UNIVERSIDADE FEDERAL DE VIÇOSA

GUILHERME BARBOSA REIS

ANÁLISE DO REGIME HIDROLÓGICO EM BACIA HIDROGRÁFICA DO SUDESTE BRASILEIRO E PREDIÇÃO DE SÉRIES TEMPORAIS DE VAZÕES DIÁRIAS UTILIZANDO APRENDIZADO DE MÁQUINA

> VIÇOSA - MINAS GERAIS 2020

GUILHERME BARBOSA REIS

ANÁLISE DO REGIME HIDROLÓGICO EM BACIA HIDROGRÁFICA DO SUDESTE BRASILEIRO E PREDIÇÃO DE SÉRIES TEMPORAIS DE VAZÕES DIÁRIAS UTILIZANDO APRENDIZADO DE MÁQUINA

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Engenharia Agrícola, para obtenção do título de *Magister Scientiae*.

Orientador: Demetrius David da Silva

Coorientadores: Elpídio Inácio Fernandes Filho Michel Castro Moreira

VIÇOSA - MINAS GERAIS 2020

Ficha catalográfica elaborada pela Biblioteca Central da Universidade Federal de Viçosa - Campus Viçosa

T R375a 2020	Reis, Guilherme Barbosa, 1994- Análise do regime hidrológico em bacia hidrográfica do sudeste brasileiro e predição de séries temporais de vazões diárias utilizando aprendizado de máquina / Guilherme Barbosa Reis. – Viçosa, MG, 2020. 125 f. : il. (algumas color.) ; 29 cm.
	Inclui apêndices. Orientador: Demetrius David da Silva. Dissertação (mestrado) - Universidade Federal de Viçosa. Inclui bibliografia.
	 Bacias hidrográficas- Modelos estatísticos. Aprendizado do computador. 3. Extremos climáticos. Desenvolvimento de recursos hídricos. 5. Tendências. Universidade Federal de Viçosa. Departamento de Engenharia Agrícola. Programa de Pós-Graduação em Engenharia Agrícola. Título.
	CDD 22 ed. 627

GUILHERME BARBOSA REIS

ANÁLISE DO REGIME HIDROLÓGICO EM BACIA HIDROGRÁFICA DO SUDESTE BRASILEIRO E PREDIÇÃO DE SÉRIES TEMPORAIS DE VAZÕES DIÁRIAS UTILIZANDO APRENDIZADO DE MÁQUINA

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Engenharia Agrícola, para obtenção do título de *Magister Scientiae*.

APROVADA: 17 de julho de 2020.

Assentimento:

Guilhorme Barbara Reis

Guilherme Barbosa Reis

Autor

Demetrius David da Silva

Orientador

À minha família, por sempre apoiar e incentivar meus sonhos.

Dedico.

AGRADECIMENTOS

A Deus por abençoar minhas escolhas e minha caminhada.

A minha família, em especial aos meus pais Hermes e Roseli e a minha irmã Mayna, que nunca mediram esforços para que eu pudesse alcançar meus objetivos.

A Universidade Federal de Viçosa e ao Departamento de Engenharia Agrícola, pela oportunidade de realização do mestrado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) e a Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pelo apoio prestado no desenvolvimento do presente trabalho.

Ao Demetrius pela orientação, ensinamentos, oportunidades concedidas desde a iniciação científica e por ter sido fundamental na minha decisão acertada de seguir na pós-graduação.

Aos professores Elpídio e Michel pelo excelente trabalho na coorientação da pesquisa.

Ao Micael pela amizade, ensinamentos e pela parceria de sempre.

Ao Gustavo pelo auxílio no desafio que foi aprender um pouco sobre machine learning.

Ao auxílio do Cluster da UFV no desenvolvimento da pesquisa.

Ao Departamento de Solos e ao Laboratório de Geoprocessamento (LabGeo) pelo auxílio no processamento dos dados.

Aos amigos de pós-graduação do Centro de Referências em Recursos Hídricos, em especial, Ana Luiza, Uilson, Jasmine, Marina, Rafael Luís, Erli, Arnaldo, Felipe, Laura, Rafael Petruceli, Luan, Cássio, Edcássio, Renan, Tarcila, Camila, Fernanda, Clívia, Rayssa, Jéssica, Isabela, Roberto, Robson e Arthur, pela excelente convivência, apoio e amizade.

Aos estagiários Savio e Gabriel pelo auxílio imprescindível na obtenção da base de dados para a pesquisa.

À Laryssa por estar presente durante esta caminhada.

