Yang et al. 2010; de los Campos et al. 2010a). In the breeding program, GP 

was proposed to select the best individuals using their genomic predicted values.  

The use of these predicted values on the selection decision is called Genomic 

Selection (GS) or Genomic Wide Selection (GWS) (Goddard and Hayes 2009; Hayes et 

al. 2009). The term “wide” is related to the covering of the entire genome in GWS 

(Resende et al. 2014), since ideally, GP uses dense SNP panel and all genes that affect 

the given trait are in linkage disequilibrium (LD) with at least one marker. Consequently, 

the all-genes effect would be captured by markers in the prediction model. 

In the GS seminal paper, Meuwissen et al. (2001) used a reference population 

where all individuals were marker genotyped and recorded for the trait. From this 

population, the markers effects were estimated in order to predict the Genomic Expected 

Breeding Values (GEBV) in subsequent populations, where the individuals were 

genotyped but not phenotyped. These authors showed high accuracies for breeding value 

prediction, using only maker information in the following five generations after the 

reference population. 

The results of Meuwissen et al. (2001) changed the paradigm of breeding, because 

with the GS approach, it is not necessary to have a special mating design, which allows 

the application in any plant or animal breeding program as a tool to select the best 

individuals using marker information. After the marker effects estimated in the reference 

population, the selection can be achieved with only marker effects in some subsequent 

generations, thus opening the possibility of early selection and substantially increasing 

the genetic gain per time unit. 
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Early selection has a huge potential for reducing the cost of breeding program, 

especially for traits that are expensive to record, which demand a long time to evaluation 

(Schaeffer 2006; Resende Jr et al. 2012a; Resende et al. 2012) or that requires the 

destruction of the individual to collect such phenotypes (Fritsche-Neto et al. 2012). 

Schaeffer (2006) reported a potentially huge saving in dairy breeding program with the 

possibility of early selection of sires, instead of recording the phenotypes of the female 

offspring of these sires, and after estimate the sire breeding values. Other important 

example for reducing time occurs with forest breeding, where most of the important traits 

are collected after some years in the field, such as wood quality traits. Thus, GS can 

considerably reduce the time for the breeding program, mainly when associated to 

techniques for reducing the flowering time (Resende et al. 2012; Resende Jr et al. 2012b).  

According to Resende et al. (2014), after the GS proposed in 2001, this approach 

was discrete for some years, because the number of genetic markers available and the 

cost to genotype large numbers of individuals at that time were not feasible. However, 

with the increase in the number of markers available and the reduced cost to genotype, 

GS became feasible. After the proposal from the seminal paper emphasizing the GS 

application in animal breeding programs by Schaeffer (2006), Bernardo and Yu (2007) 

discussed the incorporation in crop breeding and Grattapaglia and Resende (2011) in 

forest breeding. 

With real data, the results showed that GS is in fact feasible in animal breeding 

(Hayes et al. 2009) and plant breeding (Crossa et al. 2010). The pioneering applications 

in forest breeding with real data were (Resende Jr et al. 2012a; Resende Jr et al. 2012b) 

in pine and (Resende et al. 2012) in eucalyptus. These works reported favorable results 

for the incorporation of GS in breeding programs. 

The GS general application requires three populations: reference, validation and 

selection. The reference or training population is a population where genetic markers and 

phenotypes are available. This population is used to calibrate the predictive model. The 

validation population also presents available phenotypes and marker information, and this 

population is used to validate the model. The individuals from the validation population 

are not used for calibrating the model. However, the model calibrated with the reference 

population is used to predict the GEBV of individuals in this population, and since the 
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phenotypic information is available, it is possible to infer if the predictive model was 

accurate enough. The last population is the selection population, if the predictive model 

provided high accuracy, the model will be used in this population in order to practice for 

selecting individuals with only marker information (Goddard and Hayes 2009; Resende et 

al. 2014). These three populations should be related, because empirical results showed 

that models calibrated for one population are not accurate for use in disconnected 

populations (Resende et al. 2012). According to Resende et al. (2014), these three 

population can be the same, and/or one population can be used for more than one function 

(e.g. use the same population for estimating the model and validation), which has been 

showed in practical applications (Crossa et al. 2010; Resende Jr et al. 2012b). 

To date, GS is definitively incorporate in breeding programs (Wiggans et al. 2011; 

Crossa et al. 2014); however, some questions should be answered for each case such as 

the number of generations necessary to re-calibrate the model, since each re-calibration 

is costly and time demanding. Grattapaglia (2014) proposed a forest intra-population  

breeding scheme, where the reference population had at least 1,000 individuals with 

effective size (Ne) between 30 and 100 (Grattapaglia and Resende 2011). This 

suggestion involves early selection using only marker information and a generation for 

updated the model. The number of generation without updating the model is not specified, 

however, even in a conservative scenario where the predictive model would be used only 

for one generation without re-calibration, the breeding cycle would be substantially 

reduced in forest breeding. It is expected that the number of GS generations without re-

calibrating the model depends on the breeding strategy adopted and all factors that affect 

accuracy (heritability, Ne, Linkage Disequilibrium (LD), length of genome (L), models 

used, and number of informative markers available). The accuracy issue will be 

commented later in this review. 

The dense markers panel is important to achieve higher accuracies (Grattapaglia 

and Resende 2011); however, with high number of marker effects to be estimate in 

statistics viewpoint, it becomes a challenge, since the number of parameters to be 

estimated would be considerable higher than the number of phenotypes available. Other 

difficulty is that many markers are in LD, which create higher multicollinearity. One way to 

deal with this would be to further learn about genetic architecture and use only important 
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markers instead of all markers. However, in order to achieve such learning, it is necessary 

to employ an appropriate approach, since GS does not provide trait dissection and gene 

discovery. In GS, the focus is the genetic value prediction without any inference regarding 

marker association and, thus, it is anecdotically criticized and called of “Black Box” 

(Grattapaglia 2014). 

Nonetheless, different models to deals with the different genetic architecture are 

available. These models use different assumptions about the distribution of marker 

effects, with some models assuming there are markers with major effects, which match 

with oligogenic traits, and other models assuming that all markers have similar effects, 

which is more like the infinitesimal assumptions (Gianola 2013; de los Campos et al. 

2013). It is also possible to include non-additive effects such as dominance (Toro and 

Varona 2010; Zeng et al. 2013; Vitezica et al. 2013; Nishio and Satoh 2014) and epistasis 

(Wittenburg et al. 2011; Su et al. 2012; Muñoz et al. 2014). Finally, some models propose 

the genomic prediction considering additive and non-additive effects, but in a non-explicit 

way, such as Reproducing Kernel Hilbert Space (RKHS) (Gianola et al. 2006; Gianola and 

van Kaam 2008). The different genetic architecture and the models used to deal with each 

case will be commented later in this paper. 

PREDICTION WITH MARKERS AND PEDIGREE 

Initially, the traditional genetic evaluations were based only on pedigree 

information. With special designs (e.g. North Caroline genetic designs), it is possible to 

estimate the genetic variance components to support breeding strategies (Pereira and 

Amaral Jr 2001). In addition, with more general population structure, regardless of mating 

design, but with pedigree information available, the mixed model methodology 

(Henderson 1984) can be applied to estimate parameters such as breeding values, 

dominance deviation values, and also genetic variance components. 

Unlike pedigree-based models, the genetic markers allow for the follow-up of 

Mendelian segregation; a term that accounts for 50% genetic variability in additive models 

and in the absence of inbreeding (de los Campos et al. 2010b). For example, if two full-

sib individuals do not have phenotypes, in pedigree-based models their predicted 

breeding values are calculated as the average of the breeding values from their parents, 
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but if genetic markers for these full-sibs are available, it would be possible to discriminate 

then from the genetic merit. The GS overcame the traditional pedigree models in many 

cases for plants (Crossa et al. 2010; Crossa et al. 2013; Crossa et al. 2014), animal 

predictions (Hayes et al. 2009; de Los Campos et al. 2009) and also in studies with 

simulations (Calus and Veerkamp 2007). 

Other advantage of GS over traditional pedigree-based models is that GS is more 

flexible regarding the distribution of gene effects. The prediction based on pedigree 

considers the infinitesimal model, that is, it considers that a trait is controlled by the 

number of genes that tend to the infinite, and all genes have equal effect. This assumption 

is desired in polygenic traits, which are traits controlled by large numbers of genes with 

small effects. However, in oligogenic traits where some genes have major effects, a 

prediction model that considers some markers as having higher effects that can be active 

with some GS models is preferred. This topic will be discussed later. 

Therefore, as mentioned before, in the best scenario all genes controlling the 

quantitative trait are in strong LD with at least one marker. However, it might be that some 

expressed genes are not in LD with any marker. In order to capture the genetic variation 

uncovered by markers, it is recommend to combine marker and pedigree information in 

GS model with what is known as polygenic or infinitesimal effect (Calus and Veerkamp 

2007; Heffner et al. 2009; Hayes et al. 2009). The polygenic (or infinitesimal) effect is 

basically an effect associated for each individual, using the relationship information from 

pedigree, whereas the pedigree information can be incorporated in the model by 

traditional A matrix, that is twice the kinship relationship coefficient. 

 Using low density SNP panels, the inclusion of polygenic effects in GP models 

provided better predictions in wheat (Crossa et al. 2010), and dairy cattle (Vazquez et al. 

2010). However, when SNP density was increased, the polygenic inclusion did not 

improve predictions in the same study with dairy cattle, and in other work with mice (de 

los Campos et al. 2009).  

 In maize studies using large numbers of SNP markers from Genotyping-by-

Sequencing (GBS), the models including polygenic effects were the best option (Crossa 

et al. 2013). These authors also showed that in some cases, the models with only pedigree 

information outperformed traditional GP models with no pedigree information. A 
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reasonable explanation is that the GBS technique yielded a large number of missing data, 

thus some important genes may not have had any informative marker in LD. 

 In simulation studies, (Calus and Veerkamp 2007) reported that the inclusion of 

polygenic effects improved the prediction accuracy only in scenarios with low LD, and 

when the LD was increased, the models with and without polygenic effects showed similar 

accuracies for GEBV. These authors also reported that the variance components 

estimated from models with the inclusion of polygenic effects were less biased regardless 

of LD. 

Another way to combine pedigree and marker was proposed by Misztal et al. 

(2009), but in this case, the combination is used to predict breeding values for all 

individuals, both genotyped and non-genotyped. This method considers the genomic 

relationship among individuals with genetic markers, and traditional relationship from 

pedigree information if one individual does not present any marker information. One 

modification to this method was proposed by Meuwissen et al. (2011). These methods will 

not be viewed in details here. 

POLYGENIC AND OLIGOGENIC TRAITS 

If the number of genes controlling a trait is really small (e.g. four or less), one option 

would be to develop a pyramid of favorable alleles of these genes in an individual 

(Bernardo 2008). The discovery of individuals with favorable alleles could be performed 

using the classical way, evaluating genetic segregation in the progeny, and the 

incorporation of the favorable alleles in a potential individual could be made with mating 

and selection. In this case, the discovery of markers associated with favorable alleles 

could potentially improve the breeding strategy with marker assisted selection (MAS). The 

association between markers and important genes can be achieve inside the family in a 

structured population from QTL mapping approach, or in the entire population with the 

preference for individuals unrelated from Genomic Wide Association Studies (GWAS). 

However, if this gene number becomes large, the development of the pyramid of 

favorable alleles in a single individual is not simple, and the techniques to perform the 

association have some statistic challenges. In QTL and GWAS mapping, the association 

of a gene with a marker is determined using a hypothesis test, which presents issues with 
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type 2 error, mainly for genes with minor effects. This means that it is not rejected a null 

hypothesis (null association) that should be rejected, and for that reason, many genes 

remain uncovered, and only a small portion of the genetic variation is explained by 

markers, which is undesired for MAS. In GS, all makers are considered in the prediction 

(a hypothesis test is not used), then many makers with small effects that would have been 

rejected in the hypothesis test are analyzed together, which could explain a large portion 

of genetic variation, are also considered in GS (Resende et al. 2014). 

In literature, it is reported that the QTL explained by QTL mapping approach is 

usually inconsistent (Bernardo 2008), and usually explains only a small portion of genetic 

variation (Dekkers 2004; Bernardo 2008). In this case, one suggestion is to improve the 

frequency of favorable alleles by recurrent selection (Bernardo 2008), which can be 

performed with GS in recurrent cycles. 

In order to better perform GS, one important issue is how large is the number of 

genes and/or how is the gene effect distribution in the quantitative trait. In traits controlled 

by large numbers of genes with small effects, the infinitesimal assumption is a good 

approximation, and GS models that tend to assume similar contributions among markers 

to predictions is theoretically desired.  

However, in some traits, the gene number is not necessary large enough to be 

considered a classical polygenic trait (e.g., 30 genes), or there are few genes with major 

effects. Thus, the infinitesimal assumption does not really match the nature of these traits. 

In order to better explain the quantitative trait regarding the number of genes (or gene 

effects), many models based on different marker effect distributions are available (Gianola 

2013; de los Campos et al. 2013), mainly from GS models that input the markers as 

covariates in Bayesian regression models, as described further below.   

Simulated studies have shown that the performance of GS model is dependent of 

genetic architecture (Coster et al. 2010; Daetwyler et al. 2010; Clark et al. 2011), and it is 

possible to achieve higher accuracy if choosing the model that better matches the genetic 

architecture of the target trait. According to de los Campos et al. (2013), the correct choice 

of prior marker distribution in regression models has been considered important, mainly 

for oligogenic traits in simulated studies, and the advantages of these marker effect 

distributions are not always evident in real data.  
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However, studies with rust resistance in pine (Resende Jr et al. 2012b) and fat in 

milk (Habier et al. 2011) have showed that the choice of prior distribution of marker effects 

with the assumptions that some markers have higher effects provide higher prediction 

accuracies. In polygenic traits, some results showed that the different marker distributions 

assumed in GS models showed similar results (Resende Jr et al. 2012b; Pérez et al. 

2012). 

NON-ADDITIVE EFFECTS 

 In quantitative genetic theory, the additive effect of a gene (ܽ) is defined as the 

difference in genotypic value of homozygote with favorable alleles and the mid-point 

between two homozygotes, and dominance (݀) is the difference from the heterozygote 

with homozygote mean. The dominance effect is viewed as an interaction between 

different alleles from same gene. When considering more than one gene, any kind of 

interaction among two or more genes is called epistasis (Falconer and Mackay 1996). 

 In quantitative genetics applied to plant and animal breeding, one of the most 

important subjects is the prediction of breeding values of individuals in a given population 

for the desired traits. In order to understand what the breeding value is, imagine a 

population large enough in Hard-Weinberg equilibrium, where one individual is mated with 

all individuals (or with all individuals of the opposite gender, in the case of animals) in this 

population, creating a second population. If the mean of these two populations is taken 

for a given trait, the difference of these means is half of the breeding value of the common 

parent for this trait. In others words, the breeding value is a measure of the direct effects 

that individuals transmit to theirs offspring. 

 If the genes have only additive effects, the breeding values correspond to the whole 

genotypic values, but if there are additive and dominance effects, the genotypic value is 

the sum of the breeding and dominance deviation value (Falconer and Mackay 1996). If 

two individuals mate, the genotypic value of their offspring is the means of its parents 

breeding values, plus the dominance deviation that is viewed as a non-explained part by 

breeding values and is specific for each individual, because it is a function of intra allelic 

interaction. 
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 Initially, genetic evaluations used models that only included additive effects. These 

models yield the required information for some breeding system that explores mainly the 

additive effects, such as in dairy cattle, where the goal is the selection of bulls that provide 

semen for worldwide distribution. In addition, these models could be also used in general 

recurrent intra-population selection systems. In general, for any breeding program that 

strictly depends on the alleles of an individual that will be transmitted to the next 

generation more than the individual itself, the models based on additive models are a 

reasonable option. In addition, the models based on additive effects are recommended if 

the focus is the selection of inbred lines for use as an improved cultivar (e.g. soybean 

breeding), because in the improved cultivar there is no heterozygote loci. 

 However, most of the breeding systems explore the non-additive effects, especially 

if the breeding requests specific mating, or mating of individuals from different breeds or 

heterotic groups, where the dominance effect is highly explored from heterosis. In these 

cases, the inclusion of dominance effects in GS is desired. With the estimation of 

dominance marker effects, it is possible to predict specific combination abilities of a given 

cross, allowing the breeder to perform only the promising cross (Toro and Varona 2010). 

 For the breeding program, it is necessary to have at least basic knowledge of trait 

heritance to better explore it. If the trait is mainly governed by genes with predominance 

of additive effects, the breeding can be based on the exploration of individuals with higher 

general combination ability or higher breeding values. Whereas if the genes have 

important dominance effects, the breeding could explore specific crosses. 

 In practice, breeding systems dealing with non-additive effects are a challenge 

because dominance and epistasis are not directly transmitted to progenies (Resende Jr 

2014). These effects depend on the genotype of the progeny depending on Mendelian 

segregation occurring in the parents during the gametogenesis. The direct effect 

transmitted by additive x additive interaction could be explored only for genes with a low 

recombination rate. Unraveling the genetic effects and variance components would be 

good to better understand and consequently find the best model to perform the predictions 

(Muñoz et al. 2014). In this same context, GS can be used to select the mating with highest 

probability of providing superior individuals (Resende Jr 2014). 
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 The literature reports that the estimation of non-additive effects is complex; Toro 

and Varona (2010) argues that in genetic evaluations it is not common to include 

dominance effects, and the reason behind it can be the computational demands and the 

estimation usually being inaccurate. These authors believe that it would be necessary to 

have a large number of data including a high proportion of full sibs (Misztal et al. 1998). It 

is a fact that in traditional dominance relationship matrixes, information from pedigree is 

much sparser than in additive relationship matrixes, and for dominance estimation, it is 

necessary to have appropriate family structures. The results of Nishio and Satoh (2014) 

showed that dominance deviation prediction using SNP information was not as accurate 

as breeding values. 

 Using only pedigree information, the epistasis estimation is more complex than 

dominance estimation, and the difficulty increases according to the complexity level of the 

epistasis order, and/or which effects are involved. For example, in the first epistasis order, 

the epistasis includes two loci, which can be: additive x additive, additive x dominance or 

dominance x dominance; if more genes are involved, more complex is the combination of 

effect interactions. Similar to dominance estimations for estimating epistasis, it is 

necessary to have appropriate family structure; however, in the case of epistasis, more 

than one kind of family is necessary. An example can be seen if there are only half sibs, 

it is possible to estimate only additive variance, whereas if there were half and full sibs, it 

would be possible to estimate additive and dominance variance, and if the main objective 

is to estimate epistasis, it is necessary to have more complex pedigree, beyond half and 

full sibs, could be used inbred families. The GS models based on relationship information 

from individuals cannot go much further from pedigree demands to estimate non-additive 

variance components. 

 According to Hill (2010), it is usually impossible to estimate epistasis in random 

matting populations. With meta-analysis, Hill et al. (2008) concluded that most genetic 

variation is due to additive effects, and argue that emphasis given on using additive 

variation for the selection is still the best strategy. 

 In their study on simulation traits, even with the presence of dominance and 

epistasis in the traits, Wittenburg et al. (2011) showed that in most results, the model that 

included additive and dominance effects outperformed the additive models and also 
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models that matched effect additive, dominance and epistasis. With pig quantitative traits, 

Nishio and Satoh (2014) tried to match epistasis in additive-dominance model, however, 

the variance components for these effects were outside the parameter space. These 

authors also reported that additive-dominant GS model provided better results in real and 

simulated traits than additive models. 

 In simulated studies, Toro and Varona (2010) estimated additive and dominance 

effects for each marker and the expected genotypic values of offspring for all mating 

options. These authors reported an extra genetic gain with the best allocation of mating 

instead of only selecting individuals and random mating for traits with dominance 

presence. Also in simulated studies Zeng et al. (2013) showed that in additive-dominant 

models, the genetic gain in a crossbreed population was higher than only-additive models 

in traits with considerable dominance effects. 

 Some studies showed good results with the inclusion of epistasis. In pine tree 

heights, Muñoz et al. (2014) concluded that the model with inclusion of dominance and 

epistasis provided better breeding value predictions, and half of the genetic variation is 

due to non-additive effects. In addition, Su et al. (2012) also showed that models with 

additive, dominance and epistasis effects outperformed models without epistasis for 

average daily gain in pigs. 

ACCURACY 

Accuracy is the correlation between the estimated value and the parametric value, 

this is a parameter of the measure of bias and precision together (Resende 2002). One 

of the most important contributions of quantitative genetics is the prediction of genetic gain 

(GG) for one given breeding strategy (Ramalho et al. 1993). This GG can be predicted by 

the general equation �� =  ௔௔̂ is the accuracy ofݎ ,௔௔̂��, where i is the selection intensityݎ݅

breeding value prediction, and �� is the additive standard deviation of the trait. From GG 

prediction, it is possible to see that accuracy is the most important parameter for 

comparing selection methods (Resende 2002). 

 Resende (2008) proposed the equation for the expected accuracy value for GS, 

and other authors have also proposed similar equations (Daetwyler et al. 2008; Goddard 

et al. 2011). From these equations, it is argued that accuracy depends on heritability, 
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genetic architecture of traits, effective size (Ne), number of individuals in reference 

population and marker density (Resende et al. 2014). The first and second factors cannot 

be changed by the breeder. However, the other factors can be manipulated to improve 

the accuracies  (Resende et al. 2014). 

 In all prediction models, higher accuracies are achieved with large number of 

phenotype records. The Ne and marker density factors are directly related with LD. In 

order to achieve a high accuracy in GS, it is necessary that the population is in high LD. 

It is expected to obtain higher LD with small Ne and dense marker panel (Resende et al. 

2014). For traits with high heritability, higher accuracies are expected (Resende Jr et al. 

2012b). Finally, the genetic architecture involves the number of genes, distribution and 

presence or absence of non-additive effects; in order to achieve higher accuracy it is 

necessary to use models that best explain the genetic architecture. 

 In experimental results, (Legarra et al. 2008) proposed an accuracy estimator from 

the correlation among phenotypes and GEBV, and parametric heritability. 

 The accuracy (ݎ��̂) is the correlation between GEBV (�̂) and parametric �: ݎ��̂ = ,�ሺݒ݋ܿ �̂ሻ����̂  

Assuming: ℎଶ = ��ଶ/��ଶ ܿݒ݋ሺݕ, �̂ሻ = �ሺݒ݋ܿ + ݁, �̂ሻ = ,�ሺݒ݋ܿ �̂ሻ 

then: ݎ��̂ = ,ݕሺݒ݋ܿ �̂ሻℎ����̂ = ℎ̂��ݎ  

From this accuracy equation, it can be concluded that for the selection of the best 

GS model, the choice from ݎ��̂ leads to the choice of a more accurate method. In literature, 

it is common to see reports on the method comparison from  ݎ��̂ (Pérez et al. 2012; Ertl 

et al. 2014; Nishio and Satoh 2014; Crossa et al. 2014). 

PERSPECTIVE OF PREDICTIONS IN BREEDING: LARGE DATA SET IS COMING  

 In the GS seminal paper, Meuwissen et al. (2001) simulated a scenario where one 

marker was available in each cM. At the time, the study could be performed only in 
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simulated date, because the number of markers was limited for most of the species. 