E a todos que de alguma forma contribuíram para a realização desse trabalho.

A todos vocês, meu muito obrigado!

BIOGRAFIA

GUILHERME BARBOSA REIS, filho de Hermes Reis e Roseli Aparecida Barbosa Reis, nasceu em 18 de julho de 1994, na cidade de Visconde do Rio Branco, estado de Minas Gerais, Brasil.

Em março de 2013 iniciou o curso de graduação em Engenharia Agrícola e Ambiental na Universidade Federal de Viçosa (UFV), graduando-se em janeiro de 2018.

Em março de 2018 ingressou no Programa de Pós-Graduação em Engenharia Agrícola da Universidade Federal de Viçosa (UFV), área de concentração em Recursos Hídricos e Ambientais, a nível de mestrado, submetendo-se à defesa de dissertação em julho de 2020.

Em outubro de 2019 foi aprovado em concurso público para cargo de Engenheiro Agrícola na Universidade Federal do Espírito Santo, campus de Alegre, iniciando suas atividades na instituição em novembro do mesmo ano.

RESUMO GERAL

REIS, Guilherme Barbosa, M.Sc., Universidade Federal de Viçosa, julho de 2020. Análise do regime hidrológico em bacia hidrográfica do sudeste brasileiro e predição de séries temporais de vazões diárias utilizando aprendizado de máquina. Orientador: Demetrius David da Silva. Coorientadores: Elpídio Inácio Fernandes Filho e Michel Castro Moreira.

O aumento da ocorrência de eventos extremos em bacias hidrográficas leva à necessidade de melhor entendimento do regime hidrológico em áreas com alta vulnerabilidade a cenários de enchente e escassez hídrica, uma vez que atividades essenciais como a produção de alimentos, geração de energia elétrica, abastecimento humano, segurança de obras hidráulicas e manutenção de ecossistemas são altamente impactadas por este regime. Além de conhecer o comportamento hidrológico, se faz necessário projetar e entender diferentes cenários, sendo que para isso a modelagem hidrológica constitui-se em uma ferramenta fundamental. O objetivo geral do presente trabalho foi identificar o comportamento das vazões na bacia do rio Piranga, bem como buscar melhorias na modelagem hidrológica visando a predição de vazões diárias utilizando aprendizado de máquina. Todo o estudo foi realizado na bacia hidrográfica do rio Piranga, localizada no Estado de Minas Gerais - Brasil. No primeiro capítulo foram utilizadas técnicas estatísticas aplicadas às séries temporais de vazão com o intuito de caracterizar o comportamento hidrológico da área de estudo. Foram estabelecidos eventos extremos máximos e mínimos e realizados testes não paramétricos de Mann-Kendall, Pettitt e Spearman para identificar tendências temporais nos dados. Os resultados mostraram que a vazão correspondente à cota de inundação na foz da bacia tem baixo período de retorno, o que explica o fato de haver problemas recorrentes de enchentes. Por outro lado, a análise da vazão média de longa duração (Q_{mld}) e da vazão mínima média de sete dias consecutivos, associada a um período de retorno de 10 anos (Q_{7,10}) mostrou redução destas comparadas a períodos anteriores. Foi possível observar, também, que todas as estações fluviométricas apresentaram tendência de redução da vazão em pelo menos um mês do ano, principalmente nos meses do período seco. A recorrência de eventos máximos e a tendência de redução de vazões mínimas mostra a necessidade de um adequado planejamento e gestão de recursos hídricos para promover o desenvolvimento da região. No segundo capítulo foram utilizados dois métodos de seleção de covariáveis por importância, o Recursive Feature Elimination (RFE) e o Forward Feature Selection (FFS), para avaliar o efeito destes no desempenho dos modelos de aprendizado de máquina para predição de vazões diárias. Foram utilizados os modelos Regressão Adaptativa Multivariada (EARTH), Regressão Linear Múltipla (MLR) e Random *Forest* (RF). Os resultados mostraram que os três modelos de aprendizado de máquina utilizados apresentaram desempenho satisfatório com ambos os métodos de seleção de covariáveis, sendo que dentre eles o RF se sobressaiu. Observou-se, ainda, que a utilização do FFS, na maioria dos casos, proporcionou melhoria no desempenho dos modelos e reduziu o número de covariáveis selecionadas. Dessa forma, a utilização do aprendizado de máquina na predição de vazões diárias mostrou-se eficiente e a utilização do FFS para seleção de covariáveis deve ser considerada, pois tende a potencializar o desempenho dos modelos de aprendizado de máquina.