However, nowadays, the number of marker available has increased, and it is common to 

have SNP panels larger than 600K applied to breeding populations (Crossa et al. 2013; 

Ertl et al. 2014). With the advancement of technologies, this figure tends to increase, 

creating more statistics and computational challenges. 

 In order to deal with this large set of data, it will be necessary to filter the data used. 

In the case of markers, it might not be a good practice to include all markers 

indiscriminately in the model. The LD pruning approach would be a good option to remove 

markers that are in high linkage disequilibrium and consequently promote multicollinearity 

problems, in addition association studies could help to discover important genome regions 

for a target trait, and in predictive models, important markers could be used. The better 

understanding of the trait and the inclusion of reasonable knowledge of markers in the 

predictive model can play an important role in avoiding false positive discoveries 

(Ioannidis 2005). However, this marker selection should be performed with care, in order 

to avoid spurious associations (Wray et al. 2013). One option would be to perform a 

GWAS experiment with a large number of unrelated individuals, and select markers to 

use in GS in breeding populations. In addition, a gene expression approach, such as 

transcriptomes, proteomics or epigenetics, could be used as a tool to better understand 

the target trait in a specific environmental condition. 

 According to Varshney et al. (2014), the genotyping of a large number of individuals 

for dense marker panels is not cost limiting. Currently, the bottleneck in plant breeding is 

phenotyping, which demands a very high cost. For these authors, it is necessary to find 

cost-effective and precise phenotyping methodologies, which will involve digital image 

capturing, remote sensing, and many new forms of information and communication 

technologies to overcome the phenotype cost barrier. Some of these technologies are 

available but their efficiency should be evaluated on a case-to-case basis. 

 Even with the issues about phenotyping, to date, a large number of phenotype 

records is usually used in genetic evaluations. For instance, in the Brazilian Zebu genetic 

evaluation of 2014-2015, over 1 million phenotyped individuals were used (Silva Personal 

Communication). In this case, the evaluation was not performed with genetic markers, but 

it is expected that breeding programs will use large markers and phenotype data sets in 
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the coming years, which will demand efficient software to be implemented along with 

efficient algorithms and also high performance computers. 

 Another point that requests the breeding program to record large numbers of 

phenotypes is the Genotype by Environment interaction (GE). This interaction makes the 

best genotype in a given environment not necessarily be the best in other environment 

conditions, and since the plant breeding programs aim to recommend cultivars for a 

region, GE is one of most difficult interactions in plant breeding. In order to overcome GE, 

it is necessary to perform field test on the potential genotypes in a broad range 

environment in order to provide recommendations of improved cultivars with high general 

adaptably or define breeding zones where the effects of GE inside these zones are non-

significant. In this case, cultivar recommendation should be performed for each breeding 

zone (Ramalho et al. 1993; Cruz et al. 2012; Ramalho et al. 2012; Cruz et al. 2014). With 

the dense marker panel available, a model that includes environment variations and 

genomic information is necessary for cultivar recommendation. The environment effects 

and GE can be adjusted as two additional effects in regular mixed models, or with multi-

environment models with different covariance structures (Burgueño et al. 2012; Lopez-

Cruz et al. 2015). Nevertheless, these models could not predict GEBV for new 

environments where the individuals were not phenotyped. Therefore, with well 

characterized environments by environmental-covariates, (e.g. weather covariates), the 

GS models can be extended to predictions in unobserved environments (Heslot et al. 

2013; Jarquín et al. 2014). 

 The reasonable use of molecular data with integrated phenotypic information is 

already a reality in breeding programs, but such information is coming in a larger scale, 

and the use of all information that arrives is a challenge for plant and animal breeding 

applications. 

GENOMIC PREDICTION IN PINE BREEDING 

The species from the Pinus genus are gymnosperms from Coniferophyta (or 

Pinophyta) division.  There are more than one hundred species of this genus, but few of 

these species are economically exploited (Aguiar et al. 2011). Pinus taeda L. is the 

scientific name of loblolly pine, also known as Arkansas pine. This is the most important 
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commercial forest specie in the southern United States, where it can be observed in about 

11.7 million ha (Baker and Langdon 1990). In Brazil, the loblolly pine is the main forest 

tree planted in Southern Brazil (Alcantara et al. 2007) due to its potential for growing in 

low temperature conditions and its specific characteristics of wood (long fiber) (Aguiar et 

al. 2011). 

The wood of loblolly pine is what is exploited, thus for a cultivar, high trees with 

large diameters at breast height are desirable. It is also important that the plants resistant 

both pests and diseases. The loblolly pine is a diploid (Zimin et al. 2014) and monoecious 

(Baker and Langdon 1990), and the breeding consists in recommending improved seeds 

or clones as cultivar. There are some benefits of clonal cultivars, mainly due that with 

clonal selection, it is possible to transfer the entire genotypic value, and the resulting 

commercial forest will be more uniform. Beyond the introduction of plants, the 

hybridization and selection are fundamental for loblolly pine breeding, and the genomic 

prediction is a potential approach for selecting the best individuals and recommending 

any potential crossbreeding. 

In order to determine the number of markers and the number of individuals used in 

a genomic prediction, the factors affecting accuracy should be considered. The loblolly 

pine has 12 chromosomes and approximately 22Gb were sequenced and assembled 

(Zimin et al. 2014), the genome size of pine is large when compared to many other 

species, for instance, the human genome is around 3Gb (Lander et al. 2001; Venter et al. 

2001). Moreover, the pine populations usually has a low LD (Brown et al. 2004) and the 

important traits in pine has small heritability (Resende Jr et al. 2012a; Resende Jr et al. 

2012b). All of these factors indicate that a larger number of markers should be necessary 

in order to cover the entire genome, with makers in strong LD with major part of genes 

controlling the trait, in addition to greater precision of experimental conditions, being 

important for record the traits. Therefore, experimental results for pine showed that a 

number of approximately 5K polymorphic markers and 1K individuals with eight clonal 

repetitions is enough for achieving reasonable accuracy for traits with low heritability 

(Resende Jr et al. 2012b; Muñoz et al. 2014). These results agree with (Gratapaglia & 

Resende 2011) in a study with determinist simulation, under forest breeding conditions, 
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that demonstrated little accuracy improvement in using more than 1K individuals in many 

scenarios with distinct heritability, with different number of markers and genes. 

Since it is possible to have large-scale cloning in pine, and the whole-genotypic 

values are transferred in the clonal selection, the genetic prediction models should include 

non-additive effects to predict these genotypic values. The genotypic values could be 

predicted by pedigree information, but with marker information, greater genotypic 

accuracies can be achieved with genomic prediction models, such as additive-dominance 

whole-genomic regressions, GBLUP models with non-additive effects (Muñoz et al. 2014; 

Azevedo et al. 2015) and RKHS models, that theoretically predict the additive and non-

additive effects confused (Gianola et al. 2006; Gianola and van Kaam 2008). 

However, even with the possibility of clonal selection, the crossing among selected 

individuals is important in pine breeding in order to have new genotype combinations, and 

consequently for the breeding program to continue having genetic gain. Therefore, it is 

important to predict the breeding values and the general combination ability (half of the 

breeding values), in order to select individuals to be used in large number of crosses. It is 

also important in order to predict the specific combination ability of a particular cross. For 

these proposes, the genomic prediction approach could be used to predict the breeding 

values (Meuwissen et al. 2001) and the expected genotypic merit of a progeny (Toro and 

Varona 2010; Ertl et al. 2014), where the breeder could perform only the selected cross 

combination, instead of performing all possible combinations. 

The reciprocal recurrent selection with full-sib families (Hallauer et al. 2010) can be 

used in pine breeding using two population from distinct heterotic groups. This process is 

based in the evaluation of full-sibs families with one parent from each heterotic group, also 

one genitor could be crossed with more than one individual, thus beyond full-sibs will also 

would result half-sibs families, what allow estimate additive and dominance variance 

components. After the evaluation of families, the parents of the best families are 

intercrossed within their respective heterotic group. However, since it is possible to clone 

pine, a superior individual can be cloned at anytime, and used as a clonal cultivar. With 

selection and recombination, the frequency of favorable alleles is expected to improve, 

and an inter-population hybrid of one generation has higher genotypic value than the inter-

population hybrid of previous generations. 
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In a conservative scenario, genomic prediction can be used to select individuals to 

be phenotyped. This approach can be applied in this breeding scheme for allocating the 

potential cross-combination. After performing these combinations, the individuals from 

these progenies can be genotyped in order to have their genetic merit predicted with the 

genomic model already fitted for the parent generation, and thus the breeder can select 

individuals inside families to be phenotyped. In a less conservative scenario, the breeder 

can use the genomic models for selecting the individuals that will directly contribute to the 

next generation, without any phenotyping. This less conservative scenario could 

considerably reduce the time for generations (Schaeffer 2006; Resende et al. 2012), but 

many issues should be evaluated, mainly related to the accuracy across generation in 

each situation. 

However, even with low LD, selection inside families, as mentioned in the previous 

example of GS application, requires a lower number of markers than in parental 

generation, since the LD inside families are strong, and with the genotypes from parents, 

it is possible to expand the number of markers inside the progeny with imputation 

(Browning and Browning 2007; Hickey et al. 2012; Sargolzaei et al. 2014). 

Other important point is related to the use of low-density SNP panel and the 

genotyping of more individuals. In advanced generations of pine breeding, the breeder 

will have a wide pedigree information across the generations, and thus the pedigree 

information can be combined with markers and even with low-density marker panels, the 

accuracy would not decrease too much due the large number of individuals and pedigree 

information. Habier et al. (2009) showed only a small loss in accuracy when selecting one 

marker at 10 cM, when compared with high-density panel with an average of 1 marker per 

cM. 

In practical applications, genotyping with low-density panel is cheaper, thus it would 

be possible to genotype a large number of individuals, and even with the reduction in 

accuracy due the reduced number of markers, depending on the situation, higher genetic 

gains could be achieved with higher selection intensity due to the higher number of 

genotyped individuals.  
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STATISTIC MODELS FOR GENOMIC SELECTION 

The GS models can be originated from Frequentist or Bayesian statistics. However, 

this review will include only Bayesian models. Most statistic models applied in GS are 

based on regressions where the markers are the covariates or are based on animal 

models but with the replacement of the traditional pedigree relationship matrix to a 

relationship matrix based on markers. The general GS model with polygenic effects can 

be given by: ݕ = ߚ� + ܼ� + ݑܼ + ܼ� + ݁ 

Where: ݕ: phenotype vector (or corrected phenotypes); ߚ: systematic effect vector (fixed in a 

frequentist sense); �: genotypic value vector explained by markers, in general, what 

differs in GS models is how to model this vector; ݑ: additive polygenic effect; �: dominant 

polygenic effect; ݁: residuals effect vector. 

If the � term is ignored, the model is similar to the pedigree base-line model and ݑ 

and � are breeding values and dominance deviation, respectively.  

 In this model, can be assumed that: ߚ�|ݕ + ܼ� + ݑܼ + ܼ�, ��௘ଶ~ܸܰܯሺ�ߚ + ܼ� + ݑܼ + ܼ�, ��௘ଶሻ ݌ሺߚሻ ∝ ͳ ܣ|ݑ��ଶ~ܸܰܯሺͲ, ,�ߥଶሻ ��ଶ~߯−ଶሺ��ܣ ��ሻ �|ܦ��ଶ~ܸܰܯሺͲ, �ߥଶሻ ��ଶ~߯−ଶሺ��ܦ , ��ሻ ݁|��௘ଶ~ܸܰܯሺͲ, ��௘ଶሻ �௘ଶ~߯−ଶሺߥ௘, �௘ሻ �| ,ሺͲܸܰܯ~ܸ� �ܸሻ 

 The A and D are additive and dominance relationship matrixes, respectively; �ܸ is 

the covariance matrix from marker effects on the form and distribution of �ܸ depending  of � adopted. 



 

22 

WHOLE-GENOME REGRESSIONS 

 The whole-genome regression (WGR) are multiple linear regressions that input 

markers as covariates. In GS common situations, the number of markers available is much 

larger than the number of individuals. Thus, the WGR model where the number of 

covariates is larger than the number of observations is unfeasible by ordinal least square. 

Then, one alternative is to consider that marker effects are random and use REML/BLUP 

procedure, or alternatively, estimate marker effects using Bayesian statistics. In these 

WGR models, effects for each marker are estimated. 

 ESTIMATION OF A AND D AND EPISTASIS 

 From the general GS model, simplified to assume that there are no systematic or 

polygenic effects, the model is given by: ݕ௝ = ߤ + �௝ + ௝݁; if replacing �௝ to estimate a, d 

and the pairwise interaction, the model would be: 

௝ݕ = ߤ + ௜௝ܽ௜ݔ)∑ + ௜௝݀௜)௞ݓ
௜ + ∑ ∑ ௜′௝ܽܽ௜௞ݔ௜௝ݔ

௜′௜′≠௜
௞
௜ + ∑ ∑ ௜′௝ܽ݀௜௞ݓ௜௝ݔ

௜′௜′≠௜
௞
௜ + ∑ ∑ ௜′௝݀݀௜௞ݓ௜௝ݓ

௜′௜′≠௜
௞
௜ + ௝݁ 

 

Where: ܽ௜ and ݀௜ are additive and dominance effects of loci i, respectively; ܽܽ௜, ܽ݀௜ and ݀݀௜ are 

additive-by-additive, additive-by-dominance and dominance-by-dominance effects of loci 

i, respectively; ݔ௜௝ and ݓ௜௝ are functions of bialleic marker (e.g. SNP) i from individual j; ݔ௜௝ 

assumes the values 1, 0 and -1 for genotypes AA, Aa and aa, respectively, and ݓ௜௝ = ͳ  ௜௝|. This model with epistasis effects, has a large number of parameters, mainly withݔ|−

large number of markers, and thus, it is more feasible in WGR to ignore epistasis. 

BREEDING AND DOMINANCE DEVIATION VALUES AND CROSS PREDICTION 

 Considering the WGR with the absence of epistasis, the model would be: 

௝ݕ = ߤ + ௜௝ܽ௜ݔ)∑ + ௜௝݀௜)௞ݓ
௜ + ௝݁ 

 After estimating ܽ௜ and ݀௜, the genomic expected breeding values (GEBV) and 

dominance deviation (GEDD) would be given by: 
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ܤܧ� ௝ܸ = ௜௝ݔ)�]∑ = ͳ)ʹݍ௜ + ௜௝ݔ)� = Ͳ)ሺݍ௜ − ௜ሻ݌ − �ሺݔ௜௝ = −ͳሻʹ݌௜]௜  ௜ߙ̂
௝ܦܦܧ� = ௜௝ݔ)�−]∑ = ͳ)ʹݍ௜ଶ + ௜௝ݔ)� = Ͳ)ʹ݌௜ݍ௜ − ௜௝ݔ)� = −ͳ)ʹ݌௜ଶ]௜ ݀̂௜ 

 Where pi is allele frequency of allele A in SNP i; qi=1-pi; ̂ߙ௜ is the average effect of 

substitution. ̂ߙ௜ =  ܽ̂௜ + ݀̂௜ሺݍ௜ −  ௜ሻ, and I is an indicator function of SNPs. The whole݌

genotypic value of an individual is the sum between GEBV and GEDD, and the whole 

genotypic value expected for the progeny from the cross between the individuals j and j’ ሺ�௝∗ሻ is: �௝∗ = ܤܧ� ௝ܸ + ܤܧ� ௝ܸ′ʹ + ∗௜௝ݔ)�−]∑ = ͳ)ʹݍ௜ଶ + ∗௜௝ݔ)� = Ͳ)ʹ݌௜ݍ௜ − ∗௜௝ݔ)� = −ͳ)ʹ݌௜ଶ]௜ ݀̂௜ 
Alternatively: �௝∗ = ∗௜௝ݔ)�]∑ = ͳ)ܽ̂௜ + ∗௜௝ݔ)� = Ͳ)݀̂௜ − ∗௜௝ݔ)� = −ͳ)ܽ̂௜]௜  

DISTRIBUTIONS ASSUMED FOR REGRESSION COEFFICIENTS 

 Most WGR methods share the same linear model, differing, however, regarding 

prior distribution adopted for markers effects. These different priors adopted to marker 

effects allow Bayesian WGR to be very flexible regarding genetic architecture. Some prior 

distributions for parameterization with ܽ and ݀ are shown below, as well as how to 

estimate additive and dominance variance under Hardy-Weinberg equilibrium. 

Bayesian Ridge Regression (BRR) 

 The BRR is the Bayesian version of RR-BLUP proposed by Meuwissen et al. 

(2001). In additive models, BRR assumes that all regression coefficients have the same 

variance component. In additive-dominant WGR, BRR assumes that the additive effects 

have common variance �௔ଶ and the dominance effects have the common variance �ௗଶ. As 

the common variance assumed in BRR, the literature usually assumes that BRR performs 

the same shrinkage, but according to Gianola (2013),  this is not the case. Less shrinkage 

towards zero of markers presents intermediate allelic frequencies. The BRR assumes: ݌ሺߤሻ ∝ ͳ ܽ௜|�௔ଶ~ܰሺͲ, �௔ଶሻ 
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�௔ଶ~߯−ଶሺ߭௔, �௔ሻ ݀௜|�ௗଶ~ܰሺͲ, �ௗଶሻ �ௗଶ~߯−ଶሺ߭ௗ, �ௗሻ ݁|�௘ଶ~ܰሺͲ, �௘ଶሻ �௘ଶ~߯−ଶሺ߭௘, �௘ሻ 
Bayes A 

 The original BayesA was proposed by (Meuwissen et al. 2001). This method is 

similar to BRR, with the difference that the variance component of regression coefficient 

is heterogeneous for markers that belong to different chromosome segments. This 

method allows some marker to have higher effects. However, even with heterogeneous 

variance, the marginal regression coefficient prior is common (ܽ௜|߭௔, �௔~ݐሺͲ, ߭௔, �௔ሻ) 

(Gianola et al. 2009). These authors also criticized the original BayesA because this 

method allows only a few “Bayesian learning” (mainly for small number of individuals) for 

variance components. This means that the variance in component estimations is strength 

dependent of prior distribution. This issue can be better analyzed when examining the 

fully conditional posterior distributions of variance components: �௔�ଶ ,ଶሺ߭̃௔−߯~ܧ�ܮܧ| �̃௔ሻ 

Where: ߭̃௔ = ߭௔ + ͳ �̃௔ = ߭௔�௔ + ܽ௜ଶ߭௔ + ͳ  

As in most markers, ܽ௜ଶ ≈ Ͳ, thus, in most cases �̃௔ ≈ �௔[߭௔/ሺ߭௔ + ͳሻ]. The 

distribution of �௔�ଶ  suggests that the shrinkage in marker effects is highly dependent ܧ�ܮܧ|

of hyper-parameters that are arbitrarily chosen. However, since in original BayesA 

(Meuwissen et al. 2001) it is assumed that there is a common variance component for all 

markers inside a given segment of 1 cM, and in this study the authors reported 

approximately 50 markers/cM, it is possible to assume that the influence of hyper-

parameters on original BayesA was not as high as pointed out in (Gianola et al. 2009). In 

the original BayesA, the fully conditional posterior distributions of variance components 

reported by (Meuwissen et al. 2001) were: 
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�௔�ଶ ,ଶሺ߭̃௔−߯~ܧ�ܮܧ| �̃௔ሻ ߭̃௔ = ߭௔ + �௜ �̃௔ = �௔ + ∑ ܽ௜ଶ��
௜  

�௜: is the number of markers in the ith segment. 

 In order to overcome the hyper-parameters influence, Gianola et al. (2009) 

suggested that the markers could be grouped and could assume common variance for 

markers that belong to the same group (similar to the original BayesA), and/or assume 

that �௔ and ߭௔ are parameters (not hyper-parameter) with non-informative prior 

distributions. The studies by (de los Campos and Perez 2014; Pérez and de los Campos 

2014) have modified BayesA. These authors assumed that shape parameters for ߯−ଶ 

follow the gamma distribution, which meet part of suggestions from (Gianola et al. 2009). 

The prior distributions in modified BayesA considering additive and dominance effects 

are: ݌ሺߤሻ ∝ ͳ ܽ௜|�௔ଶ~ܰሺͲ, �௔�ଶ ሻ �௔�ଶ ~߯−ଶሺ߭௔, �௔ሻ �௔~�ܽ��ܽሺݎ௔, ,௔ሻ ݀௜|�ௗଶ~ܰሺͲݏ �ௗ�ଶ ሻ �ௗ�ଶ ~߯−ଶሺ߭ௗ, �ௗሻ �ௗ~�ܽ��ܽሺݎௗ, ,ௗሻ ݁|�௘ଶ~ܰሺͲݏ �௘ଶሻ �௘ଶ~߯−ଶሺ߭௘, �௘ሻ 
 

BayesB 

 In addition to BayesA, Meuwissen et al. (2001) proposed other Bayesian approach 

called BayesB. Those authors recognize that BayesA has issues, such as the fact that 

variance distributions of marker effects do not show point mass equal to zero. According 

to those authors, this is a desired feature, since most of the loci do not contribute to genetic 
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variance (non-segregating) and only a few loci contribute to this genetic variance. In order 

to attribute this feature, the original BayesB (additive model) assumes the following 

genetic parameters: ܽ௜|�௔�ଶ ~ܰሺͲ, �௔�ଶ ሻ �௔�ଶ ~߯−ଶሺ߭௔, �௔ሻ with probability equal 1-π �௔�ଶ = Ͳ with probability equal π 
 

 According to (Gianola et al. 2009), with the prior assumption of �௔�ଶ =0, it is 

consequently assumed that ܽ௜|ሺ�௔�ଶ = Ͳሻ = �, where � is a given real number, considering 

the logic in (Meuwissen et al. 2001) � = Ͳ. Therefore, Gianola et al. (2009) criticized this 

formulation, because assuming �௔�ଶ = Ͳ implies determinism about such an effect. In order 

to overcome this situation, Gianola et al. (2009) suggested the formulation below for 

genetic parameters: ܽ௜|�௔�ଶ = { Ͳ~ܰሺͲ, �௔�ଶ ሻ 
with probability π 

with probability 1-π 
 

and 

 �௔�ଶ ~߯−ଶሺ߭௔, �௔ሻ If the marker is included in the model 

 

 Since BayesA is a special case of BayesB with π=0, the same issues regarding 

Bayesian learning in BayesA are extended to BayesB (Gianola et al. 2009). Therefore, 

since the prior marginal variance of regression coefficient is reduced by a fraction π, the 

Bayesian learning is even more difficult in BayesB than in BayesA (Gianola 2013). 

 Other issue pointed out in BayesB (Gianola et al. 2009; Habier et al. 2011; Gianola 

2013) is related to π, which, in original BayesB, is an arbitrary value that drives marker 

selection. According to those authors, π should be a parameter estimated in the model. 

Gianola et al. (2009) suggested that π should be a parameter that follows beta distribution. 