Palavras-chave: Análises de tendência. Aprendizado supervisionado. Modelagem hidrológica.

ABSTRACT

REIS, Guilherme Barbosa, M.Sc., Universidade Federal de Viçosa, July, 2020. Analysis of the hydrological regime at a brasilian southeastern watershed and prediction of daily streamflow temporal series using machine learning. Advisor: Demetrius David da Silva. Co-advisors: Elpídio Inácio Fernandes Filho and Michel Castro Moreira.

The increase in the occurrence of extreme events in watersheds highlights the need for a better hydrological regime understanding in areas with high vulnerability to flooding and water scarcity scenarios. This is important because essential activities such as food production, electricity generation, human food and water supply, hydraulic works safety, and maintenance of ecosystems are highly impacted by the hydrological regime. Also, knowledge of the hydrological behavior is essential to design and understand different scenarios and for that hydrological modeling is a fundamental tool. The main goal of the present work was to identify the streamflow behavior in the Piranga watershed, as well as to seek improvements in hydrological modeling aiming the daily streamflow prediction using machine learning. The entire study was carried out in the Piranga watershed, located in the State of Minas Gerais -Brazil. In the first chapter, statistical techniques were applied to the streamflow time series to characterize the hydrological behavior of the study area. Maximum and minimum extreme events were established and the non-parametric tests of Mann-Kendall, Pettitt, and Spearman were performed to verify temporal trends in the data. The results showed that the streamflow corresponding to the flood level at the watershed outlet has a low return period, which justifies the recurrent flooding problems. On the other hand, the analysis showed a reduction of the average long-term streamflow (Q_{mld}) and the average minimum streamflow of seven consecutive days associated with a 10-year return period $(Q_{7,10})$ compared to previous periods. It's noteworthy that all streamflow gauges had a streamflow reduction tendency in at least one month of the year, mainly the dry period months. The recurrence of maximum streamflow events and the tendency to reduce minimum streamflow shows the need for adequate water resources planning and management to promote the development of the region. In the second chapter, two methods of selection of covariates based on their relevance were used, the Recursive Feature Elimination (RFE) and the Forward Feature Selection (FFS). These methods were used to evaluate their effect on the performance of the machine learning models for daily streamflow prediction. The Multivariate Adaptive Regression Splines (EARTH), Multiple Linear Regression (MLR), and Random Forest (RF) models were used. Although the results showed that all the three machine learning models had a satisfactory performance with both methods of selection of covariates, the RF model stood out. It was also noted that the use of FFS, in most cases, increased the model's performance and reduced the number of selected covariates. Hence, the use of machine learning for daily streamflow prediction proved to be efficient, and the use of FFS to select covariates must be considered as it tends to enhance the machine learning model's performance.

Keywords: Trend analysis. Supervised learning. Hydrological modeling.

SUMÁRIO

INTRODUÇÃO GERAL	12
REFERÊNCIAS	14
CAPÍTULO 1:	16
Análise do comportamento das vazões em bacia hidrográfica com elevada fre	quência de
ocorrência de eventos extremos	16
1.1. INTRODUÇÃO	17
1.2. MATERIAL E MÉTODOS	18
1.2.1. Área de estudo	18
1.2.2. Obtenção dos dados hidrológicos	20
1.2.3. Determinação das vazões máximas, média e mínima	22
1.2.4. Identificação de tendências temporais das séries de vazão	23
1.2.4.1. Teste de Mann-Kendall (MK) e Mann-Kendall Modificado (MKM)	24
1.2.4.2. Teste de Pettitt (PT)	26
1.2.4.3. Correlação de Spearman (SP)	27
1.2.5. Fatores que influenciam a mudança de comportamento das vazões	29
1.2.6. Quantificação da tendência das vazões na foz da bacia	
1.3. RESULTADOS E DISCUSSÃO	31
1.3.1. Determinação das vazões máximas, média e mínima	31
1.3.2. Tendências temporais nas séries históricas de vazão	35
1.3.3. Análise da mudança de comportamento das vazões	
1.3.4. Análise da tendência das vazões na foz da bacia	45
1.4. CONCLUSÕES	48
1.5. REFERÊNCIAS	49
CAPÍTULO 2:	58
Efeito do método de seleção de variáveis no desempenho dos modelos de aprei	ndizado de
máquina para previsão de vazões diárias	58