Habier et al. (2011) formulated a method called BayesDπ that assumes uniform 

distribution to π. The use of beta distribution for π is desired because it is possible to 

control the prior value to π and the confidence value regarding this prior value from the 
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expectation and variance of beta. The BayesB addressed here considered beta 

distribution to π and modification of BayesA: 

ሻߤሺ݌  ∝ ͳ ܽ௜|�௔�ଶ = { Ͳ~ܰሺͲ, �௔�ଶ ሻ 
with probability �௔  

with probability ͳ − �௔ 
 �௔�ଶ ~߯−ଶሺ߭௔, �௔ሻ �௔~�ܽ��ܽሺݎ௔, ௔ሻ �௔ݏ ,ሺܾ௔ଵܽݐ݁ܤ~  ܾ௔ଶሻ ݀௜|�ௗ�ଶ = { Ͳ~ܰሺͲ, �ௗ�ଶ ሻ 

with probability �ௗ  

with probability  ͳ − �ௗ 
 �ௗ�ଶ ~߯−ଶሺ߭ௗ, �ௗሻ �ௗ ,ሺܾௗଵܽݐ݁ܤ~  ܾௗଶሻ �ௗ~�ܽ��ܽሺݎௗ, ,ௗሻ ݁|�௘ଶ~ܰሺͲݏ �௘ଶሻ �௘ଶ~߯−ଶሺ߭௘, �௘ሻ 
 

BayesCπ 

 BayesCπ was proposed by Habier et al. (2011). It is similar to BRR, since BayesCπ 

also assumes that marker coefficients have homogenous variance. However, similar to 

BayesB, BayesCπ implemented parameter to select markers that are not associated to 

any genes. BayesCπ assumes that: ݌ሺߤሻ ∝ ͳ 

 ܽ௜|�௔ଶ = { Ͳ~ܰሺͲ, �௔ଶሻ 
with probability �௔  

with probability ͳ − �௔ 
 

 �௔ଶ~߯−ଶሺ߭௔, �௔ሻ 
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�௔ ,ሺܾ௔ଵܽݐ݁ܤ~  ܾ௔ଶሻ 

 ݀௜|�ௗଶ = { Ͳ~ܰሺͲ, �ௗଶሻ 
with probability �ௗ  

with probability  ͳ − �ௗ 
 �ௗଶ~߯−ଶሺ߭ௗ, �ௗሻ �ௗ ,ሺܾௗଵܽݐ݁ܤ~  ܾௗଶሻ ݁|�௘ଶ~ܰሺͲ, �௘ଶሻ �௘ଶ~߯−ଶሺ߭௘, �௘ሻ 

Bayesian Lasso (BL) 

 The Bayesian Lasso (BL) (Lasso - Least Absolute Shrinkage and Selection 

Operator) was proposed initially by Park and Casella (2008) and de los Campos et al. 

(2009) adapted BL to genomic prediction. Similar to BayesA and BayesB, BL assumes 

that the covariates (markers) do not have common variance and additionally promote an 

indirect covariate selection from strong shrinkage in marker effects, since marginal prior 

of regression coefficients follows double exponential (DE) distribution (or Laplace 

distribution) (Park and Casella 2008). BL assumes that: ܽ௜|߬௔� ଶ , �௘ଶ~ܰሺͲ, ߬௔�ଶ �௘ଶሻ ߬௔�ଶ ௔ଶߣሺͲ.ͷ݌ݔܧ~ߣ| ሻ ߣ௔ଶ ~�ܽ��ܽሺݎ௔, ௔ሻ ݀௜|߬ௗ� ଶݏ , �௘ଶ~ܰሺͲ, ߬ௗ�ଶ �௘ଶሻ ߬ௗ�ଶ ௗଶߣሺͲ.ͷ݌ݔܧ~ ሻ ߣௗଶ ~�ܽ��ܽሺݎௗ, ,ௗሻ ݁|�௘ଶ~ܰሺͲݏ �௘ଶሻ �௘ଶ~߯−ଶሺ߭௘, �௘ሻ 
Considerations of lambda prior 

 The use of Gamma distribution for ߣଶ (ߣ௔ଶ  and/or ߣௗଶ ) as initially proposed by (Park 

and Casella 2008) providing the full conditional distribution with closed form (݌ሺߣଶ|ܧ�ܮܧሻ), 

which allows the implementation of Gibbs Sampler algorithm. However, according to de 
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los Campos et al. (2009), with this prior it is not possible to adopt the insufficient reason 

principle. In others words, this prior does not allow vague prior knowledge for ߣଶ. Thus, 

these authors suggested beta distribution for this parameter. Nevertheless, in order to use 

beta distribution, it is necessary to use Metropolis-Hastings algorithm. 

 The motivation to consider vague prior knowledge for ߣଶ is observed in a report of 

these same authors, whereas estimated values of ߣଶ were highly influenced by prior and 

hyper-parameters (few Bayesian learning). However, even though de los Campos et al. 

(2009) demonstrated in the same study that these different priors (and hyper-parameters) 

did not provide considerable differences in GEBV estimation, which indicated that BL 

showed a large Bayesian learning for GS. 

Other Bayesian Lasso formulation 

 In BL formulation, the marker variance is a function of residual variance 

(ܽ௜|߬௔� ଶ , �௘ଶ~ܰሺͲ, ߬௔�ଶ �௘ଶሻ) (Park and Casella 2008; de Los Campos et al. 2009).  Legarra et 

al. (2011) pointed out that marker distribution should not be related to residual variance, 

and proposed an alternative formulation for the Bayesian Lasso (BL2). In this formulation 

for the additive model, the authors assumed that: ܽ௜|߬௜ଶ, ,ଶ~ܰሺͲߣ ߬௜ଶሻ ߬௜ଶ|ߣଶ~݌ݔܧሺߣሻ �௘ଶ~߯−ଶሺߥ, �ଶሻ ߣଶ~ܷሺͲ,ͳͲ6ሻ 

 According to (Gianola 2013), the additive variance in BL is not necessarily 

dependent  of residual variance. This author argues that in a standard additive infinitesimal 

model of quantitative genetics the additive variance can be given by: 

�ܸ = ிܸ − ாܸ = ℎଶ ிܸ = ாܸ ℎଶͳ − ℎଶ 

 Gianola (2013) also argues that if one considers the additive variance of a marker 

as ܸܽݎሺܽ௜|߭௘ , �௘ , ,௔ݎ ௔ሻ, where ߭௘ݏ , �௘ , ,௔ݎ  ௔ are hyper-parameters of BL (previousݏ

described), thus: ܸܽݎሺܽ௜|߭௘ , �ଶ, ,ଵߙ ଶሻߙ = ʹ߭௘�௘ݏ௔ሺ߭௘ − ʹሻሺݎ௔ − ͳሻ 
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 Gianola (2013) showed that ாܸ should be viewed as ߭௘�௘/ሺ߭௘ − ʹሻ since this term 

is the expected value of the prior distribution assigned to the residual variance. Then, ʹݏ௔ ሺݎ௔ − ͳሻ⁄  plays a role on ℎଶ ሺͳ − ℎଶ⁄ ). With similar idea, BRR could be formulated 

as: ܽ௜|�௔ଶ~ܰሺͲ, �௘ଶ ℎଶ ሺͳ − ℎଶ⁄ ሻ, but it would also be necessary to formulate a prior for ℎଶ. 

WGR variance components 

 After fit the WGR model and assuming linkage equilibrium, absence of epistasis 

and Hardy-Weinberg equilibrium (Gianola et al. 2009), the additive and dominance 

variance captured by markers could be estimated from: ܸ̂� = ʹሺͳ − �̂௔ሻ ∑ ௜௜ݍ௜݌ [�̂௔�ଶ + ሺݍ௜ − ௜ሻଶ�̂ௗ�ଶ݌ ] 
and  ܸ̂஽ = Ͷሺͳ − �̂ௗሻ ∑ሺ݌௜ݍ௜ሻଶ௜ �̂ௗ�ଶ  

 From these general equations of variance estimators, it is possible to estimate VA 

and VD for all WGR. In BayesA, BRR and BL �̂௔ = �̂ௗ = Ͳ; In BRR and BayesCπ �̂௔�ଶ = �̂௔ଶ 

and �̂ௗ�ଶ = �̂ௗଶ; In BL �̂௔�ଶ = ߬̂௔�ଶ �̂௘ଶ and �̂ௗ�ଶ = ߬̂ௗ�ଶ �̂௘ଶ.  

 The assumptions of linkage equilibrium is a slight paradox, since in GP the linkage 

disequilibrium (LD) is useful to achieve good predictions. Another factor that play role for 

achieve high accuracies is the structure formed by relationship among the individuals, 

since in populations structured in families the predictions tend to be more accurate than a 

population of unrelated individuals, consequently due the family structure, selection and 

drift, both assumptions - LD and HW - are not attended in common breeding populations. 

However, according to (Gianola et al. 2009) these are assumed to make the issue 

addressable. These authors have also mentioned that accommodating LD explicitly in the 

prediction models would be a “formidable challenge”. 

Individual models 

 Individual models are based on standard baseline models used in animal breeding, 

and more recently in plant breeding, but with the replacement of the relationship matrix 

resulted from pedigree to a relationship matrix from markers. The standard GS based on 

individual model is the additive GBLUP (VanRaden 2008). This method can be extended 
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for additive-dominance (Vitezica et al. 2013; Nishio and Satoh 2014) and epistasis can 

also be included in GBLUP (Su et al. 2012; Morota et al. 2014; Muñoz et al. 2014). The 

models based on GBLUP and BRR are equivalent models (de los Campos et al. 2013). 

Moreover, it is also possible to accommodate heterogeneous genetic variance for each 

marker in the relationship matrix. This method is called het-GBLUP (Legarra et al. 2011; 

Resende et al. 2014) and depending on the assumption for marker effects, it can be an 

equivalent model to BayesA, BayesB or BL. Another individual model is the Reproducing 

Kernel Hilbert Space (RKHS), this model can theoretically predict the entire genotypic 

value (additive and non-additive effects). This model is described below. 

Reproducing Kernel Hilbert Space (RKHS) 

 The RKHS in GS prediction was proposed by (Gianola et al. 2006; Gianola and van 

Kaam 2008). From the standard genetic evaluation model ݕ = ߤ + � + ݁, where: ߤ is the 

intercept, ݁ is the error vector, and � is a vector of unknown function of genetic 

characterization of individuals, until now any assumption were calculated for �. Therefore, � can be viewed as a non-parametric function. The � can be achieve with penalized 

regression, and one way to do this is by minimizing the mean square error, under the 

restriction that � belongs to Hilbert space: �̂ = arg min� ∈ ℋ {ሺݕ − ߤ − �ሻ′ሺݕ − ߤ − �ሻ + ℋଶ‖�‖ߣ } 
 Where: ߣ is the parameter used to control the trade-off between the model 

suitability and complexity, and ‖. ‖ℋଶ  denotes square norm in Hilbert space (de Los 

Campos et al. 2009). According to (Gianola et al. 2006; Gianola and van Kaam 2008), the 

solution of this penalized regression leads to model: ݕ = ߤ + ߙܭ + ݁, (� =  where: K (ߙܭ

is a symmetric, positive definite matrix that corresponds to the relationship among 

individuals. Now, assuming that ߙ is a parameter and ߙ ∼ ܰሺͲ,  ଵ�௞ଶሻ, it can be−ܭ

demonstrated (de Los Campos et al. 2009) that RKHS model is equivalent to animal 

models where � ∼ ܰሺͲ,  ,௞ଶሻ. Thus, it can be concluded that pedigree baseline models�ܭ

and GBLUP are special cases of RKHS, but it is necessary to substitute K for the 

appropriate kernel matrix (de Los Campos et al. 2009; Morota and Gianola 2014). 
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 According to (Gianola et al. 2006; Gianola and van Kaam 2008; Morota et al. 2014) 

with kernels, the RKHS model can predict the entire genotypic value; however, in a non-

explicit manner. One kernel suggested by these authors is called Gaussian Kernel, which 

is given by: ܭ = expሺ−߮ܦ௘ଶሻ 

Where: ܦ௘ଶ is the squared Euclidean distance using marker incidence matrix. This matrix 

is the same matrix included in additive WGR models; this matrix assume the values -1 

(aa), 0 (Aa) and 1 (AA). The ߮ is the bandwidth parameters that control how fast the 

covariance function drops as the points get further apart, as measured by ܦ௘ଶ (de los 

Campos et al. 2010b). For a given distance between two individuals (ܦ௘௝௝′ଶ ), if ߮ ⟶ ∞ the 

correlation of these individuals is ܭ௝௝′ ⟶ Ͳ, and if ߮ ⟶ Ͳ, then ܭ௝௝′ ⟶ ͳ. 

 With the Bayesian approach, ߮ can be estimated from Metropolis-Hasting 

algorithm (Gianola et al. 2006; Gianola and van Kaam 2008), but these authors argue that 

it would demand a lot of time and computational resources. They also suggested to test a 

grid of values for ߮ and choose the one maximizing the predict ability. However, testing a 

grid values for ߮ also demands a great amount of time and computational resources. In 

order to overcome the problem of choosing (or estimating) ߮, (de los Campos et al. 2010b) 

proposed the use of multiple kernels with the same distance matrix, but with different 

bandwidth values. This approach was called “kernel averaging”. 

 This kernel averaging approach can include many kernels, and this model 

considering three kernels is: ݕ = ߤ + �ଵ + �ଶ + �ଷ + ݁ �௞|ܭ௞�௞ଶ~ܰሺͲ, :௞�௞ଶሻܭ {݇ = ͳ,ʹ,͵} �௞ଶ~߯−ଶሺ߭௞ , �௞ሻ ݁|�௘ଶ~ܰሺͲ, �௘ଶሻ �௘ଶ~߯−ଶሺ߭௘, �௘ሻ ܭ௞ = expሺ−߮௞ܦଶሻ 

 González-Camacho et al. (2012) suggested that ߮ଵ, ߮ଶ and ߮ଷ can be 5/h, 1/h and 

1/5h, where h is the 5th percentile of the distribution of squared Euclidean distances 

between pairs of individuals, with leading local intermediate and global kernels, 
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respectively (Tusell et al. 2014). These suggestion agree with (Crossa et al. 2010), where 

these authors argues that the bandwidth parameter should consider the distribution of 

distance values. 

In the genetic point of view, the entire genotypic value is � = �ଵ + �ଶ + �ଷ, and the 

entire genotypic variance is ��ଶ = ∑ �௞ଶ௞  (de los Campos et al. 2010b). However, it is not 

possible to split the genotypic variance in additive and non-additive terms. 

Other kernels to predict entire genotypic values are available, but this Gaussian 

kernel with kernel averaging approach has been showed to be a robust choice (Morota et 

al. 2013; Tusell et al. 2014). Morota et al. (2014) suggested using Gaussian kernel build 

from dominance incidence matrix, and using this new kernel together with the previous 

model. However, the inclusion of new kernels has not provided greater accuracies. 

Choice of hyper-parameters 

 According to de los Campos et al. (2013), the hyper-parameters control the extent 

and strength of shrinkage of marker effect estimates, and they can have important impacts 

on inferences. These authors suggest the solutions below when dealing with the choice 

of hyper-parameters:  

 Heritability-based rules: In this case, the hyper-parameters are chosen based on 

prior expectation regarding the genetic variance components of trait, similar to the seminal 

GP paper (Meuwissen et al. 2001) and also (Zeng et al. 2013); 

 Validation methods: This consists in testing a grid of values for different hyper-

parameters in the model and choosing the values that maximize predictive performance. 

However, this strategy may be unfeasible with a large number of parameters to be defined. 

As previously mentioned, one way to define the bandwidth parameter in semi-parametric 

RKHS model is by using the validation approach (Gianola et al. 2006; Gianola and van 

Kaam 2008);  

 Full Bayesian treatment: This method basically considers the unknown hyper-

parameter as regular parameters, thus increasing the hierarchy in the model. As 

mentioned before, (Gianola et al. 2009) suggested the definition of one more hierarchical 

level in the original Bayes A and B (Meuwissen et al. 2001) for dealing with Bayesian 
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learning problems, and it was considered in BayesA and BayesB, also previously 

mentioned.  

 Empirical Bayes methods: This approach suggests the replacement of prior 

distribution by estimation of parameter using data. It is similar to the common breeding 

value evaluation, where the unknown genetic variance parameter is replaced by its 

estimated values from REML procedure (de los Campos et al. 2013). 

The hyper-parameters for all methods demonstrated heren are completely 

explained based on Heritability-based rules and Full Bayesian treatment in Pérez and de 

los Campos (2014). An alternative for choosing the hyper-parameters in the additive-

dominante WGR as provided in Zeng et al. (2013). 

Due to the lack of knowledge about genetic architecture of traits in literature, the 

same hyper-parameter is generally assumed for all marker effects or theirs variance 

component. However, it drives all markers to the same marginal prior even if the method 

assumes a heterogeneous variance component (Park and Casella 2008; Gianola et al. 

2009). Maybe with the improvement on the knowledge of genetic architecture, from the 

expression or association studies, markers of some loci could have higher prior genetic 

variance, or the inclusion of information from previous studies about genetic architecture 

could make statistic models more realistic. 
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CHAPTER II 

 

THE CONTRIBUTION OF DOMINANCE TO PHENOTYPE PREDICTION IN A PINE 

BREEDING AND SIMULATED POPULATION 

 

ABSTRACT 

Pedigrees and dense marker panels have been used to predict the genetic merit of 

individuals in plant and animal breeding, accounting primarily for the contribution of 

additive effects. However, non-additive effects may also impact trait variation in many 

breeding systems, particularly when specific combining ability is explored. Here we used 

models with different priors, and including additive-only and additive plus dominance 

effects, to predict polygenic (height) and oligogenic (fusiform rust resistance) traits in a 

structured breeding population of loblolly pine (Pinus taeda L.). Models were largely 

similar in predictive ability, and the inclusion of dominance only improved modestly the 

predictions for tree height. Next, we simulated a genetically similar population to assess 

the ability of predicting polygenic and oligogenic traits controlled by different levels of 

dominance. The simulation showed an overall decrease in the accuracy of total genomic 

predictions as dominance increases, regardless of the method used for prediction. Thus, 

dominance effects may not be accounted for as effectively in prediction models, compared 

to traits controlled by additive alleles only. When the ratio of dominance to total phenotypic 

variance reached 0.2, the additive-dominance prediction models were significantly better 

than the additive-only models. However, in the prediction of the subsequent progeny 

population, this accuracy increase was only observed for the oligogenic trait.  

 

Keywords: genomic prediction, dominance, additive, polygenic, oligogenic 
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INTRODUCTION 

 Genomic prediction of complex traits can increase genetic gains per unit of time in 

plant and animal breeding, by allowing early and more accurate selection than traditional 

approaches (Heffner et al., 2010; Wiggans et al., 2011; Resende, et al., 2012b). In human 

genetics, the same methods may be applicable to predict propensity to disease, and 

response to drug treatments (Yang et al. 2010; de los Campos et al. 2010; Wray et al. 

2013). Most of the early development of genomic prediction methods occurred in dairy 

cattle, with the aim of selecting sires with high breeding value. Thus, prediction models 

were developed to account for the contribution of additive effects to phenotypic traits, while 

non-additive effects were typically not considered. Considering non-additive effects in the 

model could improve predictions, as the genetic architecture of traits is a factor that 

contributes to the accuracy of models (Hayes et al. 2009). In addition, dominance and 

epistasis may be confused with the additive effect in genomic predictions. Thus, their 

specific contribution should be accounted for to avoid the overestimation of genetic 

parameters in downstream applications (Muñoz et al. 2014).  

 Prediction of dominance effects is needed in advanced breeding programs that 

explore specific combining ability (SCA). In those programs, seeds from a small number 

of crosses known to have superior SCA can be scaled up through controlled mass 

pollination and deployed in large-scale (White et al. 2007). When dominance contributes 

to the complex trait, these strategies increase the yield and genetic gain when compared 

with half-sib, open-pollinated families (McKeand et al. 2006). Recent studies in plants and 

animals have reported a significant contribution from non-additive effects to phenotypes, 

adding to a considerable proportion of the genetic variance and improving the accuracy 

of predictions (Su et al. 2012; Vitezica et al. 2013; Nishio and Satoh 2014; Muñoz et al. 

2014). Analysis of simulated data indicated that including dominance is recommended to 

achieve higher genetic gains in crossbred population (Zeng et al. 2013) and would also 

allow the application of mate-allocation (Toro and Varona 2010; Sun et al. 2013; Ertl et al. 

2014). When only additive effects are considered, predicting the best combination of 

parents that generate superior families equals the average of their breeding values. Thus, 

inclusion of dominance is critical to identify complementary individuals and explore 

heterosis. In species as pine, the additive and non-aditive effects prediction are also 
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important for clonal propagation, since in this case are explored the whole genotypic 

value. 

 Numerous whole-genome regression (WGR) approaches have been proposed for 

genomic prediction of additive effects. These approaches generally share the same linear 

model but differ in their assumptions regarding the prior information of markers effects 

(Gianola 2013; de los Campos et al. 2013). For instance, priors implemented in Bayesian 

Ridge Regression assume that marker effects follow a normal distribution with a common 

variance component. This assumption is suitable under the infinitesimal model, where the 

trait is controlled by a large number of genes with small effect. Others models implement 

more complex (parameterized) priors that can fit traits with major-effect genes that explain 

a significant proportion of the genetic variation. These models rely on variable selection 

(e.g. BayesB) to remove markers that are not in linkage disequilibrium with any 

quantitative trait loci (QTL), and modeling variance heterogeneity of marker effect (e.g. 

Bayes A, BayesB, Bayesian Lasso) that assumes that each marker explains a distinct part 

of genotypic variation. In polygenic traits it was previously observed that the different WGR 

models and priors usually result in similar accuracies (Heslot et al., 2012; Resende, et al., 

2012a; Pérez et al., 2012). However, when WGR was applied to traits that are expected 

to be oligogenic, such as rust resistance (Resende, et al., 2012a) and milk fat (Habier et 

al. 2013), the accuracies were superior under priors that assume variable selection, 

variance heterogeneity or both.  

 Despite the relevance of different priors in the performance of additive whole-

genome prediction models, their contribution to the accuracy of models that incorporate 

dominance effects, and for traits with distinct genetic architecture, have not been 

extensively explored. The objective of this study is to address this limitation. We evaluate 

additive and additive-dominance models in the prediction of traits with a relatively simple 

(disease resistance) and complex (growth) genetic architecture, measured in a standard 

breeding population of loblolly pine (Resende, et al., 2012a). Furthermore, to fully explore 

the advantages and limitations of different models in the prediction of dominance, we 

extend the analysis to a simulated population with traits controlled by contrasting levels of 

dominance. 
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MATERIALS AND METHODS 

Loblolly pine population data 

 The reference loblolly pine (Pinus taeda L.) breeding population CCLONES 

(Comparing Clonal Lines On Experimental Sites) was used in this study. The population 

was created by crossing 42 parents representing a wide range of accessions from the US 

Atlantic coastal plain, in a circular mating design with additional off-diagonal crosses 

(Baltunis et al. 2007). In total, 923 individuals from 71 full sibs families (average of 13 

individuals per family, SD=5) were genotyped for 7,216 single-nucleotide polymorphism 

(SNP) loci using an Illumina Infinium assay (Illumina, San Diego, CA; Eckert et al., 2010). 

All 4,722 loci that were polymorphic in the population were used in this study, regardless 

of their minor allele frequency. Missing data was low (<1%) and missing values were 

replaced by the marker expected value (de los Campos and Perez 2014). Three traits with 

contrasting genetic architecture were analyzed. Tree height (HT) is a polygenic trait, and 

was measured in field trials at  Nassau (Florida, USA), when the trees were six years old, 

in eight clonal replicates distributed in an alpha-lattice design (Baltunis et al. 2007). 

Fusiform rust is an oligogenic trait, controlled by a number of loci of large effect (Resende, 

et al., 2012a). Fusiform rust incidence was measured as gall volume (RFgall) and as a 

binary (presence/absence) trait (RFbin) (Quesada et al., 2014). Plants were phenotyped 

for rust in a greenhouse experiment that followed a randomized complete block design, 

with three repetitions allocated with alpha design, as described previously (Resende, et 

al., 2012a). The estimated narrow sense heritability of these traits was previously reported 

as 0.31, 0.21 and 0.12 for HT, RFbin and RFgall, respectively (Resende, et al., 2012a). 

Simulated Data 

 The parametric contribution of dominance to trait variation, and the ratio of 

dominance to additive effects are unknown in the CCLONES population. In order to fully 

evaluate the ability of models in predicting dominance effects of different architectures 

and degrees we proceeded to simulate a population with similar genetic properties as 

CCLONES, except that trait QTL were manipulated to include dominance, and regulation 

by different numbers of loci. The simulation of a population with similar properties as 

CCLONES was carried out in two steps. First, 1,000 diploid individuals were created by 
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randomly sampling 2,000 haplotypes generated after 1,000 generations of a neutral 

coalescence model from a population with effective size (Ne) of 10,000 and mutation rate 

of 2.5 × 10-8 (Willyard et al. 2007). The simulated genome had 12 chromosomes, each 

with 100 cM, and 10,000 polymorphic loci were randomly selected. This first step was 

simulated using Macs (Chen et al. 2009). In the second step of the simulation, the 1,000 

diploid individuals generated previously were subject to selection and recombination, and 

used to generate a loblolly pine improvement program in its second breeding cycle (Figure 

1). The simulation of the population generated a total of 196,303,656 polymorphic sites. 

As commonly observed in pine tree breeding populations, the majority of loci had very low 

minor allele frequencies (Supplementary Figure S1). 

 Six traits with different genetic architectures (polygenic and oligogenic) and levels 

of dominance (none, medium or high dominance) were simulated. For the polygenic traits, 

1,000 QTL were used in the analysis, and their additive effects were sampled from a 

standard normal distribution (Hickey and Gorjanc 2012). For the oligogenic traits, 30 QTL 

were sampled from a gamma distribution with rate 1.66 and shape 0.4, and the QTL 

effects were sampled to be positive or negative with equal probability (Meuwissen et al. 

2001). The dominance effect of the ith QTL, when present, were determined by: ݀௜ = ܽ௜ ×߮௜, where ߮௜ was sampled from a normal distribution with mean zero and standard 

deviation of 1 (moderate dominance) and 2 (high dominance) (Table 1). The additive effect 

(ai) of the ith QTL was defined as half of the difference between alternative homozygote 

categories, and the dominance effect (di) as the deviation of the heterozygote from the 

mean of two homozygote classes. The heritability was calculated as ℎଶ = �ܸ/ �ܸ, and ݀ ଶ =஽ܸ/ �ܸ, where �ܸ = �ܸ + ஽ܸ + ாܸ (additive-dominance scenario) or �ܸ = �ܸ + ாܸ (additive 

scenario). ܸ �, ܸ �, ܸ ஽ and ܸ ா are the phenotypic, additive, dominance deviation and residual 

variances, respectively (Falconer and Mackay 1996). The error was simulated from a 

normal distribution with mean zero, and the variance was defined to result in an h2 equal 

to 0.25. The simulation of dominance traits was supervised in order to achieve a d2 of 0.1 

and 0.2 for traits with moderate and large dominance effects, respectively. For traits with 

moderate dominance, we accepted d2 between 0.09 and 0.11; for traits with large 
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dominance, we accepted d2 between 0.19 and 0.21. When d2 fell outside the desired 

range the simulation was discarded. 

 

Figure 1. Breeding scheme applied to create the simulated CCLONES population used 

for analysis of all traits. 

 

 After sampling individuals from the natural population and creating the base 

population (G0), two discrete generations of selection and mating were simulated. From 

1,000 individuals in the base population (G0), the 10% highest phenotypic values were 

selected and randomly mated to generate 1,000 individuals that compose the first 

breeding generation (G1). From G1, 42 individuals were selected and used in a mating 
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design that reproduced the same pedigree as the CCLONES population (G2). The 

breeding populations from G2 were simulated with 10 replicates for each trait using the R 

software (R Core Team 2014). In addition, the 42 individuals with highest phenotypic value 

from each replicate of G2 were selected to be parents in the subsequent generation (G3). 

The mating followed again the same design as CCLONES and the top selected individuals 

were randomly crossed. In G2 were considered the 923 individuals that correspond the 

genotyped individuals of real CCLONES population, but in G3 were considered all 

individuals, including those that were not genotyped in the real population. 

Table 1. Summary of simulated traits. A heritability of 0.25 was used in all simulated 
conditions. 

Traits description Number of genes (QTL) d2 d2/h2 
Oligogenic with no dominance 30 0 0 
Polygenic with no dominance 1,000 0 0 

Oligogenic with medium dominance 30 0.1 0.4 
Polygenic with medium dominance 1,000 0.1 0.4 

Oligogenic with high dominance 30 0.2 0.8 
Polygenic with high dominance 1,000 0.2 0.8 

 

Statistical methods 

 We used Bayesian WGR models with SNPs as covariates and common priors, 

including Bayesian ridge regression (BRR, also called SNP-BLUP), BayesA, BayesB, and 

Bayesian Lasso (BL). All methods used here can be represented by the following base 

model: ݕ௝ = ߤ + �௝ + ௝݁ 

 Where ݕ௝ is the phenotype (clonal mean) of individual ݆; µ is the intercept; ௝݁ is the 

error of observation ݆; �௝ is the genotypic value. In all models it was assumed that: ݕ௝|ߤ + �௝ , �௘ଶ~��ܦ ܰሺߤ + �௝, �௘ଶሻ; ߤ~ܰሺͲ, ͳͲ6ሻ; 

 ௝݁|�௘ଶ~��ܦ ܰሺͲ, �௘ଶሻ; �௘ଶ|ߥ௘ , �௘~߯−ଶሺߥ௘ , �௘ሻ. 
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 For each prior either additive only or additive-dominance effects were considered. 

Thus, the general additive-dominance whole-genome regression model was replaced by: 

௝ݕ = ߤ + ௜௝ܽ௜ݔ)∑ + ௜௝݀௜)௞ݓ
௜=ଵ + ௝݁ 

Where k is the number of markers, xij and wij are the functions of SNP i in individual j, for 

genotypes AA, Aa and aa. We parameterized xij with values 1 (AA), 0 (Aa) and -1 (aa) 

and wij with 0 (AA), 1 (Aa) and 0 (aa) (Toro and Varona 2010). The additive and 

dominance effects of the ith marker were represented by ai and di, respectively. The 

dominance effect was fitted only in the additive-dominance model. The priors used in 

linear regression coefficients for additive-dominance and additive models are described 

below. 

Bayesian Ridge Regression (BRR) 

 The BRR is a Bayesian method in which it is assumed that all regression 

coefficients have common variance. Thus, for an additive-dominance model, all markers 

with the same allele frequency explain the same proportion of the additive and dominance 

variances, and have the same shrinkage effect (Gianola 2013). For BRR it was assumed 

that: 

 ܽ௜|�௔ଶ~ܰሺͲ, �௔ଶሻ; �௔ଶ|ߥ௔, �௔~߯−ଶሺ߭௔, �௔ሻ;݀௜|�ௗଶ~ܰሺͲ, �ௗଶሻ; �ௗଶ|ߥௗ, �ௗ~߯−ଶሺߥௗ, �ௗሻ. 

Bayes A 

 Bayes A was proposed by Meuwissen et al. (2001) and, contrary to BRR, it 

considers that markers have heterogeneous variances. Bayes A was further modified (de 

los Campos and Perez 2014) to estimate the shape parameter of the inverted chi-square 

distribution. This modification is expected to reduce the influence of the hyperparameter 

and improve the learning process (Gianola et al. 2009). For Bayes A it was assumed that: 

 ܽ௜|�௔�ଶ ~ܰሺͲ, �௔�ଶ ሻ; �௔�ଶ ,௔ߥ| �௔~߯−ଶሺߥ௔, �௔ሻ; �௔|ݎ௔, ,௔ݎ௔~�ሺݏ ௔ሻ; ݀௜|�ௗ�ଶݏ ~ܰሺͲ, �ௗ�ଶ ሻ; �ௗ�ଶ ,ௗߥ| �ௗ~߯−ଶሺߥௗ, �ௗሻ;  �ௗ|ݎௗ, ,ௗݎௗ~�ሺݏ  .ௗሻݏ
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Bayes B  

 Bayes B differs from Bayes A in that it includes the selection of covariates (SNPs) 

that don’t contribute to genetic variance (Meuwissen et al. 2001). Similarly to Bayes A, we 

adopted a modified version of Bayes B (de los Campos and Perez 2014), where the shape 

parameter follows a gamma distribution and π is an estimated parameter (Gianola et al. 

2009). This implementation of Bayes B is very similar to Bayes Dπ (Habier et al. 2011), 

and it assumes: ܽ௜|�௔�ଶ = { Ͳ~ܰሺͲ, �௔�ଶ ሻ 
with probability πa 

with probability 1-πa 
   ݀௜|�ௗ�ଶ = { Ͳ~ܰሺͲ, �ௗ�ଶ ሻ 

with probability πd 

with probability 1-πd 
 �௔�ଶ ,௔ߥ| �௔~߯−ଶሺߥ௔, �௔ሻ; �ௗ�ଶ ,ௗߥ| �ௗ~߯−ଶሺߥௗ, �ௗሻ; �௔|ݎ௔, ,௔ݎ௔~�ሺݏ ,ௗݎ|௔ሻ; �ௗݏ ,ௗݎௗ~�ሺݏ ,଴݌|ௗሻ; �௔ݏ �଴ and �ௗ|݌଴, �଴ ~ܽݐ݁ܤሺ݌଴, �଴ሻ 

Bayesian Lasso (BL) 

 The Bayesian version of Lasso regression was proposed by Park and Casella 

(2008), and the application in whole genomic prediction was proposed by de los Campos 

et al. (2009). As in Bayes A and Bayes B, BL presupposes that covariates do not have 

homogeneous variance. Furthermore, it promotes an indirect marker selection with strong 

shrinkage in the regression coefficients, since the marginal prior of regression coefficients 

follows a double exponential distribution (Park and Casella 2008), which drive many 

marker effects to zero or near zero. The BL assumes: ܽ௜|߬௔� ଶ , �௘ଶ~ܰሺͲ, ߬௔�ଶ �௘ଶሻ; ݀௜|߬ௗ� ଶ , �௘ଶ~ܰሺͲ, ߬ௗ�ଶ �௘ଶሻ; ߬௔�ଶ ௔ଶߣሺͲ.ͷ݌ݔܧ~௔ߣ| ሻ; ߬ௗ�ଶ ௗଶߣሺͲ.ͷ݌ݔܧ~ௗߣ| ሻ; ߣ௔|ݎ௔, ,௔ݎ௔~�ሺݏ ,ௗݎ|ௗߣ ௔ሻ andݏ ,ௗݎௗ~�ሺݏ  ௗሻݏ

 All analysis with the WGR models were carried out with the R package BGLR (de 

los Campos and Perez 2014) with default hyperparameter (Supplementary Table S1 and 

S2) values described previously (de los Campos et al. 2013; de los Campos and Perez 

2014; Pérez and de los Campos 2014). In total 30,000 MCMC iterations were used, of 

which the first 10,000 were discarded as burn-in and every 3rd sample was kept for 

parameter estimation. We also evaluated the accuracy of additive and additive-dominance 
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models based exclusively on pedigree information by generating the expected relationship 

matrix. Although the additive-dominance pedigree model was more accurate for 

dominance deviation, the genomic models were more accurate for parent and clonal 

selection. Thus, this study focused on genomic prediction models only (Supplementary 

Table S3 and S4). 

Breeding value and dominance deviation 

 After fitting each WGR model, the breeding values (u) and dominance deviation of 

the additive-dominance models (δ) were estimated (Falconer and Mackay 1996) as 

described below. ̂ݑ௝ = ௜௝ݔ)�]∑ = ͳ)ʹݍ௜ + ௜௝ݔ)� = Ͳ)ሺݍ௜ − ௜ሻ݌ − �ሺݔ௜௝ = −ͳሻʹ݌௜]௜  ௜ߙ̂
�̂௝ = ௜௝ݔ)�−]∑ = ͳ)ʹݍ௜ଶ + ௜௝ݔ)� = Ͳ)ʹ݌௜ݍ௜ − ௜௝ݔ)� = −ͳ)ʹ݌௜ଶ]௜ ݀̂௜ 

Where pi is allele frequency of allele A of SNP i, qi=1-pi, ̂ߙ௜ is the average effect of 

substitution, ̂ߙ௜ =  ܽ̂௜ + ݀̂௜ሺݍ௜ −  .௜ሻ, and I is an indicator function of SNPs݌

Variance components and heritability estimation 

 For estimation of variance components, linkage equilibrium, absence of epistasis 

and Hardy-Weinberg equilibrium was assumed (Gianola et al. 2009). Considering these 

assumptions, the additive variance (��ଶ) and the variance due to dominance deviation (�஽ଶ) 

were estimated as described previously (Zeng et al. 2013; Ertl et al. 2014): �̂�ଶ = ʹ ∑ ௜௜ݍ௜݌ [�̂௔ଶ + ሺݍ௜ −  [௜ሻଶ�̂ௗଶ݌
and  �̂஽ଶ = Ͷ ∑ሺ݌௜ݍ௜ሻଶ௜ �̂ௗଶ 

These estimates were used to calculate h2 and d2, as previously described. 

Validation 

 A 10-fold cross-validation was used to compare results in the real and simulated 

populations (Ertl et al. 2014). Briefly, the dataset was separated into ten subsets. In each 
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cycle, a subset was excluded before models were fitted with the remaining data, and the 

model was used to predict the excluded subset. The process was repeated ten times, and 

in each cycle the prediction accuracy was estimated (Pearson’s correlation) of parametric 

values on predicted validation data were calculated. For the simulated population, the 

accuracies were calculated for breeding values, dominance deviations, total genotypic 

values and phenotype values of individuals. The results reported are means (and standard 

errors) of accuracies of parametric values on estimated values across folds. Because in 

the non-simulated population the true genotypic values are unknown, we used the 

prediction ability (accuracy of phenotype prediction ݎ��̂), which is the correlation between 

predicted whole genotypic value and phenotype.  

RESULTS 

Heritability 

 Bayesian ridge regression was used to estimate the narrow sense heritability using 

additive and additive-dominance models. Estimates of h2 were higher in additive models, 

for all traits, in the real and the simulated population (Table S5 and S6). For traits 

measured in the real population, estimates of d2 ranged from 0.09 to 0.15, while �஽ଶ/��ଶ (or 

d2/h2) varied from 0.31 to 0.42. Because the parametric values are known in the simulated 

population, it was possible to evaluate the impact of model selection in the estimation of 

genetic parameters. For traits without dominance, the estimates of h2 were similar to the 

parametric value for additive- and additive-dominance models. The dominance 

component of the additive-dominance model captured dominance variability and 

overestimated d2 as 0.07. For simulated traits with low dominance (d2=0.1), estimates of 

d2 and h2 were similar to the parametric value. However, in the case of higher dominance 

(d2=0.2), these estimates were underestimated for d2 and modestly overestimated for h2. 

Additive and additive-dominance model prediction in the CCLONES population 

 We contrasted the predictive ability of linear models with different assumptions 

regarding prior information of marker effects, and accounting for only additive, or additive-

dominance contributions. The models with different prior were similar in absolute value of 

the predictive ability (Table 2). However, an analysis of variance indicated that the results 
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were statistically different for HT and RFbin (Supplementary Table S7). The inclusion of 

dominance effects only increased modestly the predictive ability for HT. For instance, 

additive Bayes B showed the highest accuracies for RFgall (0.299) and RFbin (0.376). In 

contrast, the highest accuracies with additive-dominance models were 0.292 and 0.369 

for RFgall and RFbin, respectively (Table 2). These results suggest a minor contribution 

of dominance to tree height. On the other hand, prediction of rust resistance traits show 

no improvement in accuracy when dominance is considered, possibly because this effect 

is absent or negligible. Other factors, such as limited marker coverage of rust QTL or 

insufficient population size to estimate the dominance effect, may have also contributed 

to the observed results. Overall the results are in agreement with the proportion of 

variance of dominant deviations relative to total genetic variance, which was estimated to 

be 50% higher for HT, compared to RFgall and RFbin (Supplementary Table S5). 

Genetic properties of the simulated population 

 To assess the effect of the trait genetic architecture on prediction models that 

include additive and additive-dominance effects, scenarios considering a polygenic trait 

(1,000 QTL) and an oligogenic trait (30 QTL) were evaluated. For both types of traits three 

dominance levels were simulated: no dominance (d2=0; d2/h2=0), moderate dominance 

(d2=0.1; d2/h2=0.4), and high dominance (d2=0.2; d2/h2=0.8). A set of 10,000 markers 

randomly distributed across the genome (expected 8.33 markers per cM), and 

polymorphic in the base population were included in the analysis. In the population that 

simulated CCLONES (G2), approximately half of QTL (mean=53.92% SD=1.18%) and 

markers (mean= 55.45% SD=0.56%) were fixed (Supplementary Figure S1). Thus, the 

two cycles of breeding and selection reduced (or fixed) the frequency of alleles in a large 

number of loci. The allele frequency distributions of polymorphic SNPs were similar 

between CCLONES and the simulated population (Supplementary Figure S1). In the 

simulated base population, the LD among markers and QTL was low. As expected, the 

LD increased over successive generations, reflecting the lower effective population size 

relative to the base population (Supplementary Figure S2). On average, two or more 

markers had an r2 higher than 0.4 with any QTL for all simulated traits. 
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Table 2 results of predict ability of whole-genome regressions using different priors and 
including dominance effects for height (HT) and rust resistance evaluated as gall volume 
(RFgall) and presence or absence (RFbin) in Pinus taeda. 

Model Prior 
HT   RFgall   RFbin ݎ��̂ (se)  ݎ��̂ (se)  ݎ��̂ (se) 

 
add-dom 

 

Bayesa 0.415ab (0.04)  0.291a (0.03)  0.367ab (0.02) 
BayesB 0.414ab (0.04)  0.291a (0.03)  0.369a (0.02) 

BL 0.415ab (0.04)  0.288a (0.03)  0.338c (0.02) 
BRR 0.418a (0.04)  0.292a (0.03)  0.329c (0.02) 

additive 

BayesA 0.401bc (0.03)  0.296a (0.03)  0.375a (0.02) 
BayesB 0.401bc (0.03)  0.299a (0.03)  0.376a (0.02) 

BL 0.392bc (0.03)  0.292a (0.03)  0.345bc (0.02) 
BRR 0.402 abc (0.03) 0.291a (0.03)   0.336c (0.02) 

Average of predict ability with same letter are statistically equal by tukey test. all 
inferences used type 1 error=0.05. 

Genetic properties of the simulated population 

 To assess the effect of the trait genetic architecture on prediction models that 

include additive and additive-dominance effects, scenarios considering a polygenic trait 

(1,000 QTL) and an oligogenic trait (30 QTL) were evaluated. For both types of traits three 

dominance levels were simulated: no dominance (d2=0; d2/h2=0), moderate dominance 

(d2=0.1; d2/h2=0.4), and high dominance (d2=0.2; d2/h2=0.8). A set of 10,000 markers 

randomly distributed across the genome (expected 8.33 markers per cM), and 

polymorphic in the base population were included in the analysis. In the population that 

simulated CCLONES (G2), approximately half of QTL (mean=53.92% SD=1.18%) and 

markers (mean= 55.45% SD=0.56%) were fixed (Supplementary Figure S1). Thus, the 

two cycles of breeding and selection reduced (or fixed) the frequency of alleles in a large 

number of loci. The allele frequency distributions of polymorphic SNPs were similar 

between CCLONES and the simulated population (Supplementary Figure S1). In the 

simulated base population, the LD among markers and QTL was low. As expected, the 

LD increased over successive generations, reflecting the lower effective population size 

relative to the base population (Supplementary Figure S2). On average, two or more 

markers had an r2 higher than 0.4 with any QTL for all simulated traits. 
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Dominance reduces the overall accuracy of prediction models 

 The suitability of additive and additive-dominance prediction models was assessed 

by estimating the total genomic accuracy (Figure 2), breeding value (Figure 3), dominance 

deviation (Figure 4) and phenotypic accuracy (Supplementary Figure S3). In all scenarios, 

the different WGR provided statically different results (Supplementary Table S8-11). 

Overall there was a decrease in the accuracy of total genomic predictions as the 

dominance increased, regardless of the method used for model development. Thus, the 

data indicates that dominance effects may not be accounted for as effectively in the 

prediction models, compare to traits controlled by loci that contribute additive effects only.  

 

Models that incorporate dominance are only more accurate when d2 is high  

 In the simulated population we detected a very small (mostly non-significant) 

improvement in accuracy of genomic prediction from additive-dominance models, when 

d2 was equal to 0.1 (Figure 2). A much larger and significant improvement was only 

observed as d2 increased to 0.2, a relatively high dominance to additive effect ratio. The 

standard errors were generally higher among oligogenic traits, compared to polygenic 

traits. This difference was accentuated when dominance was high. This may occur 

because the oligogenic architecture can exacerbate the inaccuracy in the estimation of 

dominance. Random sampling of individuals from the population in the cross validation 

can result in sub-samples with different representations of heterozygous individuals 

between the training and validation sub-populations. 

 The accuracy of the total genomic prediction was similar across different methods 

for polygenic traits, regardless of the presence of dominance (Figure 2). However, BayesA 

and BayesB had higher accuracy than BL and BRR, for oligogenic traits in all scenarios. 

This observation is similar to previous reports (Resende, et al., 2012a; Daetwyler et al., 

2013) that have shown the limitation of BL and RR-BLUP (frequentist version of BRR) in 

accounting for few loci of large effect in the predictive model. It suggests that, when the 

trait architecture is unknown, it may be suitable to evaluate multiple models before 

adoption of one approach for trait prediction in future generations. 
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Accuracy of predicting additive and dominance effects, and phenotypes  

 The inclusion of dominance in the prediction model did not affect the prediction of 

breeding values, as expected (Figure 3). There was no difference among models in the 

accuracy of prediction of additive effects in polygenic traits. However, similarly to the 

prediction of total genetic effects, a significant improvement was detected when BayesA 

and BayesB were used for prediction of oligogenic traits, over BL and BRR.  

 The accuracy of dominance prediction improved significantly (over 50%) when its 

contribution to traits increased from d2=0.1 to 0.2 (Figure 4). Thus, as the contribution of 

dominance is higher, the ability to accurately capture it in prediction models improves. 

However, the overall genetic accuracy decreases as the d2 increases, as those effects 

may not be estimated adequately. Accuracies were observed to be more accurate for 

oligogenic traits predicted with BayesA and BayesB models.  

 Finally, the accuracy derived by the correlation of phenotypes to the estimated 

genetic effect (Supplementary Figure S3) showed that, as dominance increases in 

oligogenic and polygenic traits, accuracy of phenotype prediction also increases. As d2 

increased from 0 to 0.2, the prediction accuracy improved 22%. However, there is only a 

significant difference in the prediction using the additive-dominance model, when d2 is 0.2. 

We expect this difference to increase as dominance increases. 
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Figure 2. Total genetic accuracies of whole genotypic predictions with additive and 

additive-dominance WGRs using different priors for six different simulated traits: A and B 

oligogenic and polygenic respectively traits with h2=0.25 and non-dominance effects B; C 

and D oligogenic and polygenic respectively trait with h2=0.25 and d2=0.1; E and F 

oligogenic and polygenic respectively trait with h2=0.25 and d2=0.2. Error bars are 

standard error among 10 replicates. Means with same letter are statistically equal by 

Tukey test (p<0.05) 
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Figure 3. Accuracies of breeding values predictions with additive and additive-dominance 

WGRs using different priors for six different simulated traits: A and B oligogenic and 

polygenic respectively traits with h2=0.25 and non-dominance effects B; C and D 

oligogenic and polygenic respectively trait with h2=0.25 and d2=0.1; E and F oligogenic 

and polygenic respectively trait with h2=0.25 and d2=0.2. Error bars are standard error 

among 10 replicates. Means with same letter are statistically equal by Tukey test (p<0.05). 
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Figure 4. Dominance effect accuracies for dominance deviation predictions with additive-

dominance WGRs using different priors for four different simulated traits. A and B are 

oligogenic and polygenic traits, respectively, with h2=0.25 and d2=0.1; C and D are 

oligogenic and polygenic traits, respectively, with h2=0.25 and d2=0.2. Error bars are 

standard error among 10 replicates. Means with same letter are statistically equal by 

Tukey test (p<0.05). 

 

Additive-dominance models improve accuracy of progeny selection only for 

oligogenic traits with high dominance 

 Progeny derived from the real CCLONES population are currently not available, 

preventing the evaluation of prediction models in generations following the population 

used for model estimation. However, such progeny can be generated for the simulated 

population. The first generation (G3) derived from the simulated CCLONES population 
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was generated by selecting 42 individuals with the highest phenotypic value, which were 

crossed following the same matting design as CCLONES. The results showed that the 

accuracy of the prediction in the next generation (Suplementary Figure S4) decreased 

significantly, when compared to the accuracy in the CCLONES (G2) population (Figure 2-

4 and Suplementary Figure S3). The accuracy of the prediction of dominance deviation 

was almost zero for all characteristics, except for oligogenic trait with high dominance. In 

all other traits the additive models provided better predictions. 

DISCUSSION 

 Dominance was formulated by Mendel as one of first concepts of genetics (Wilkie 

1994). In quantitative genetics, dominance is defined as the interaction between different 

alleles of a gene, and is measured as the difference of heterozygotes and mean of 

homozygotes (Falconer and Mackay 1996). Dominance effects contribute to inbreeding 

depression, and may also play a role in heterosis (or hybrid vigor) (Falconer and Mackay 

1996; Hallauer et al. 2010). Expectedly, the presence of dominance is dependent on the 

trait under consideration, and allele frequencies in the population. Here we analyzed the 

contribution of dominance effects in the accuracy of genomic prediction, with models that 

assume different priors, and for traits with different genetic architectures. The assessment 

was made for traits measured in the reference CCLONES population of loblolly pine, 

which was previously genotyped and extensively phenotyped for height growth and rust 

resistance. Next we extended the analysis to a simulated population with similar genetic 

properties to CCLONES, where traits with different genetic architectures and degrees of 

dominance were considered. In this study, additive and dominance effects were 

simultaneously adjusted in genomic prediction models. Epistasis, however, was not 

considered in the model. Hence, the presence of any epistatic effect could have acted as 

a confounding effect and affect prediction accuracy. 

 Previous quantitative genetic analysis of height measured in pine breeding 

populations indicated that the trait is highly polygenic, and that non-additive effects 

contribute to its variance (Isik et al. 2003; Muñoz et al. 2014). In the analysis of height 

measured in the CCLONES population, models that accounted for both additive and 

dominance effects had higher predictive ability. The analysis of the simulated population 
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supports these results, as polygenic traits with dominance effects were predicted with 

significantly higher accuracy in models that included additive and dominance effects. 

Previous analysis of complex traits reported that inclusion of dominance (and epistasis in 

some cases) was advantageous for breeding programs, when compared to using models 

that accounted for only additive effects (Su et al. 2012; Nishio and Satoh 2014; Lopes et 

al. 2014; Muñoz et al. 2014). The same was observed in simulated populations (Toro and 

Varona 2010; Denis and Bouvet 2012; Zeng et al. 2013). Contrary to height, the inclusion 

of dominance effects did not improve the predictive ability of rust resistance related traits 

in the real population. Other studies previously reported that dominace deviation was not 

significant for this characteristic in a pinus breeding population (Isik et al. 2003) and in our 

analysis the additive models were marginally more accurate than additive-dominance 

models. In summary, the additive-dominance prediction models improved considerably 

the accuracies in simulated traits with large dominance effects, but showed limited or no 

improvement when these effects are modest. Thus, inclusion of dominance in genomic 

prediction will depend on the trait’s genetic architecture in each specific population. 

 Another goal of this study was to evaluate the effect of using WGR methods that 

adopt distinct priors in the prediction of traits that include dominance effects. These 

methods differ in their approach to variable selection and the variance of regressions 

coefficients. As a consequence, WGR differ in the marginal prior of regression coefficients 

(markers effects) that control the shrinkage of markers effects (Gianola 2013; de los 

Campos et al. 2013). The identification of the best model or prior is trait-dependent 

(Resende, et al., 2012a). In the present study, models with different priors did not differ 

significantly for the trait height measured in the CCLONES population, and for the 

polygenic traits in the simulated population. In contrast, the accuracy of prediction models 

for rust resistance traits were higher for BayesA and BayesB, compared to BRR. The 

same pattern was observed for the simulated oligogenic traits. These results are 

expected, as the marginal prior of BayesA and BayesB provide more shrinkage than BRR, 

and BayesB also incorporates variable selection. 

 The use of dominance in forest breeding programs is desirable for species that are 

clonally propagated because their entire genotypic value can be translated to commercial 

plantations. An accurate estimation of dominance effects can also improve the genetic 
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gain in improvement programs (Falconer and Mackay 1996). Finally, the incorporation of 

dominance effects is critical for introduction of breeding approaches that aim to create 

crosses with complementary alleles, in mate-pair allocation (Toro and Varona 2010). Here 

we showed that including dominance effects in the prediction of traits controlled by loci 

with additive and dominance effects can result in more accurate models. Improved models 

will increase genetic gains for clonal selection and in reciprocal recurrent selection of 

superior mate-pairs. It has to be noted that in the breeding values estimation, the additive-

dominance WGR models were not more accurate, even in the presence of a dominance 

component (see Figure 3). This limitation is likely to occur because dominance variance 

estimations is less accurate and demands much more information (Toro and Varona 

2010). Estimating the contribution of dominance relies on the measurement of phenotypes 

in heterozygous individuals. In the simulated population, where more than a third of loci 

have a MAF below 5%, fewer than 10% of the individuals are expected to have the 

heterozygote genotype. Furthermore, with only 923 individuals, the simulated population 

used to train the models may not be sufficiently large to support the accurate estimation 

of these dominance effects. These results suggest that, as dominance increases, the 

accuracy of predictions will become less suitable for genomic selection. Others have 

recently reported that the prediction of dominance deviation from SNPs information is not 

as accurate as that reported for breeding values (Nishio and Satoh 2014). However, the 

use of larger training populations (Ertl et al. 2014; Wittenburg et al. 2015) or the adoption 

of training populations where loci with higher MAF occur (and therefore more 

heterozygotes are available for dominance estimation) may improve predictions. Further 

investigation is necessary to identify the factors that most improve the accuracy of 

predicting dominance effects. 

 Finally, we evaluated the performance of the models estimated in G2 to predict the 

simulated progeny (G3). The additive-dominance models outperformed the additive 

models only for simulated oligogenic trait with high dominance effects. Toro and Varona, 

(2010) also reported that additive-dominance models outperformed additive models only 

in the first generation, for polygenic simulated traits. These results suggest that the use of 

additive-dominance models would only be recommended in species that can be 

vegetative propagated. Further studies combining the use of additive-dominance models 
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with mate-pair allocation are required to evaluate if the prediction of dominance can 

improve the accuracy of subsequent generations under sexual propagation schemes. 
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SUPPLEMENTARY MATERIAL 

 

 

Figure S1. Minor allele frequency distribution of polymorphic loci in the simulated and in 

the CCLONES population. The base population (G0) corresponds to the unimproved 

individuals, while the oligogenic and polygenic scenarios reflect the MAF in the population 

that underwent selection to approximate the genetic composition of CCLONES. 

 

Figure S2. Linkage disequilibrium decay in the simulated populations. The base 

population (G0) reflects linkage disequilibrium among unimproved, unrelated individuals. 

The other scenarios reflect linkage disequilibrium the populations that simulates the 

CCLONES population, after two cycles of breeding and selection. 
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Figure S3. Phenotypic prediction accuracies (or predictive ability ݎ��̂) with additive-

dominance WGRs using different priors for four different simulated traits. A and B are 

oligogenic and polygenic traits, respectively, with h2=0.25 and d2=0.1; C and D are 

oligogenic and polygenic traits, respectively, with h2=0.25 and d2=0.2. Error bars are 

standard error among 10 replicates. Means with same letter are statistically equal by 

Tukey test (p<0.05). 
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Figure S4. Results of accuracy with model estimated in CCLONES population and 

validated at the progeny using additive- and additive-dominance BayesB models for A) 

breeding values prediction, B) dominance deviation prediction C) whole genotypic values 

prediction and D) phenotypic prediction for six simulated traits with h2=0.25: oligogenic 

(oligo) and polygenic (poly) with three different degree of dominance (d2=0, d2=0.1 and 

d2=0.2). Dot (“.”); ** and *: for A,C and D means additive and additive-dominance models 

were statistically different P<0.1; P<0.05 and p<0.01 respectively ; ** for B means that the 

mean were statistically different of zero (p<0.01). 
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Table S1 Hyperparameters used in Whole-Genomic Regression with different priors considering only additive effects 
(add) and additive-dominance effects (add-dom). These models were evaluated in three traits, tree height (HT), and 
two measures of rust resistance: RFbin (presence or absence) and RFgall (gall volume). 

Prior 
Hyper- 

parameters 

HT RFbin RFgall 

add add-dom add add-dom add add-dom 

BayesA 

 ௗ - 1.1 - 1.1 - 1.1ݏ ௗ - 0.007 - 285.751 - 34.46ݎ ௗ - 5 - 5 - 5ߥ ௔ 1.1 1.1 1.1 1.1 1.1 1.1ݏ ௔ 0.0053 0.0105 212.419 424.837 25.618 51.236ݎ ௔ 5 5 5 5 5 5ߥ ௘ 5 5 5 5 5 5 �௘ 18248.731 18248.731 0.452 0.452 3.744 3.744ߥ

BayesB 

 ଴ௗ - 10 - 10 - 10 �଴ௗ - 0.5 - 0.5 - 0.5݌ ௗ - 1.1 - 1.1 - 1.1ݏ ௗ - 0.004 - 142.876 - 17.23ݎ ௗ - 5 - 5 - 5ߥ ଴௔ 10 10 10 10 10 10 �଴௔ 0.5 0.5 0.5 0.5 0.5 0.5݌ ௔ 1.1 1.1 1.1 1.1 1.1 1.1ݏ ௔ 0.003 0.005 106.209 212.419 12.809 25.618ݎ ௔ 5 5 5 5 5 5ߥ ௘ 5 5 5 5 5 5 �௘ 18248.731 18248.731 0.452 0.452 3.744 3.744ߥ

BL 

 ௗ - 1.1 - 1.1 - 1.1ݏ ௗ - 3.9e-5 - 3.9e-5 - 3.9e-5ݎ ௔ 1.1 1.1 1.1 1.1 1.1 1.1ݏ ௔ 5.2e-5 2.6e-5 5.2e-5 2.6e-5 5.2e-5 2.6e-5ݎ ௘ 5 5 5 5 5 5 �௘ 18248.731 18248.731 0.452 0.452 3.744 3.744ߥ

BRR 

 ௗ - 5 - 5 - 5 �ௗ - 14.143 - 0.0003 - 0.0029ߥ ௔ 5 5 5 5 5 5 �௔ 19.019 9.509 0.0005 0.0002 0.0039 0.002ߥ ௘ 5 5 5 5 5 5 �௘ 18248.731 18248.731 0.452 0.452 3.744 3.744ߥ
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Table S2 Hyperparameters used in Whole-Genomic Regression with different priors considering only additive effects (add) and addititeve-dominance 
effects (add-dom). These models were evaluated in six simulated traits: Oligogenic (Oligo) and Poligenic (Poly) with three degree of dominance (d2=0; 
d2=0.1 and d2=0.2). 

Prior 
Hyper- 

Parameters 

Oligo d2=0 Poly d2=0 Oligo d2=0.1 Poly d2=0.1 Oligo d2=0.2 Poly d2=0.2 

add add-dom add add-dom add add-dom add add-dom add add-dom add add-dom 

BayesA 

 ௗ - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1ݏ ௗ - 139.9 - 0.11 - 39.32 - 0.09 - 16.54 - 0.05ݎ ௗ - 5 - 5 - 5 - 5 - 5 - 5ߥ ௔ 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1ݏ ௔ 102.9 205.9 0.08 0.16 28.87 57.73 0.07 0.13 12.12 24.24 0.04 0.07ݎ ௔ 5 5 5 5 5 5 5 5 5 5 5 5ߥ ௘ 5 5 5 5 5 5 5 5 5 5 5 5 �௘ 9.69 9.69 1423.9 1423.9 8.61 8.61 1777 1777 12.62 12.62 3200.5 3200.5ߥ

BayesB 

 ଴ௗ - 10 - 10 - 10 - 10 - 10 - 10 �଴ௗ - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5݌ ௗ - 1.1 - 1.1 - 1.1 - 1.1 - 1.1 - 1.1ݏ ௗ - 69.95 - 0.05 - 19.67 - 0.04 - 8.27 - 0.02ݎ ௗ - 5 - 5 - 5 - 5 - 5 - 5ߥ ଴௔ 10 10 10 10 10 10 10 10 10 10 10 10 �଴௔ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5݌ ௔ 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1ݏ ௔ 51.48 102.96 0.04 0.08 14.43 28.87 0.03 0.06 6.06 12.12 0.02 0.04ݎ ௔ 5 5 5 5 5 5 5 5 5 5 5 5ߥ ௘ 5 5 5 5 5 5 5 5 5 5 5 5 �௘ 9.69 9.69 1423.9 1423.9 8.61 8.61 1777 1777 12.62 12.62 3200.5 3200.5ߥ

BL 

 ௗ - 1.1 - 1.1 - - - 1.1 - 1.1 - 1.1ݏ ௗ - 3.3e-5 - 3.2e-5 - 3.2e-5 - 3.2e-5 - 3.2e-5 - 3.2e-5ݎ ௔ 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1ݏ ௔ 4.4e-5 2.2e-5 4.4e-5 2.2e-5 4.4e-5 2.2e-5 4.4e-5 2.2e-5 4.4e-5 2.2e-5 4.4e-5 2.2e-5ݎ ௘ 5 5 5 5 5 5 5 5 5 5 5 5 �௘ 9.69 9.69 1423.9 1423.9 8.61 8.61 1777 1777 12.62 12.6 3200.5 3200.5ߥ

BRR 

 ௗ - 5 - 5 - - - 5 - 5 - 5 �ௗ - 0.006 - 0.925 - 0.006 - 1.154 - 0.008 - 2.074ߥ ௔ 5 5 5 5 5 5 5 5 5 5 5 5 �௔ 0.009 0.004 1.26 0.63 0.008 0.004 1.57 0.786 0.011 0.006 2.828 1.414ߥ ௘ 5 5 5 5 5 5 5 5 5 5 5 5 �௘ 9.69 9.69 1423.9 1423.9 8.61 8.61 1777 1777 12.62 12.62 3200.5 3200.5ߥ
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Table S3 Average of accuracies of phenotype prediction with pedigree base line modes with only additive effect (Ped-
Add), with additive and dominance effects (Ped-Add-dom) and accuracy mean of all genomic models. The comparison 
between Genomic- and Pedigree-base models were made by contrast estimated as weighted mean of accuracy of 
genomic models minus pedigree models. The traits evaluated in Pinus were tree height (HT) and two measures of 
rust resistance 

Models HT  RFbin  RFgall 

Ped-Add 0.371  0.335  0.264 

Ped-Add-Dom 0.398  0.325  0.259 

Genomic 0.407  0.355  0.293 

Gen vs Ped 0.023**  0.025**  0.031** 
**: means contrast significant at p<0.01. 

 

Table S4. Average of accuracies of pedigree base line modes with only additive effect (Ped-Add), with additive and 
dominance effects (Ped-Add-dom) and accuracy mean of all genomic models. The comparison between Genomic- and 
Pedigree-base models were made by contrast estimated as weighted mean of genomic models minus pedigree models. 

Accuracy Model 
d2=0  d2=0.1  d2=0.2 

Oligogenic Polygenic  Oligogenic Polygenic  Oligogenic Polygenic 

Breeding 
values 

Ped-Add 0.563 0.575  0.548 0.561  0.533 0.550 

Ped-Add-dom 0.561 0.574  0.551 0.561  0.536 0.556 

Genomic 0.663 0.632  0.655 0.622  0.657 0.618 

Gen vs Ped 0.101** 0.058**  0.105** 0.061**  0.122** 0.065** 

Dominance 
deviation 

Ped-Add-dom - -  0.170 0.204  0.271 0.257 

Genomic - -  0.164 0.174  0.260 0.241 

Gen vs Ped - -  -0.006ns -0.030**  -0.011* -0.016** 

Whole 
genotypic 

Ped-Add 0.563 0.575  0.489 0.521  0.462 0.468 

Ped-Add-dom 0.544 0.553  0.496 0.528  0.493 0.492 

Genomic 0.659 0.628  0.583 0.573  0.560 0.522 

Gen vs Ped 0.105** 0.064**  0.090** 0.048**  0.082** 0.042** 

Phenotypic 
prediction 

Ped-Add 0.251 0.264  0.289 0.304  0.306 0.327 

Ped-Add-dom 0.246 0.254  0.291 0.308  0.321 0.343 

Genomic 0.299 0.294  0.337 0.328  0.375 0.362 

Gen vs Ped 0.051** 0.035**  0.047** 0.022**  0.061** 0.027** 

**;* and ns: Means contrast significant with p<0.01; p<0.05 and non-significant. 
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Table S5 Narrow and broad sense heritability, and proportion of proportion of variance of dominant 
deviations relative to total genetic variance explained by markers using BRR, for height (HT) and Rust 
resistance evaluated as gall volume (RFgall) and presence or absence (RFbin) in Pinus taeda. 

Trait 
Additive-model  Additive-dominance-model 

h2  h2 d2 H2 d2/h2 

HT 0.40 [0.30; 0.51]  0.35 [0.26; 0.45] 0.15 [0.08; 0.22] 0.49 [0.38; 0.60] 0.42 [0.22;0.68] 

RFbin 0.37 [0.26; 0.49]  0.32 [0.23; 0.44] 0.10 [0.05; 0.17] 0.42 [0.32; 0.55] 0.31 [0.12;0.57] 

RFgall 0.29 [0.19; 0.41]  0.27 [0.18; 0.38] 0.09 [0.05; 0.14] 0.36 [0.25; 0.48] 0.33 [0.16;0.56] 

Values between brackets are Bayesian credibility interval (95%).  
 

Table S6 Narrow and broad sense heritability, and proportion of proportion of variance of dominant deviations relative 
to total genetic variance explained by markers using BRR, for six simulated traits: Oligogenic and Poligenic with three 
degree of dominance (d2=0; d2=0.1 and d2=0.2). 

Traits 
Additive-model  Additive-dominance-model 

h2  h2 d2 H2 d2/h2 

d2=0 
Oligenic 0.27 [0.18;0.36]  0.25 [0.18;0.33] 0.07 [0.04;0.12] 0.32 [0.23;0.42] 0.28 [0.14;0.48] 

Polygenic 0.26 [0.18;0.35]  0.24 [0.18;0.33] 0.07 [0.04;0.12] 0.32 [0.24;0.41] 0.29 [0.14;0.49] 

d2=0.1 
Oligenic 0.30 [0.21;0.40]  0.28 [0.20;0.37] 0.09 [0.05;0.15] 0.37 [0.28;0.47] 0.32 [0.15;0.54] 

Polygenic 0.28 [0.20;0.38]  0.26 [0.19;0.35] 0.09 [0.05;0.13] 0.35 [0.26;0.45] 0.35 [0.20;0.55] 

d2=0.2 
Oligenic 0.31 [0.23;0.41]  0.30 [0.22;0.39] 0.11 [0.06;0.17] 0.41 [0.31;0.51] 0.37 [0.19;0.59] 

Polygenic 0.31 [0.22;0.40]  0.29 [0.22;0.37] 0.11 [0.06;0.17] 0.40 [0.30;0.51] 0.38 [0.21;0.58] 

Values between brackets are Bayesian credibility interval (95%).  
 

Table S7 Summary of ANOVA for result of correlation between predicted whole genotype values with phenotypes (ݎ��̂), with different 
genomic methods, using ten-fold cross validation procedure for height (HT) and Rust resistance evaluated as gall volume (RFgall) 
and presence or absence (RFbin) in Pinus taeda. 

SV df 
HT  RFgall  RFbin 

MS p  MS p  MS p 

Fold 9 0.09808 <0.01  0.06212 <0.01  0.02940 <0.01 

Method 7 0.00086 <0.01  0.00011 F<1  0.00370 <0.01 

error 63 0.00014   0.00021   0.00025  

R2 (%)  99.02   97.73   94.93  

CV (%)  2.90   4.92   4.43  

MS and p: means Mean Square and p-value respectively. 
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Table S8 Summary of ANOVA for result of correlation between predicted whole genotype values with phenotypes (ݎ��̂), with different 
genomic methods, using ten-fold cross validation procedure in ten repetitions of six simulated traits: Oligogenic and Poligenic with 
three degree of dominance (d2=0; d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0   

Polygenic 
d2=0   

Oligogenic 
d2=0.1   

Polygenic 
d2=0.1   

Oligogenic 
d2=0.2   

Polygenic 
d2=0.2 

MS p  MS p  MS p  MS p  MS p  MS p 

Fold(Rep) 90 0.06200 <0.01  0.08681 <0.01  0.07760 <0.01  0.06830 <0.01  0.04460 <0.01  0.06919 <0.01 

Rep 9 0.13030 <0.01  0.09294 <0.01  0.18737 <0.01  0.09600 <0.01  0.10720 <0.01  0.07218 <0.01 

Method 7 0.01326 <0.01  0.00087 <0.01  0.00506 <0.01  0.00023 0.192  0.02295 <0.01  0.00718 <0.01 

Rep x Met 63 0.00262 <0.01  0.00013 F<1  0.00109 <0.01  0.00020 0.118  0.00233 <0.01  0.00046 <0.01 

error 630 0.00027    0.00019    0.00033    0.00016    0.00055    0.00028   

R2 (%)  97.60   98.62   97.66   98.58   93.82   97.55  

CV (%)   5.53   4.73   5.41   3.87   6.28   4.60  
MS and p: means Mean Square and p-value respectively. 

 

Table S9 Summary of ANOVA for result of correlation between predicted breeding values values with parametric breeding values 
 with different genomic methods, using ten-fold cross validation procedure in ten repetitions of six simulated traits: Oligogenic ,(̂��ݎ)
and Poligenic with three degree of dominance (d2=0; d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0  

Polygenic 
d2=0  

Oligogenic 
d2=0.1  

Polygenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygenic 
d2=0.2 

MS p  MS p  MS p  MS p  MS p  MS p 

Fold(Rep) 90 0.0234 <0.01  0.03573 <0.01  0.02763 <0.01  0.03764 <0.01  0.0416 <0.01  0.03184 <0.01 

Rep 9 0.3792 <0.01  0.19291 <0.01  0.24932 <0.01  0.23936 <0.01  0.3911 <0.01  0.06380 <0.01 

Method 7 0.0467 <0.01  0.00065 <0.01  0.02809 <0.01  0.00027 <0.01  0.0639 <0.01  0.00062 <0.01 

Rep x Met 63 0.0087 <0.01  0.00013 <0.01  0.00432 <0.01  0.00010 <0.01  0.0061 <0.01  0.00009 F<1 

error 630 0.0002   0.00008   0.00014   0.00005   0.0002   0.00010  

R2 (%)  98.47   99.03   98.27   99.40   98.39   98.19  

CV (%)  1.90   1.39   1.84   1.17   2.20   1.63  
MS and p: means Mean Square and p-value respectively. 

 

Table S10 Summary of ANOVA for result of correlation between predicted whole genotype values with parametric whole genotypes 
values (ݎ��̂), with different genomic methods, using ten-fold cross validation procedure in ten repetitions of six simulated traits: 
Oligogenic and Poligenic with three degree of dominance (d2=0; d2=0.1 and d2=0.2). 

SV df 
Oligogenic 

d2=0  
Polygenic 

d2=0  
Oligogenic 

d2=0.1  
Polygenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygenic 
d2=0.2 

MS p  MS p  MS P  MS p  MS p  MS p 

Fold(Rep) 90 0.02355 <0.01  0.0361 <0.01  0.03407 <0.01  0.03182 <0.01  0.0389 <0.01  0.05059 <0.01 

Rep 9 0.38690 <0.01  0.1905 <0.01  0.13364 <0.01  0.13273 <0.01  0.1971 <0.01  0.03154 <0.01 

Method 7 0.05274 <0.01  0.0029 <0.01  0.01907 <0.01  0.00081 <0.01  0.0513 <0.01  0.01536 <0.01 

Rep x Met 63 0.00917 <0.01  0.0001 F<1  0.00335 <0.01  0.00007 F<1  0.0043 <0.01  0.00068 <0.01 

error 630 0.00024   0.0002   0.00027   0.00012   0.0005   0.00028  

R2 (%)  97.70   97.58   96.47   98.18   95.39   96.53  

CV (%)  2.37   2.23   2.81   1.91   3.80   3.23  

MS and p: means Mean Square and p-value respectively. 
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Table S11 Summary of ANOVA for result of correlation between predicted dominance deviation values with parametric dominance 
deviation values (ݎ��̂), with different genomic methods, using ten-fold cross validation procedure in ten repetitions of four simulated 
additive-dominance traits: : Oligogenic and Poligenic with two degree of dominance (d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0.1  

Polygogenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygogenic 
d2=0.2 

MS p  MS p  MS p  MS p 

Fold(Rep) 90 0.05415 <0.01  0.03266 <0.01  0.05405 <0.01  0.05012 <0.01 

Rep 9 0.40807 <0.01  0.04380 <0.01  0.52494 <0.01  0.12490 <0.01 

Method 3 0.00047 0.0909  0.00187 <0.01  0.00752 <0.01  0.00781 <0.01 

Rep x Meth 27 0.00051 <0.01  0.00032 F<1  0.00317 <0.01  0.00032 F<1 

error 270 0.00022   0.00034   0.00061   0.00046  

R2 (%)  99.32   97.29   98.32   97.86  

CV (%)  9.00   10.69   9.53   8.88  

MS and p: means Mean Square and p-value respectively. 
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CHAPTER III 

GENOMIC PREDICTION OF ADDITIVE AND NON-ADDITIVE EFFECTS USING 

GENETIC MARKERS AND PEDIGREES 

 

ABSTRACT 

The genetic merit of individuals have been predict using models with dense markers 

panels and pedigree information for breeding proposes. Initially, models accounted only 

for additive effects. However, the prediction of non-additive effects is important for many 

plant breeding systems. In this study we evaluated prediction models that include or ignore 

non-additive effects, for traits with different genetic architectures. The models tested were 

based either on genetic markers or pedigree information, or both. The models used to 

compute the genetic marker information were: Reproducing Kernel Hilbert Spaces 

(RKHS), additive- and additive-dominance-BayesA. Theoretically RKHS can predict 

additive and non-additive effects confused (whole genotypic values). Model performance 

was assessed for the traits tree height (HT) at 6 years of age, diameter at breast height 

(DBH) and rust resistance, measured in 923 pine individuals from a structured population 

of 71 full-sib families genotyped with 4,722 genetic markers. We also simulated a 

population with similar genetic properties, and evaluated the performance of models for 

six simulated traits with distinct genetic architectures (polygenic and oligogenic traits with 

three dominance levels). The simulated population were derived from a pine breeding 

program, originated from selections made in a natural population with Ne=10,000. The 

inclusion of pedigree information in genomic prediction models did not yield higher 

accuracies in most part of cases. Both models also provided substantially better 

predictions than pedigree-only models. The additive-BayesA provided higher accuracies 

for rust resistance and in simulated additive-oligogenic traits. On the other hand, the 

inclusion of dominance in BayesA leads to higher accuracies in simulated additive-

dominant oligogenic traits. For DBH, HT and additive-dominance polygenic traits the 

RKHS based models showed slight higher accuracies than BayesA. Our results indicate 

that the capacity of prediction using genomic information is dependent on the number of 

genes controlling the trait. Considering that, BayesA performs the best for traits with few 
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genes with major effects. We also show that the presence of non-additive effects 

influences the prediction accuracy since additive-dominant-BayesA and RKHS overcame 

additive-BayesA in traits with non-additive effects. 

Keywords: Non-additive, Polygenic, Oligogenic, RKHS, BayesA. 
 

INTRODUCTION 

Pedigree and whole-genetic markers have been used to predict genetic merit of 

individuals in animal (Wiggans et al. 2011) and plant breeding (Resende Jr et al. 2012a; 

Resende et al. 2012; Crossa et al. 2014). Initially, genetic prediction models only included 

additive effects (Meuwissen et al. 2001), which yield the required information for animal 

breeding systems that explore additive effects for the selection of sires that provide semen 

for worldwide distribution. However, the prediction of dominance effects represents an 

important feature of models designed for breeding program that focus on cross-bred 

populations and/or hybrid productions (Zeng et al. 2013; Nishio and Satoh 2014). In forest 

breeding, non-additive effects are especially relevant because breeders can transfer 

whole-genotypic values of individuals to the next generation through clonal selection 

strategies. 

Many models predict non-additive effects, and differ among them with regards to 

genetic architecture assumptions (Gianola 2013; de los Campos et al. 2013). In whole-

genomic regression (WGR) models such as the BayesA, the markers are regression 

coefficients with different variances (Meuwissen et al. 2001). This model provides a good 

fit  for oligenic traits where few genes explain a large proportion of the observed genetic 

variation (Meuwissen et al 2001). However, in BayesA models, prediction of non-additive 

effects includes new SNP-covariates associated with these effects (Toro and Varona 

2010), which may prohibitively increase the number of parameters with the increasing 

number of SNP available. The semi-parametric Reproducing Kernel Hilbert Space 

(RKHS) models can also predict non-additive effects, and demand less computation than 

WGR, especially when the number of individuals is substantially lower than the number 

of markers. The RKHS models differ among them depending on number and type of 
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kernels used to improve the predictions in face of the specific genetic trait architecture 

(Morota et al. 2013; Morota and Gianola 2014; Tusell et al. 2014). 

 In addition to marker information in genomic prediction, the inclusion of pedigree 

effect information has improved prediction accuracy in the case of annual crops (Crossa 

et al. 2010; Crossa et al. 2013). Vazquez et al. (2010) also showed that, with lower SNP 

density, the inclusion of pedigree in the model became an important factor for genomic 

prediction in dairy cattle. 

 To date, no studies on forest breeding have compared the predictions from 

models using only genetic marker inputs with others using a combination of genetic 

markers and pedigree information. Moreover, also in the context of forest breeding, no 

reports have assessed the RKHS models for the prediction of whole genotypic values. 

Therefore, in this study, we evaluated RKHS with different kernels, traditional BayesA, 

additive-dominant BayesA and pedigree inclusion in genomic prediction models applied 

to forest breeding. To this end, we applied these methods to loblolly pine traits with distinct 

genetic architecture, and to simulated traits with different genetic architectures. 

MATERIAL AND METHODS 

Data used 

The real trait used were tree height (HT), Diameter at Breast Height (DBH) and two 

measure of rust: presence or absence of rust (RFbin) and gall volume (RFgall). From 

previous studies is expected that HT and DBH are polygenic traits (Resende Jr et al. 

2012b), and also HT have important non-additive effects (Muñoz et al. 2014) and rust 

resistance is governed for few genes with higher effects (Resende Jr et al. 2012b; 

Quesada et al. 2014). The population where these traits were measured was created from 

42 founders, and after selections and matting with overlap generation 40 selected 

individuals were crossed and created 71 full sib families, with average of 13 individuals 

per family (SD=5). In total 923 individuals from these families were genotyped for 7,216 

SNP, where 4,722 loci that were polymorphic in the population were used in this study, 

regardless of their minimum allele frequency. The HT and DBH were measured in field 

trials, when the pants were six years old, in eight clonal replicates, this field experiment 
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were implanted at  Nassau (Florida, USA). Whereas the rust resistance (RFbin and 

RFgall) were measured in green house with three repetitions. 

The phenotypes for these traits were adjusted with the linear model: ݕ௜௝௞ = ߤ + ܾ௞(ݎ௝) + ௝ݎ + �௜ + ݁௜௝௞ 

Where: ݕ௜௝௞ is phenotype of ith clone evaluated in jth repetition and kth incomplete block, ߤ 

is the intercept, ܾ௞(ݎ௝) random effect of kth incomplete block nested jth repetition ܾ௞(ݎ௝)~ܰሺͲ, �௕ଶሻ, ݎ௝ is the fixed effect of jth repetition and �௜ is the effect of jth clone 

considered as fixed to estimate the least-square means (adjusted means) and ݁௜௝௞ is the 

error of observation ijk ݁௜௝௞~ܰሺͲ, �ଶሻ. This model were used for DBH and HT, for rust 

resistance traits, the incomplete block term was dropped. The analysis of variance of 

these linear models are in Table S1. 

We also simulated six traits with different genetic architecture: two different number 

of genes (oligogenic and polygenic) and three dominance levels (none, median and high). 

The simulated population was created with similar features of standard forest breeding 

program that usually start with sample individuals in a natural population and after the 

breeding provide matting among selected individuals. Here the simulation carried out in 

two steps, the first were created the base population with 1,000 individuals, these created 

by randomly sample of 2,000 haplotypes from a population with effective size of 10,000 

during 1,000 generations of neutral coalescence model, with mutation rate 2.5 x 10-8 per 

generation (Willyard et al. 2007). Since this first steep had main of simulate the sample in 

a natural population, this steep were common for all traits. The second step consist in 

create the breeding population, 100 individuals from base population were phenotypic 

based selected and after random matting created 1,000 individuals to the first breeding 

cycle, from these 1,000 individuals of first breeding cycle, 42 individuals were phenotypic 

based selected and were reproduced exactly the same pedigree of real population used 

in this study. In the second steep was done with ten independently replicate for each 

simulated trait. 

The genome simulated had 12 chromosomes with 100 cM, the 10,000 non-gene 

loci were bi-allelic markers (e.g. SNP) used to predictions, and the number of genes were 

30 and 1,000 for oligogenic and polygenic traits respectively. All traits had narrow sense 
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heritability 0.25 and three levels of d2: 0, 0.1 and 0.2 were considered for create traits with 

none- , median- and high-dominance-levels respectively, where ݀ଶ = ௗܸ/ �ܸ; ௗܸ and �ܸ are 

dominance deviation and phenotypic variance respectively (Falconer and Mackay 1996), 

with the combination of two number genes and three dominance levels, the study had six 

simulated traits. 

The additive effect of a gene (ܽ) were defined as half difference of alternative 

homozygotes, and dominance effect (݀) difference between  heterozygote and mean of  

homozygotes. The distribution used to a in oligogenic traits were 

gamma(rate=1.66,shape=0.4) with signal (positive or negative) sampled with equal 

probability (Meuwissen et al. 2001), whereas for polygenic traits a where simulated with 

standard normal distribution (mean=0,sd=1). The dominance when present were 

simulated by: ݀௜ = ܽ௜ × ߬௜, where ߬௜ were sample from normal distribution with mean zero 

and standard deviation 1 and 2 for traits with medium- and high-dominance-levels 

respectively. To achieve the desired values of d2 were consider just simulations that 

provided d2 between 0.9 and 0.11 for medium-dominance traits and between 0.19 and 

0.21 for high-dominance traits. 

Statistical methods 

We used models that consider just SNP or pedigree information, and models that 

combined SNP and pedigree. In the genomic component (from SNP information), were 

used semi parametric Reproducing Kernel Hilbert Space models (RKHS) using different 

kernels (Ka and Ka-Kd) and BayesA  that is a whole-genome regression (WGR) with SNP 

as covariates, considering additive- and additive-dominant effects. The BayesA were used 

here because overcame other modes in previous studies with these real and simulated 

traits, this model provided similar results than BayesB and both were better than Bayesian 

Lasso, BayesCπ, Bayesian Ridge Regression and frequentist RR-BLUP for oligogenic 

traits, with polygenic traits all models provided similar results. The full base model can be 

represented by: ݕ௝ = ߤ + �௝ + ௝ݑ + �௝ + ௝݁ 
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Where ݕ௝ is the phenotype (adjusted clonal mean in real traits) of individual j; µ is the 

intercept; ௝݁ is the error of observation j; �௝ is genotypic value from SNP information that 

change with the models adopted; uj additive polygenic effects (when included); δj 

dominant polygenic effect (when included). Except the �௝ that depends of model adopted, 

for the other terms when present were assumed:  ݕ௝|ߤ + �௝ + ௝ݑ + �௝ , �௘ଶ~��ܦ ܰሺߤ + �௝ + ௝ݑ + �௝ , �௘ଶሻ; ߤ~ܰሺͲ,ͳͲ6ሻ; ܣ|ݑ��ଶ~ܰሺͲ, ,�ߥ|ଶሻ; ��ଶ��ܣ ��~߯−ଶሺߥ�, ��ሻ; �|ܦ��ଶ~ܰሺͲ, �ߥ|ଶሻ; ��ଶ��ܦ , ��~߯−ଶሺߥ� , ��ሻ; 

 ݁|��௘ଶ~ܰሺͲ, ��௘ଶሻ; �௘ଶ|ߥ௘ , �௘~߯−ଶሺߥ௘ , �௘ሻ. 

Where A is additive relationship matrix that is twice Mallecot’s relationship coefficient, D 

is dominance relationship matrix that is probably of two individuals to be identical by 

descent, details of A and D matrix can be finding at Henderson (1984). In only-pedigree 

model ݑ and � are the breeding values and dominance deviation vectors respectively. 

Full BayesA 

The full BayesA consider additive and dominant effects from SNP and pedigree. 

This model can be represented by: 

௝ݕ = ߤ + ௜௝ܽ௜ݔ)∑ + ௜௝݀௜)௞ݓ
௜=ଵ + ௝ݑ + �௝ + ௝݁ 

Where xij and wij are the functions of SNP i in individual j, for genotypes AA, Aa and aa. 

xij take values 1 (AA), 0(Aa) and -1 (aa) and wij is 0 (AA), 1 (Aa) and 0 (aa). ܽ௜ and di are 

the additive dominance effect of marker i, respectively, ݌௜ is the allele frequency of A in 

SNP i and ݍ௜ = ͳ −  ௜. The dominance effect was fitted only in the additive-dominance݌

model. The priors used in linear regressions coefficients for additive-dominance and 

additive models are described below. 
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ܽ௜|�௔�ଶ ~ܰሺͲ, ���ଶ ሻ; �௔�ଶ ,௔ߥ| ��~߯−ଶሺߥ௔, ��ሻ;�௔|ݏ௔, ,௔ݏ௔~�ሺݎ ௔ሻ; ݀௜|�ௗ�ଶݎ ~ܰሺͲ, �ௗ�ଶ ሻ;  �ௗ�ଶ ,ௗߥ| �ௗ~߯−ଶሺߥௗ, �ௗሻ;  �ௗ|ݏௗ, ,ௗݏௗ~�ሺݎ  .ௗሻݎ

RKHS Kernel averaging model 

The RKHS model are able to predict together the whole genotypic values (Gianola 

et al. 2006; Gianola and van Kaam 2008), what include additive and non-additive effects 

such dominance and gene interactions. The full  RKHS here can be represented by: ݕ = ߤ + � + ݑ + � + ݁ 

The g is the function of markers that correspond the whole genotypic values confused. 

The � was modeled in two forms called here as RKHS-Ka and RKHS-Ka-Kd. The others 

terms were already explained. 

 

RKHS-Ka: �|ܭ௔��ଶ~ܰሺͲ, ,�ߥ|௔��ଶሻ ��ଶܭ ��~߯−ଶሺߥ�, ��ሻ ܭ௔ = exp ሺ−߮௔ܦ௔ଶሻ 

 ௔ଶ is squared Euclidean distance matrix among the individuals using the traditional SNPܦ 

incidence matrix for additive (X), this matrix is the SNP-covariates used in BayesA. The ߮௔ is bandwidth parameter that control the relationship measure between individuals j and 

j’, for a given distance (squared Euclidean in this case) big positive values of bandwidth 

drop the relationship of j and j’ close (or equal) 0, whereas positive small values drop the 

relationship of j and j’ close (or equal) 1. These bandwidth parameters can be estimated 

from metropolis-hasting algorithm (Gianola et al. 2006; Gianola and van Kaam 2008), or 

determined a grid of values, or by kernel averaging approach (de los Campos et al. 

2010b). The kernel averaging were used in this study. 

In kernel averaging approach each SNP function � is replaced for two or more SNP 

functions with the same distance (squared Euclidean in this case), however with different 

bandwidth parameters. Here the g were replaced by sum of three functions, thus, � =∑ ��ଷ� , and ��ଶ = ∑ ���ଶଷ� , whereas ݎܽݒሺ�ଵ�ሻ =  exp ሺ−߮�ܦ௔ଶሻ. 
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The bandwidth parameters ሺ߮௔� ) used in �ଵ, �ଶ, and �ଷ are 5/h, 1/h and 1/5/h 

respectively, where h is 5th percentile of ܦ௔ଶ leading to local, intermediate and global 

kernels, respectively (González-Camacho et al. 2012; Tusell et al. 2014).  

 

RKHS-Ka-Kd: 

In RKHS-Ka-Kd beyond the information of X matrix for predict the whole genotypic 

values, is also included W, that is the SNP incidence matrix for dominance effects. The � 

in this case is: � = �௔ + �ௗ [�௔ �ௗ]′|ܭ௔��ଶଶ , ௗ��ଶଶܭ ~ܰሺ[� �]′, ௔��ଶܭ  ⊕ ௗ��మଶܭ|௔��ଶሻ �ௗܭ ~ܰሺͲ, ௗ���ଶܭ ሻ ���ଶ ��ߥ| , ���~߯−ଶሺߥ�� , ���ሻ ܭௗ = exp ሺ−߮ௗܦௗଶሻ 

 

The �௔ is formulated equally the whole � in RKHS-Ka, also in RKHS-Ka-Kd were 

considered kernel averaging approach, thus the whole genotypic value is sum of six terms � = ∑ ሺ�௔� + �ௗ�ሻଷ�  and ��ଶ = ∑ ሺ����ଶ + �ௗ�ଶ ሻଷ� , whereas ݎܽݒሺ�ଵ�ሻ =  exp ሺ−߮௔�ܦ௔ଶሻ and ݎܽݒሺ�ଶ�ሻ =  exp ሺ−߮ௗ�ܦௗଶሻ. 

The same bandwidth parameters used in RKHS-KA were used for �௔�, and same 

idea were used in �ௗభ, �ௗమ and �ௗయ, where the bandwidth parameters (߮ௗ�) were 5/hd, 1/hd 

and 1/5/hd respectively, where hd is 5th percentile of ܦௗଶ, similar in (Morota et al. 2014). In 

both RKHS models (KA and Ka-Kd) is predicted the whole genotypic value, however is 

not possible split the whole genotypic value in breeding values, dominance deviation and 

epistasis. 
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Table 1 Summary of models tested, whereas ‘x’ means presence of a given effect. 

Model code SNP covariates  Pedigree Kernels  Gaussian Kernels 

Method Pedigree inclusion Add Dom  Add Dom  Ka Kd 

BayesA 
Add 

None x        

Add x   x     

BayesA 
Add-Dom 

 

None x x       

Add x x  x     

Add-Dom x x  x x    

RKHS 
Ka 

 

None       x  

Add    x   x  

Add-Dom    x x  x  

RKHS 
Ka-Kd 

 

None       x x 

Add    x   x x 

Add-Dom    x x  x x 

Pedigree 
Add    x     

Add-Dom    x x    

Models validation 

In order to compare the prediction results were used 10-fold cross-validation. Each 

individual were allocated in one of ten groups, each group were dropped once and had 

their genotypic values predicted with the model fitted using just with the remaining data 

(other nine groups), this process had 10 loops, each loop was calculated predictions 

accuracies and regression coefficients of parametric values on predicted of hidden data. 

This validation were performed in each one of ten replicates of simulated data, in real data 

the 10-fold process were applied 10 times with independently rearrange of individuals in 

each fold. The accuracies and regression coefficients showed are means of 100 values, 

ten-fold x ten-replicates or rearrange for simulated and real data respectively. 

Breeding values and dominance deviation 

The expected breeding value (EBV) and the expected dominance deviation (EDD) 

were estimated as described below: ܤ̂ܧ ௝ܸ = ௜௝ݔ)�]∑ = ͳ)ʹݍ௜ + ௜௝ݔ)� = Ͳ)ሺݍ௜ − ௜ሻ݌ − �ሺݔ௜௝ = −ͳሻʹ݌௜]௜ ௜ߙ̂ +  ௝ݑ̂

and ܦܦ̂ܧ௝ = ௜௝ݔ)�−]∑ = ͳ)ʹݍ௜ଶ + ௜௝ݔ)� = Ͳ)ʹ݌௜ݍ௜ − ௜௝ݔ)� = −ͳ)ʹ݌௜ଶ]௜ ݀̂௜ + �̂௝ 
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Where pi is allele frequency of allele A of SNP i, qi=1-pi, ̂ߙ௜ is the average effect of 

substitution, ̂ߙ௜ =  ܽ̂௜ + ݀̂௜ሺݍ௜ −  ௝ and �̂௝ areݑ̂ ;௜ሻ, and � is an indicator function of SNPs݌

terms from additive and polygenic effects respectively when present, or breeding values 

and dominance deviation in pedigree based models. The whole genotypic value is the 

sum of ܤ̂ܧ ௝ܸ and ܦܦ̂ܧ௝. In RKHS based models is predicted the whole genotypic value 

confounded. 

Variance components 

The variance components from WGR used here are extension of estimators 

reported in (Zeng et al. 2013; Ertl et al. 2014), these estimators assume absence of 

epistasis and Hardy-Weinberg equilibrium (Gianola et al. 2009). The general estimator of 

additive variance (VA) and the variance due dominance deviation (VD) are: 

 ܸ̂� = ʹ ∑ ௜௜ݍ௜݌ [�̂௔�ଶ + ሺݍ௜ − ௜ሻଶ�̂ௗ�ଶ݌ ] + �̂�ଶ 

and  ܸ̂஽ = Ͷ ∑ሺ݌௜ݍ௜ሻଶ௜ �̂ௗ�ଶ + �̂�ଶ 

The first part of ܸ̂� and ܸ̂஽ are due marker effects and the second polygenic effects. 

All of these components were described earlier, the whole genotypic variance is the sum 

of additive and dominance variance. The h2, d2 and H2 are the proportion of additive, 

dominance and genotypic variance in phenotypic variance similar the previous 

explanation. In RKHS models the genetic variance estimated by markers is the whole 

genotypic variance confounded, and in addition when present there are genetic variance 

explained by polygenic effects. 

All models were fitted with R package BLGR (de los Campos and Perez 2014), 

using 100,000 iterations, burning of 20,000, thin of 3 and default hyperparameters 

previously described (Pérez and de los Campos 2014). 
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RESULTS 

There are not dependence between accuracy and rearranges 

In real data were considered 10 different rearrange of ten-fold cross validation, the 

aim of these rearranges were to avoid influence of groups allocations. The results of 

correlations of predicted genotypic values on phenotypic values showed that there were 

not dependence of groups allocation and prediction results (Supplementary Tables S2), 

for that reason in simulated study were considered the ten-fold without rearrange in 

different groups. For real and simulated traits, the analysis of variance indicated that the 

models provided results statistically different (Supplementary Table S2-6) in our study 

conditions. 

Prediction bias 

The regression coefficient (slope) of observed values versus predicted values was 

used as a measure of the bias built into the model, where a slope of one indicates the 

absence of any bias. The linear regression of simulated data included parametric 

genotypic values and predictions, whereas for real data, with unknown parametric values, 

we calculated the slope using phenotype values. The predictions in real data 

(Supplementary Table S7) yielded regression coefficients near one. In most part of 

predictions in simulated data the slope were close than one, however in dominance 

deviation predictions the slope were not close than one what reflect that dominance 

deviation prediction is complex (Supplementary Table S8). 

Pedigree information in model predictions 

The use of pedigree information often improves the accuracy of genotypic 

predictions, especially when the latter involve dense SNP information. Here, we evaluated 

predictions based on correlation using parametric genetic values, for simulated data, and 

phenotype values, for real data. Traditional pedigree models presented lower accuracy 

than any model containing SNP information, with real traits (Table 2) for phenotypic 

prediction and simulated traits (Table 3) for breeding values, genotypic values and 

phenotypic prediction. When we combined pedigree and SNP information, resulting 

models did not yield considered better predictions than models that only included SNP 
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information in most part of cases for breeding values prediction, and genotypic predictions 

(Table 3). In dominance deviation prediction, the inclusion of polygenic effects improved 

the accuracy. However in selection based on breeding or genotypic values, altogether, 

these results indicate that markers-only models are a reasonable option under our study 

conditions. 

Table 2. Average of accuracies of phenotypic values prediction of all models based in only pedigree information, in 
only markers information and for models that combined pedigree and markers. C1 are contrasts between models with 
pedigree against others models and C2 are contrasts with models with only markers information against models with 
markers and pedigree. These contrasts were estimated as difference of weighted means, and were evaluated for 
diameter at breast height (DBH), height (HT) and Rust resistance evaluated as gall volume (RFgall) and presence or 
absence (RFbin) in Pinus taeda. 

Models DBH  HT  RFbin  RFgall 

Pedigree 0.536  0.450  0.331  0.255 

Markers 0.545  0.459  0.361  0.288 

Mar+Ped 0.548  0.465  0.356  0.279 

C1: M and MP vs Ped 0.011**  0.013**  0.027**  0.028** 

C2: M vs MP -0.003**  -0.005**  0.005**  0.009** 

**: Means contrast significant with p<0.01 

Genotypic predictive model strength depends on non-additive effects 

The prediction of whole genotypic values provides important information for forest 

breeding, because the breeder can clone non-additive effects. Alternatively, prediction of 

dominance effects for each loci is crucial for optimum cross design. The RKHS based 

models supplied with the appropriate kernels, can theoretically explain additive and non-

additive (whole genotypic values). The inclusion of Kd in RKHS did not improve 

predictions of real traits (Supplementary Table S9) and simulated traits (Supplementary 

Table S10). In the work with real data, the inclusion of dominance effects in the BayesA 

model provided better prediction for HT only, for RFbin the additive-BayesA showed better 

results, and for RFgall and DBH additive- and additive-dominance-BayesA were similar 

(Figure 1). In the work with simulated traits, the additive-dominance-BayesA showed 

considerably stronger genotypic (Figure 2) and phenotypic (Supplementary Table S10) 

prediction accuracy than the additive-BayesA only for traits with high dominance level. 

These results of whole genotypic prediction indicate that the inclusion of dominance, 

specifically in the BayesA model should take into account trait dominance levels. 
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Table 3 Average of accuracies of Breeding values, dominance deviation, genotypic values and phenotypic values 
prediction of all models based in only pedigree information, in only markers information and for models that combined 
pedigree and markers. C1 are contrasts between models with pedigree against others models and C2 are contrasts 
with models with only markers information against models with markers and pedigree. These contrasts were estimated 
as difference of weighted means, and were evaluated in six simulated traits (Polygenic and Oligogenic traits with three 
dominance levels). 

Accuracy Models 
d2=0  d2=0.1  d2=0.2 

Olig Poly  Olig Poly  Olig Poly 

Breeding 
Value 

 

Pedigree 0.567 0.576  0.545 0.560  0.538 0.554 

Markers 0.653 0.627  0.645 0.618  0.645 0.613 

Mar+Ped 0.646 0.626  0.639 0.615  0.638 0.610 

C1:M and MP vs Ped 0.085** 0.051**  0.096** 0.056**  0.102** 0.057** 

C2: M vs MP 0.008** 0.001ns  0.006** 0.004**  0.007** 0.003** 

Dominance 
Deviation 

 

Pedigree - -  0.179 0.203  0.271 0.259 

Markers - -  0.175 0.170  0.273 0.244 

Mar+Ped - -  0.186 0.185  0.284 0.258 

C1:M and MP vs Ped - -  0.003** -0.022**  0.010ns -0.006ns 

C2: M vs MP - -  -0.011** -0.016*  -0.011* -0.014** 

Genotypic 
Value 

 

Pedigree 0.556 0.567  0.488 0.521  0.481 0.479 

Markers 0.652 0.626  0.586 0.575  0.569 0.537 

Mar+Ped 0.638 0.619  0.578 0.571  0.566 0.536 

C1:M and MP vs Ped 0.087** 0.055**  0.093** 0.051**  0.087** 0.057** 

C2: M vs MP 0.014** 0.007**  0.008** 0.004**  0.003* 0.000ns 

Phenotypic 
Value 

Pedigree 0.251 0.259  0.284 0.306  0.313 0.335 

Markers 0.300 0.286  0.338 0.331  0.378 0.373 

Mar+Ped 0.290 0.282  0.335 0.331  0.373 0.373 

C1: M and MP vs Ped 0.0414** 0.025**  0.052** 0.025**  0.0622** 0.038** 

C2: M vs MP 0.007** 0.004**  0.004* 0.000ns  0.005** 0.000ns 

**,* and ns means: contrast significance at 1%, 5% and non-significant. 

 

Genotypic predictive model strength is gene-number dependent 

Genomic prediction models differ essentially on the assumptions regarding the 

genetic architecture of traits. The BayesA represents a linear regression model that 

assumes that each marker has different variance, thus some markers could explain major 

gene variations in oligogenic traits, such as rust resistance. On the other hand, the RKHS 

directly yields individual values, in these models all marker with the same MAF contribute 

equally for relationship measure among individuals, what math more with polygenic 

assumptions. In whole genotypic and phenotypes predictions the RKHS yielded slight 

higher accuracy for DBH, HT (Figure 1) and in additive-dominance polygenic simulated 
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traits (Figure 2, Supplementary Table S11). Regardless of the inclusion of pedigree 

information in genomic prediction models, the BayesA, when compared to the RKHS, 

provides higher correlation for RFbin and all oligogenic simulated traits. The difference of 

accuracies among RKHS and BayesA models were small. Altogether, the results 

suggested that for whole genotypic prediction, the BayesA based models were the best 

models for oligogenic traits, where inclusion of dominance effects in BayesA is trait 

dependent, and for polygenic traits with presence of non-additive effects, the RKHS are a 

potential option because these models can predict the non-additive effects with much less 

parameters. 

 

Figure 1. Results of Average of phenotypic prediction accuracies (or predictive ability ݎ�̂�) 

and standard error (error bars) of three models: addive- and additive-dominance-BayesA 

and RKHS-KA for diameter at breast height (DBH), height (HT) and Rust resistance 

evaluated as gall volume (RFgall) and presence or absence (RFbin) in Pinus taeda. 

Means with same letter are statistically equal by Tukey test (p<0.05). 

 

BayesA models provided higher accuracies in breeding value prediction 

The breeding value of one individual is the part of it genotypic value that is directly 

transmitted to progeny, the genotypic value of a progeny from the matting of two 

individuals is the average of breeding values of parents plus the effects due interactions 

of alleles from the same locus (dominance) and alleles from alleles of distinct locus 

(epistasis). Thus the breeding values should be used to select individuals to use 

extensively in mattings with different individuals. With the BayesA and pedigree based 

models were possible to predict directly the breeding values. However in RKHS models, 
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were used the correlation between predicted genotypic values and parametric breeding 

values to check what is the accuracy for select individuals for explore theirs breeding 

values. The traditional additive-BayesA and additive-dominance-BayesA based only in 

markers information provided the higher accuracy for breeding value prediction for all 

simulated traits (Figure 2), and the pedigree based models showed the worst accuracies. 

The results suggested that additive-BayesA were the best model for breeding values 

selection, since this model were statically equal to additive-dominance-BayesA with much 

less parameters.  

Variance components and heritability 

One of most important task for breeder is take decision regards breeding strategy, 

this decision can be supported from: variance components and the proportion of the 

genetic variance over the phenotypic variance as narrow sense heritability (h2), broad 

sense heritability (H2) and the proportion of dominance variance over phenotypic variance 

(d2). Here these parameters were estimated using genetic marker or pedigree information 

and both in several real and simulated traits. In simulated trait, there is advantage of 

known the parametric values. 

Considering the parametric values of h2 and d2 in simulated studies, the only-

markers BayesA based models provided the less biased estimated of these genetic 

parameters, which in traits with non-additive effects the additive-BayesA were the best 

model (Supplementary Table S12), because the results of h2 close than parametric value 

and did not considered dominance effects. While in additive-dominance traits the inclusion 

of dominance is desired, and the only-markers additive-dominance-BayesA provided the 

more reasonable results of heritabilities in most part of cases, even though the d2 were 

underestimated what reflect the complexity of dominance estimation. 

The inclusion of pedigree information on BayesA based models increased the 

estimates of heritabilities, and in most part of cases these parameters were 

overestimated. Also the only pedigree based models provided overestimates in majority 

cases. The RKHS based models predict the whole genotypic values confounded, thus 

unlike with these models is not possible estimate h2 and d2, only H2. The results of H2 in 

simulated traits (Supplementary Table S13) showed that all RKHS based models, 
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regardless pedigree inclusion, overestimated substantially the H2 mainly with for models 

with inclusion of Kd (RKHS Ka-Kd). 

 

Figure 2.  Results of Average of breeding values and genotypic values prediction of three 

models: addive- and additive-dominance-BayesA and RKHS-KA for of six simulated traits: 

Oligogenic and Poligenic with three degree of dominance (d2=0; d2=0.1 and d2=0.2). Error 

bars are standard error. Means with same letter are statistically equal by Tukey test 

(p<0.05). 
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The results of simulated data suggested the use of BayesA with only markers 

information for estimate variance components and consequently heritabilities, and the 

inclusion of dominance effects can be justified if the additive-dominance model provide 

higher accuracies than additive model. Therefore the for HT is recommended use 

additive-dominant BayesA and what provided estimates of h2 and d2 equal 0.37 and 0.17 

respectively, while for DBH, RFbin and RFgall the additive model is suggested and theirs 

respective h2 are estimated in 0.52, 0.39 and 0.29 (Table S13). 

DISCUSSION 

In this study, we tested the strength of genomic- and pedigree-models with and 

without non-additive effects for the prediction of genetic values in pine. We used real data 

from a standard forest breeding program that started with the collection of sample trees 

from natural populations, followed by breeding cycles encompassing basic selection and 

mating. Pine traits used for model testing included plant height (HT), diameter at breast 

height (DBH), and the rust resistance measures RFbin and RFgall, whose narrow sense 

heritability were previous reported in 0.31, 0.31, 0.21 and 0.12, respectively  (Resende Jr 

et al. 2012b). These traits have different genetic architecture, DBH and HT probably 

represent polygenic traits whereas rust resistance is an oligogenic trait (Resende Jr et al. 

2012b; Quesada et al. 2014). Moreover, HT has important non-additive effects (Muñoz et 

al. 2014). To expand and validate the conclusions we drew from real data, we simulated 

six distinct genetic architecture traits, polygenic and oligogenic with three dominance 

levels, considering the same breeding program design. Detailed features of the simulated-

data populations included allele frequency and linkage disequilibrium are in previous 

chapter.  

Pedigree information in genomic predictions 

Pedigree and marker information was used separately and in combination to 

predict genetic values. In prediction of breeding and whole genotypic values, the model 

that combines pedigree and SNP information did not yield higher accuracy than the model 

that only had markers as an input, and both models provided substantially better 

predictions than pedigree-only models. In models  with low SNP density, the combination 

of pedigree and markers provided better predictions in simulated studies (Calus and 
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Veerkamp 2007) wheat (Crossa et al. 2010), and dairy cattle (Vazquez et al. 2010). 

However, if SNP density was increased, pedigree information did not improve model 

predictions in the same study with dairy cattle (Vazquez et al. 2010), simulated data (Calus 

and Veerkamp 2007), and in other work with mice (de los Campos et al. 2009). In maize, 

models using a high-density SNP panel from Genotyping-by-Sequencing (GBS), and 

combining pedigree and marker information provided the best option (Crossa et al. 2013). 

In some cases, these authors also recorded better predictions using pedigree-only models 

rather than marker-only models. A potential explanation for these different results lie in 

the fact that the GBS yielded a large number of missing data (Crossa et al. 2013), and 

important genes may not have had linkage disequilibrium with any informative SNP. 

Altogether, these results including real and simulated traits indicate that markers 

provide sufficient input for total genotypic and breeding values predictions. We suggest 

that when a large number of SNP information is available, most important gene effects 

can be captured with marker-only prediction models. On the other hand, when the SNP 

panel available does not provide enough information on important genes, pedigree 

inclusion represents a good option for better predictions. Since the cost of genotype 

depends of number of markers, from these results we can speculate the possibility of 

genotype more individuals with a low-density panel of markers, and include pedigree 

information in genomic model. These strategy could provide higher genetic gain, than 

genotype fewer individuals with high-dense panel of markers, since with large number of 

individuals the accuracy tend to be higher, and the select intense could be higher.  

In dominance deviation prediction the models based in combination of markers and 

pedigree provided the highest accuracies, and the only-pedigree models also overcame 

the models with only markers. These results suggested that only markers were not enough 

to predict dominance deviation effects, and since the accuracies of dominance deviation 

is much lower than breeding and genotypic values, these results also suggested that the 

prediction of dominance effects is more complex than breeding values as reported in (Toro 

and Varona 2010; Nishio and Satoh 2014) and  in addition these results indicate that the 

breeding value correspond the most part of the whole genotypic values (Hill et al. 2008). 

The cross  prediction depends of higher accuracy prediction of breeding values and 

dominance deviation; in all cases the dominance deviation accuracy is low what could 
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compromise this prediction, however for cross prediction strategy, the inclusion the 

dominance polygenic effect should be examined. 

Semi-parametric kernel choice 

Different kernels are available to improve the predictions of complex traits in semi-

parametric RKHS models. In the current study, the genomic predictions of RKHS Ka-Kd 

models and the simpler RKHS Ka models yielded similar results. These findings are in 

agreement with those previously reported by Morota et al. (2014) for dairy cattle. These 

authors did not find additional model strength with the inclusion of extra kernels in the 

RKHS Ka. Other kernel comparisons in RKHS showed that RKHS Ka is a robust choice 

for the prediction of additive and non-additive effects (Morota et al. 2013; Tusell et al. 

2014). 

BayesA provided the highest breeding values accuracy 

In simulated study were evaluated the accuracy of breeding values prediction, in 

all cases the BayesA models with only markers information provided the highest accuracy 

of breeding values prediction regardless the dominance effects, what consequently would 

provide higher genetic gain in an intra-population breeding scheme. Beyond additive 

effects and allele frequency, the breeding value is also function of dominance effects 

(Falconer and Mackay 1996), thus unexpected that additive-BayesA and additive-

dominance-BayesA and models would provide similar accuracies for breeding values in 

additive-dominance traits, one possible reason for this result is that the accuracy of 

dominance were small. These results were similar with others simulated studies that 

showed higher genetic gain with additive model instead additive-dominance in intra-

population breeding scheme even in presence of higher dominance effects (Denis and 

Bouvet 2012). Nishio and Satoh (2014) showed that dominance inclusion did not provided 

higher accuracies in breeding value prediction, even in traits with dominance effects. 

Perhaps with increase of accuracy in dominance prediction, the additive-dominance 

models would be the best model for breeding values prediction in traits with dominance 

effects. However, for this study case, in breeding values prediction is recommended the 

additive model because is the simplest model and yielded high accuracies when 
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compared with others more complex models, and RKHS were not recommended for that 

prediction. 

Prediction whole-genotypic values of distinct genetic architecture traits  

Models with built-in assumptions that some markers have major effects, usually 

provide better genomic predictions for simulated oligogenic traits (de los Campos et al. 

2013), and also for real traits controlled by few genes, e.g. fat percentage in milk (Habier 

et al. 2011). For whole genotypic prediction in this study, the BayesA provided better 

predictions than the RKHS regarding RFbin and simulated oligogenic traits. This finding 

is in agreement with other studies that suggest that rust resistance is an oligogenic trait 

(Resende Jr et al. 2012b; Quesada et al. 2014). Regarding RFgall, the BayesA and RKHS 

provided equally good predictions, regardless of dominance effects or extra kernels, 

respectively. In this case, the inclusion of pedigree information did not improve the 

accuracy of predictions. A possible reason for this similarity between models resides in 

the RKHS model may have captured epistasis related to RFgall, which the BayesA model 

would not capture. The inclusion of dominance effects in BayesA did not improve the 

predictions regarding rust-resistance traits, and additive-BayesA was better than RKHS 

for RFbin. Together, these results indicate that non-additive effects are less important for 

rust resistance than additive effects. In the case of simulated additive-dominance 

oligogenic traits, the additive-dominant-BayesA model provided the best predictions. 

Thus, the use of models such as the additive-BayesA, which takes into account major 

genes with additive effects, provides a good option for predictions involving additive-

oligogenic traits. In parallel, we can speculated that the use of the additive-dominant 

BayesA would fit nicely in situations involving additive-dominant traits. 

 Our analyses of polygenic simulated traits showed that, regarding additive-

dominant polygenic traits, the RKHS models were better than the additive-BayesA for 

whole genotypic predictions. These findings agree with those of other authors who argue 

that RKHS addresses non-additive variation in a non-explicit manner (Gianola et al. 2006; 

Gianola and van Kaam 2008; Morota and Gianola 2014). In addition, the RKHS provided 

slight higher accuracy when compared to the additive-dominant-BayesA, what confirms 

that RKHS can be explored for predictions in polygenic traits with dominance presence. 
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In genomic prediction the RKHS models provided slight higher accuracies than 

additive- and additive-dominant-BayesA for HT and DBH, indicating the presence of 

important gene interactions for these traits. The results regarding HT agree with those by 

Muñoz et al. (2014) who suggested the existence of important epistasis effects for this 

trait. When we compared additive- with additive-dominant-BayesA, results showed that 

dominance inclusion in BayesA provided better predictions for HT only. These findings 

suggest that dominance effects are less important for DBH than for HT, and that the better 

performance of RKHS in comparison with BayesA for DBH could result from additive x 

additive gene interactions. Altogether, our results indicate that RKHS provides an 

important tool for the prediction of whole genotypic values of traits with non-additive 

effects.  

Variance components and heritabilities 

Using RKHS based models and pedigree information the parameters h2, d2 and H2 

were overestimated in most part of cases. The BayesA models that imputes only markers, 

provided more reasonable estimated variance components values. However even with 

BayesA models is necessary be aware with dominance inclusion, since the best 

estimations were achieved with the correct inclusion of genetic effects. Calus and 

Veerkamp (2007) reported that the inclusion of polygenic effects provided better 

estimation of variance components when compared with models that included only 

markers, however in this study the authors considered only additive models and additive 

traits, and here the estimation of h2 were close than parametric models for BayesA with 

only markers information.   

Using the additive-dominance-BayesA model, the h2 estimated for HT in this report 

were similar the value found in Resende Jr et al. (2012b), but higher than reported in 

Resende Jr et al. (2012a). While the estimative of d2 for HT were similar of previous report 

(Muñoz et al. 2014). For DBH, and rust resistance the h2 here, were higher than other 

authors (Resende Jr et al. 2012a; Resende Jr et al. 2012b). In DBH the accuracy for 

predictions suggested that additive gene interactions can be important, thus a model that 

include additive epistasis could be tested for estimate variance component for this trait. 

The simulated results showed that the estimation of variance due dominance deviation is 
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a challenge, this result agree (Wittenburg et al. 2011) what reported that the estimate of 

additive variance component were closer than parametric values when compared with 

variance component due dominance effect. The difficulties in d2 estimation for traits with 

high dominance, may be explained by allele frequency, since in the populations used here 

there are large number of loci with low MAF (see previous chapter), and consequently, 

there are few heterozygotes Loci what can affect dominance estimation. Perhaps, an 

investigation in a population with large number of Loci with higher MAF, and structured in 

reasonable number of half and full sibs could provide the in less unbiased d2 estimates. 
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SUPLEMENTARY MATERIAL 

Table S1. Summary of Analysis of variance of linear model used for adjust the clonal means. 

Source DBH HT RFbin RFgall 

Incomplete Block Variance 0.24** 2448** - - 

F for Repetition 184.87** 397.35** 3.2795* 20.7005** 

F for Clones 2.41** 2.18** 3.851** 2.5576** 

Error Variance 3.05 7575.11 0.1342 1.866 

Mean 11.40 841.59 0.3531 0.8261 

CV(%) 15.33 10.34 103.78 165.37 

R2(%) 63.84 81.41 55.72 46.43 

**,*: means significant with p<0.01 and p<0.05 respectively, with F test for fixed effect and LRT for variance components. 

 

Table S2. Summary of ANOVA for result of correlation between predicted whole genotype values with phenotypes (phenotype 
prediction - ݎ��̂), with different genomic methods, using ten-fold cross validation procedure, with ten different rearrangements of 
genotype allocation in folds,  for diameter at breast height (DBH), height (HT) and Rust resistance evaluated as gall volume (RFgall) 
and presence or absence (RFbin) in Pinus taeda. 

SV GL 
DBH  HT  RFbin  RFgall 

MS p  MS p  MS p  MS p 

Modelo 12 0.00394 <0.01  0.010271 <0.01  0.023045 <0.01  0.014257 <0.01 

Rearr 9 0.00625 <0.01  0.011367 <0.01  0.015917 <0.01  0.014446 <0.01 

Fold(Rearr) 90 0.06322 <0.01  0.108625 <0.01  0.09816 <0.01  0.101926 <0.01 

Rearr x Mod 108 5.24E-05 F<1  0.000119 F<1  0.000227 F<1  0.000112 F<1 

error 1080 0.00026   0.000363   0.000592   0.000457  

R2(%)  95.44   96.22   93.56   95.06  

CV(%)   2.94   4.14   6.88   7.69  

MS and p: means Mean Square and p-value respectively. 

 

Table S3. Summary of ANOVA for result of correlation between predicted breeding values with parametric breeding values, with 
different genomic methods, using ten-fold cross validation procedure in ten repetitions of six simulated traits: Oligogenic and Poligenic 
with three degree of dominance (d2=0; d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0  

Polygenic 
d2=0  

Oligogenic 
d2=0.1  

Polygenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygenic 
d2=0.2 

MS p  MS p  MS p  MS p  MS p  MS p 

Rep 9 0.4696 <0.01  0.5090 <0.01  0.6297 <0.01  0.5527 <0.01  0.7890 <0.01  0.1009 <0.01 

Fold(Rep) 90 0.0582 <0.01  0.0463 <0.01  0.0627 <0.01  0.0404 <0.01  0.0567 <0.01  0.0560 <0.01 

Model 12 0.1664 <0.01  0.0401 <0.01  0.1849 <0.01  0.0481 <0.01  0.2652 <0.01  0.0531 <0.01 

Rep x Mod 108 0.0154 <0.01  0.0010 <0.01  0.0113 <0.01  0.0013 <0.01  0.0152 <0.01  0.0005 <0.01 

error 1080 0.0003   0.0002   0.0004   0.0002   0.0006   0.0003  

R2(%)  97.25   97.34   97.27   97.50   96.12   95.67  

CV(%)  2.92   2.49   3.12   2.45   4.04   2.77  
MS and p: means Mean Square and p-value respectively. 
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Table S4. Summary of ANOVA for result of correlation between predicted whole genotype values with parametric whole genotypes 
values (ݎ��̂), with different genomic methods, using ten-fold cross validation procedure in ten repetitions of six simulated traits: 
Oligogenic and Poligenic with three degree of dominance (d2=0; d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0  

Polygenic 
d2=0  

Oligogenic 
d2=0.1  

Polygenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygenic 
d2=0.2 

MS p  MS p  MS p  MS p  MS p  MS p 

Repl 9 0.4801 <0.01  0.5108 <0.01  0.4137 <0.01  0.2758 <0.01  0.4514 <0.01  0.0475 <0.01 

Fold(Rep) 90 0.0585 <0.01  0.0459 <0.01  0.0714 <0.01  0.0633 <0.01  0.0747 <0.01  0.0639 <0.01 

Model 12 0.1760 <0.01  0.0495 <0.01  0.1380 <0.01  0.0397 <0.01  0.1345 <0.01  0.0606 <0.01 

RepxMod 108 0.0157 <0.01  0.0012 <0.01  0.0083 <0.01  0.0008 <0.01  0.0099 <0.01  0.0007 <0.01 

error 1080 0.0004   0.0003   0.0005   0.0003   0.0006   0.0004  

R2(%)  97.16   97.05   95.92   96.69   95.42   94.32  

CV(%)  3.02   2.66   3.95   2.95   4.41   3.74  

MS and p: means Mean Square and p-value respectively. 

 

Table S5. Summary of ANOVA for result of correlation between predicted whole genotype values with phenotypes (ݎ��̂), with different 
genomic methods, using ten-fold cross validation procedure in ten repetitions of six simulated traits: Oligogenic and Poligenic with 
three degree of dominance (d2=0; d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0  

Polygenic 
d2=0  

Oligogenic 
d2=0.1  

Polygenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygenic 
d2=0.2 

MS p  MS p  MS p  MS p  MS p  MS p 

Fold(Rep) 90 0.1097 <0.01  0.1194 <0.01  0.1199 <0.01  0.1130 <0.01  0.1196 <0.01  0.1050 <0.01 

Rep 9 0.1275 <0.01  0.2039 <0.01  0.3781 <0.01  0.1606 <0.01  0.2346 <0.01  0.0753 <0.01 

Model 12 0.0423 <0.01  0.0104 <0.01  0.0409 <0.01  0.0099 <0.01  0.0694 <0.01  0.0263 <0.01 

Repl x Mod 108 0.0051 <0.01  0.0006 <0.01  0.0035 <0.01  0.0012 <0.01  0.0056 <0.01  0.0007 <0.01 

error 1080 0.0004   0.0003   0.0007   0.0004   0.0007   0.0004  

R2(%)  96.35   97.44   95.46   96.60   95.08   96.11  

CV(%)  7.20   6.31   7.85   6.01   7.17   5.41  

MS and p: means Mean Square and p-value respectively. 

 

Table S6. Summary of ANOVA for result of correlation between predicted dominance deviation values with parametric dominance 
deviation values, with different genomic methods, using ten-fold cross validation procedure in ten repetitions of four simulated 
additive-dominance traits: Oligogenic and Poligenic with two degree of dominance (d2=0.1 and d2=0.2). 

SV df 

Oligogenic 
d2=0.1  

Polygenic 
d2=0.1  

Oligogenic 
d2=0.2  

Polygenic 
d2=0.2 

MS p  MS p  MS p  MS p 

Fold(Repl) 90 0.0548 <0.01  0.0373 <0.01  0.0387 <0.01  0.0343 <0.01 

Rep 9 0.3944 <0.01  0.0415 <0.01  0.6073 <0.01  0.1138 <0.01 

Model 3 0.0082 <0.01  0.0382 <0.01  0.0217 <0.01  0.0244 <0.01 

Mod x Rep 27 0.0042 <0.01  0.0036 0.02  0.0178 <0.01  0.0008 F<1 

error 270 0.0018   0.0022   0.0021   0.0018  

R2(%)  94.73   87.16   94.35   89.82  

CV(%)  23.25   24.97   16.48   16.51  

MS and p: means Mean Square and p-value respectively. 
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Table S7. Results of Slope of predicted Genotypic values and phenotypes for diameter breast height (DBH), plant height (HT), Rust 
resistance evaluated as gall volume (RFgall) and presence or absence (RFbin) in Pinus taeda, using different methods according 
with table 1. 

Method Pedigree DBH  HT  RFbin  RFgall 

BayesA 
Add 

None 1.000  0.991  0.986  1.029 

Add 1.013  0.996  0.971  0.962 

BayesA 
Add-Dom 

None 0.989  0.971  0.965  1.007 

Add 1.007  0.980  0.951  0.953 

Add-Dom 1.010  0.992  0.935  0.908 

RKHS 
Ka 

None 1.063  1.066  1.066  1.103 

Add 1.066  1.064  1.038  1.037 

Add-Dom 1.070  1.076  1.021  1.001 

RKHS 
Ka-Kd 

None 1.152  1.173  1.172  1.227 

Add 1.116  1.144  1.108  1.124 

Add-Dom 1.117  1.148  1.092  1.084 

Pedigree 
Add 1.026  1.013  0.985  0.958 

Add-Dom 1.035  1.039  0.961  0.914 
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Table S8. Results of Slope of prediction of Breeding, Dominance deviation, Genotypic and phenotypic values of for six simulated 
traits (Polygenic and Oligogenic traits with three dominance levels), using different methods according with table 1. 

Domiance 
Level 

Method Pedigree inclusion 

Bredding 
Value 

 
Dominance 
Deviation 

 
Genotypic 

Value 
 

Phenotypic 
Value 

Olig Poly  Olig Poly  Olig Poly  Olig Poly 

d2=0 

BayesA 
Add 

None 1.073 1.052  - -  1.073 1.052  0.993 0.969 

Add 1.015 1.002  - -  1.015 1.002  0.94 0.918 

BayesA 
Add-Dom 

None 1.089 1.096  - -  1.032 1.023  0.965 0.937 

Add 1.044 1.038  - -  1.001 0.988  0.921 0.903 

Add-Dom 1.115 1.101  - -  0.973 0.942  0.888 0.882 

RKHS 
Ka 

None 1.11 1.069  - -  1.11 1.069  0.997 0.978 

Add 1.059 1.049  - -  1.059 1.049  0.963 0.947 

Add-Dom 1.178 1.147  - -  1.028 1.006  0.936 0.919 

RKHS 
Ka-Kd 

None 1.183 1.161  - -  1.183 1.161  1.087 1.061 

Add 1.13 1.103  - -  1.13 1.103  1.024 1.008 

Add-Dom 1.239 1.21  - -  1.094 1.076  0.996 0.981 

Pedigree 
Add 1.001 1.009  - -  1.001 1.009  0.919 0.926 

Add-Dom 1.238 1.231  - -  0.952 0.958  0.872 0.873 

d2=0.1 

BayesA 
Add 

None 0.984 0.932  - -  1.029 1.013  0.995 0.987 

Add 0.947 0.887  - -  0.987 0.971  0.959 0.955 

BayesA 
Add-Dom 

None 1.024 0.974  1.195 1.010  1.004 0.979  0.963 0.962 

Add 0.97 0.924  2.986 1.188  0.974 0.959  0.935 0.939 

Add-Dom 1.047 1.019  0.648 0.605  0.962 0.944  0.923 0.925 

RKHS 
Ka 

None 0.982 0.933  - -  1.069 1.047  1.043 1.027 

Add 0.958 0.908  - -  1.038 1.017  1.013 1.001 

Add-Dom 1.081 1.028  - -  1.022 0.994  0.998 0.983 

RKHS 
Ka-Kd 

None 1.037 0.977  - -  1.155 1.114  1.12 1.098 

Add 1.011 0.962  - -  1.109 1.087  1.079 1.067 

Add-Dom 1.137 1.049  - -  1.101 1.056  1.057 1.046 

Pedigree 
Add 0.921 0.861  - -  0.953 0.955  0.919 0.951 

Add-Dom 1.145 1.083  0.506 0.539  0.933 0.941  0.914 0.937 

d2=0.2 

BayesA 
Add 

None 0.892 0.867  - -  1.01 0.963  1.008 1.008 

Add 0.865 0.832  - -  0.986 0.935  0.978 0.98 

BayesA 
Add-Dom 

None 0.96 0.926  1.262 1.193  0.996 0.95  0.987 0.985 

Add 0.91 0.877  1.358 1.264  0.978 0.933  0.965 0.971 

Add-Dom 0.98 0.969  0.954 0.936  0.977 0.934  0.958 0.969 

RKHS 
Ka 

None 0.867 0.852  - -  1.067 1.018  1.051 1.063 

Add 0.856 0.841  - -  1.049 0.998  1.028 1.041 

Add-Dom 0.988 0.968  - -  1.048 0.997  1.018 1.039 

RKHS 
Ka-Kd 

None 0.911 0.895  - -  1.159 1.095  1.139 1.143 

Add 0.893 0.879  - -  1.129 1.065  1.105 1.112 

Add-Dom 1.007 0.988  - -  1.12 1.059  1.091 1.104 

Pedigree 
Add 0.826 0.814  - -  0.977 0.923  0.954 0.974 

Add-Dom 1.08 1.055  0.856 0.853  0.991 0.937  0.947 0.979 
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Table S9. Average of accuracies of Breeding values, genotypic values and phenotypic values prediction of RKHS models based in 
only markers information (without pedigree inclusion) with different kernels: RKHS-Ka and RKHS-Ka-Kd. The comparison between 
these models was made by contrasts for diameter at breast height (DBH), height (HT) and Rust resistance evaluated as gall volume 
(RFgall) and presence or absence (RFbin) in Pinus taeda. 

Models DBH  HT  RFbin  RFgall 

RHKS-KA 0.551  0.467  0.352  0.292 

RKHS-KA-KD 0.552  0.472  0.349  0.287 

Contrast: KA vs KA-KD -0.001ns  -0.004ns  0.003ns  0.005ns 

ns: Means contrast non-significant. 

 

Table S10. Average of accuracies of Breeding values, genotypic values and phenotypic values prediction of RKHS models based in 
only markers information (without pedigree inclusion) with different kernels: RKHS-Ka and RKHS-Ka-Kd. The comparison between 
these models was made by contrasts for six simulated traits: Polygenic (Poly) and Oligogenic (Olig) traits with three dominance 
levels. 

Accuracy Models 
d2=0  d2=0.1  d2=0.2 

Olig Poly  Olig Poly  Olig Poly 

Breeding 
Value 

RHKS-KA 0.632 0.627  0.627 0.619  0.614 0.611 

RKHS-KA-KD 0.620 0.618  0.614 0.608  0.601 0.600 

C: KA vs KA-KD 0.012** 0.009**  0.014ns 0.010**  0.014** 0.011* 

Genotypic 
Value 

RHKS-KA 0.632 0.627  0.579 0.582  0.556 0.546 

RKHS-KA-KD 0.620 0.618  0.574 0.579  0.560 0.549 

C: KA vs KA-KD 0.012** 0.0087**  0.0053ns 0.002ns  -0.005ns -0.003ns 

Phenotypic 
Value 

RHKS-KA 0.286 0.286  0.336 0.336  0.367 0.380 

RKHS-KA-KD 0.281 0.282  0.332 0.335  0.370 0.382 

C: KA vs KA-KD 0.005ns 0.004ns  0.0032ns 0.0003ns  -0.003ns -0.002ns 

**,* and ns: Means contrast significant with p<0.01, p<0.01 and non-significant. 

 

Table S11. Average of phenotypic prediction accuracies (or predictive ability ݎ�̂�) of three models: addive- and additive-dominance-
BayesA and RKHS-KA for six simulated traits (Polygenic and Oligogenic traits with three dominance levels). 

Model 
d2=0  d2=0.1  d2=0.2 

Oligogenic Polygenic  Oligogenic Polygenic  Oligogenic Polygenic 

BayesA-add 0.313a 0.290a  0.343a 0.325b  0.382b 0.358c 

BayesA-add-dom 0.307a 0.286a  0.342a 0.327b  0.394a 0.372b 

RKHS-KA 0.286b 0.286a  0.336b 0.336a  0.367c 0.380a 

Means with same letter are statistically equal by Tukey test (p<0.05). SE<0.01. 
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Table S12 Results of results of narrow sense heritability (h2), proportion of phenotypic variance due dominance (d2), and broad sense 
heritability (H2) for six simulated traits (Polygenic and Oligogenic traits with three dominance levels). 

Trait Method 
Pedigree 
inclusion 

Without dominance  Medium dominance  High dominance 

h2 d2 H2  h2 d2 H2  h2 d2 H2 

Oligo- 
genic 

BayesA 
Add 

None 0.21 - 0.21  0.27 - 0.27  0.27 - 0.27 

Add 0.34 - 0.34  0.41 - 0.41  0.42 - 0.42 

BayesA 
Add-Dom 

None 0.20 0.04 0.25  0.26 0.06 0.32  0.25 0.11 0.36 

Add 0.30 0.04 0.34  0.37 0.06 0.43  0.38 0.09 0.47 

Add-Dom 0.28 0.14 0.42  0.33 0.16 0.49  0.33 0.22 0.55 

RKHS 
Ka 

None - - 0.60  - - 0.67  - - 0.70 

Add - - 0.59  - - 0.66  - - 0.69 

Add-Dom - - 0.60  - - 0.67  - - 0.70 

RKHS 
Ka-Kd 

None - - 0.70  - - 0.74  - - 0.76 

Add - - 0.68  - - 0.73  - - 0.75 

Add-Dom - - 0.69  - - 0.73  - - 0.75 

Pedigree 
Add 0.31 - 0.31  0.34 - 0.34  0.37 - 0.37 

Add-Dom 0.21 0.18 0.39  0.23 0.20 0.43  0.24 0.24 0.48 

Poly- 
genic 

BayesA 
Add 

None 0.23 - 0.23  0.25 - 0.25  0.29 - 0.29 

Add 0.35 - 0.35  0.39 - 0.39  0.43 - 0.43 

BayesA 
Add-Dom 

None 0.22 0.03 0.26  0.24 0.07 0.31  0.27 0.11 0.38 

Add 0.31 0.04 0.35  0.35 0.05 0.40  0.39 0.09 0.48 

Add-Dom 0.28 0.13 0.41  0.30 0.17 0.48  0.34 0.21 0.55 

RKHS 
Ka 

None - - 0.60  - - 0.66  - - 0.70 

Add - - 0.58  - - 0.64  - - 0.69 

Add-Dom - - 0.59  - - 0.65  - - 0.70 

RKHS 
Ka-Kd 

None - - 0.70  - - 0.73  - - 0.77 

Add - - 0.68  - - 0.72  - - 0.75 

Add-Dom - - 0.68  - - 0.72  - - 0.75 

Pedigree 
Add 0.31 - 0.31  0.36 - 0.36  0.38 - 0.38 

Add-Dom 0.22 0.16 0.38  0.25 0.21 0.45  0.26 0.25 0.51 
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Table S13 Results of s of narrow sense heritability (h2), proportion of phenotypic variance due dominance (d2), and broad sense 
heritability (H2). These results are from evaluation of the diameter breast height (DBH), plant height (HT), Rust resistance evaluated 
as gall volume (RFgall) and presence or absence (RFbin) in Pinus taeda, using different methods according with table 1. 

Method 
Pedigree 
inclusion 

DBH  HT  RFbin  RFgall 

h2 d2 H2  h2 d2 H2  h2 d2 H2  h2 d2 H2 

BayesA 
Add 

None 0.517 - 0.517  0.447 - 0.447  0.391 - 0.391  0.287 - 0.287 

Add 0.680 - 0.680  0.602 - 0.602  0.509 - 0.509  0.412 - 0.412 

BayesA 
Add-Dom 

None 0.462 0.097 0.559  0.367 0.166 0.533  0.378 0.026 0.403  0.285 0.044 0.329 

Add 0.621 0.055 0.676  0.527 0.109 0.636  0.481 0.037 0.518  0.363 0.072 0.435 

Add-Dom 0.550 0.170 0.720  0.430 0.254 0.684  0.432 0.154 0.587  0.290 0.137 0.426 

RKHS 
Ka 

None - - 0.844  - - 0.807  - - 0.723  - - 0.650 

Add - - 0.814  - - 0.795  - - 0.679  - - 0.617 

Add-Dom - - 0.822  - - 0.794  - - 0.682  - - 0.625 

RKHS 
Ka-Kd 

None - - 0.841  - - 0.827  - - 0.764  - - 0.712 

Add - - 0.819  - - 0.809  - - 0.734  - - 0.691 

Add-Dom - - 0.816  - - 0.803  - - 0.726  - - 0.685 

Pedigree 
Add 0.677 - 0.677  0.616 - 0.616  0.422 - 0.422  0.318 - 0.318 

Add-Dom 0.513 0.202 0.715  0.392 0.290 0.682  0.296 0.186 0.481  0.221 0.180 0.401 
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CHAPTER IV 

GENERAL CONCLUSIONS 

One of the most important task in plant and animal breeding is to predict the 

individuals with the highest genetic merit. The challenge in this prediction is due to 

complex nature of the traits which are important in farm production. Some traits are 

controlled by a large number of genes with small effects, while in other traits, only a small 

number of genes is liable for the major part of genotypic variation, and regardless the 

number of genes involved in the control of traits. The interaction between alleles from the 

same gene and/or from different genes may also play a role in genotypic variation. 

Genomic prediction (GP) can be more accurate, providing a good knowledge of the 

genetic architecture of the trait, with the choice of a model that matches this genetic 

architecture. 

The first GP approaches were based on additive models and breeding value 

prediction; these models are useful for breeding systems that explore mainly the overall 

combination ability. However, in many breeding systems that require specify crosses, the 

dominance effects should be taken into consideration. Nonetheless, the dominance 

prediction is a challenge, since a reasonable number of heterozygotes is necessary for 

each marker, and at least two kinds of families (e.g. half and full-sibs) are recommended. 

In our study conditions, dominance prediction provided little accuracy when compared to 

additive prediction; one potential explanation is that most markers had low MAF and 

consequently, few heterozygotes per marker. 

The inclusion of dominance effects in GP models should be trait-dependent; the 

results showed that the additive-dominance effects in GP provided higher accuracies for 

phenotype prediction in plant height, which is a trait with previous knowledge that non-

additive effects are important. While, for rust resistance, it is a trait with knowledge that 

the additive effects were much more important than the non-additive effects, and 

consequently, the additive models were considered as being the best ones. The results of 

simulated traits for phenotype and genotypic prediction support the conclusion of real 

traits. For additive-simulated traits, the additive-GP models provided the highest 

accuracies and the additive-dominance GP models were most accurate for traits with high 
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dominance effects. For the prediction of breeding values, the additive models were the 

best option in most part of cases studied, even for traits with high dominance, these results 

could be explained by the fact that dominance prediction was not as accurate as additive 

prediction, and consequently, for the selection of one individual for a large number of 

crosses, the additive model should be preferred. Also, for heterosis exploration in additive-

dominance traits, the additive-dominance model could be explored if the additive and 

dominance effects were predicted with reasonable accuracy. 

In a simulated study, the prediction accuracies with additive- and additive-

dominance-BayesB fitted in one previous generation was assessed. The dominance 

inclusion provided higher accuracies than its additive counterpart model only for 

oligogenic trait with high dominance, which suggests that it is necessary to have a higher 

accuracy in dominance prediction for use in the additive-dominance models in next 

generations. 

In addition, there are different assumptions for marker contributions in GP, some 

models assumes that all markers with the same MAF contribute with the same portion of 

genetic variation, and other models assume that the markers have heterogeneous 

variance components and consequently assume that markers with the same MAF can 

contribute differently for genetic variation. These assumptions play a role in active higher 

accuracies, with the assumption that some marker can have major BayesA and BayesB 

effects with more accurate models for simulated oligogenic and rust-resistance traits. For 

simulated polygenic traits, plant height and diameter at breast height in the RKHS models 

provided slightly higher accuracy for phenotype and genotype prediction. These RKHS-

based models can predict the entire genotypic value confounded. In others words, with 

RKHS, it is not possible to predict breeding values and dominance deviation separately. 

In addition, it is not possible to estimate the additive and dominance effects of markers; 

what restrict RKHS models for cases where the selection is based in genotypic values 

such as clone selection. Therefore, in models based in whole-genome regressions 

(WGR), such as BayesA, where it is possible to estimate additive and non-additive 

effects , it can be used for exploring cross allocation. 

Finally, the pedigree information for prediction were investigated. The models with 

only marker information and models that combined marker with pedigree information 
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provided similar accuracies, and both were more accurate than the model based only on 

pedigree. These results suggest that for the real and simulated population used in this 

study, the markers available were enough for prediction, and it can be speculated that the 

combination of marker and pedigree can be useful in genomic prediction with low-density 

marker panel. 
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