2.1. INTRODUÇÃO	59
2.2. MATERIAL E MÉTODOS	60
2.2.1. Enquadramento metodológico	60
2.2.2. Área de estudo	62
2.2.3. Obtenção da base de dados	63
2.2.4. Pré-processamento das covariáveis	66
2.2.5. Eliminação de covariáveis altamente correlacionadas	67
2.2.6. Particionamento da amostra	67
2.2.7. Eliminação de covariáveis por importância (RFE e FFS)	68
2.2.8. Treinamento dos modelos de aprendizado de máquina	69
2.2.9. Avaliação dos modelos de aprendizado de máquina	70
2.3. RESULTADOS E DISCUSSÃO	71
2.3.1. Seleção de covariáveis para predição de vazão	71
2.3.2. Desempenho dos modelos de aprendizado de máquina	77
2.3.3. Método de seleção de variáveis	85
2.4. CONCLUSÕES	
2.5. REFERÊNCIAS	87
CONCLUSÕES GERAIS	93
APÊNDICES	94
APÊNDICE A	95
APÊNDICE B	96
APÊNDICE C	97
APÊNDICE D	112
APÊNDICE E	124

INTRODUÇÃO GERAL

Atividades essenciais como a produção de alimentos, abastecimento humano, saúde pública, geração de energia elétrica, obras hidráulicas, dentre outras, são extremamente influenciadas por alterações no regime hidrológico de uma bacia hidrográfica (MAHMOOD; JIA, 2019). Além disso, a intensificação de atividades antrópicas e as mudanças climáticas têm contribuído para alterações na amplitude e frequência de ocorrência de eventos extremos (WEI; LIU; ZHOU, 2013). Dessa forma, se faz cada vez mais necessário conhecer o comportamento de elementos hidrológicos, como por exemplo, a vazão dos cursos d'água, pois esta é essencial para a gestão de recursos hídricos (WILSON; HISDAL; LAWRENCE, 2010).

Para a caracterização do regime de vazão em corpos d'água são feitos estudos de vazão máxima, média e mínima (DO; WESTRA; LEONARD, 2017; DUDLEY et al., 2020; MOREIRA; SILVA, 2014). Além desses estudos, são feitas também análises de tendência nas séries históricas por meio da aplicação de testes estatísticos não paramétricos, como os testes de Mann Kendall (KENDALL, 1975; MANN, 1945), Pettitt (PETTITT, 1979) e correlação de Spearman (ANAND et al., 2018), o que contribui efetivamente para a compreensão do regime hidrológico, da variabilidade climática e para o desenvolvimento de modelos hidrológicos.

Além de conhecer o comportamento é preciso também projetar e entender diferentes cenários, sendo que para isso a modelagem hidrológica se torna fundamental. Os modelos podem ser empíricos/conceituais, estocásticos ou heurísticos, como os baseados em aprendizado de máquina (FAYAL, 2008). Os modelos de aprendizado de máquina apresentam uma grande vantagem em relação aos tradicionais, pois não necessitam de equações para descrever processos físicos (YASEEN et al., 2016).

A modelagem de vazão com o aprendizado de máquina vem sendo amplamente utilizada nos últimos anos e, muitas vezes, produzem melhores resultados que metodologias tradicionais (DEO; ŞAHIN, 2016; PETTY; DHINGRA, 2018; WORLAND; FARMER; KIANG, 2018).

As principais categorias de aprendizado de máquina são o aprendizado supervisionado, o não supervisionado e por reforço (MISHRA, 2019), sendo que o aprendizado supervisionado é comumente utilizado na modelagem de dados hidrológicos. Nessa técnica, para formar os modelos, os algoritmos buscam identificar o padrão nos dados e utilizá-lo para predizer novos valores (DEY, 2016).

Uma etapa muito importante na modelagem hidrológica com aprendizado de máquina, que se ignorada pode causar diversos problemas ao modelo, é a seleção de covariáveis. Neste tipo de modelagem inúmeras variáveis são candidatas a preditoras do modelo, no entanto, um número excessivo de covariáveis prejudica a precisão e estabilidade do modelo (CHEN et al., 2018), além de demandar grande quantidade de memória e custo computacional (BOLÓN-CANEDO; SÁNCHEZ-MAROÑO; ALONSO-BETANZOS, 2015). Logo, deve-se selecionar o conjunto ideal de covariáveis, eliminando aquelas que possuem baixa informação preditiva, são redundantes ou fortemente correlacionadas (VIEIRA; SOUSA; RUNKLER, 2010). Atualmente, um método muito utilizado para seleção do subconjunto ideal de covariáveis é o *Recursive Feature Elimination* (RFE), no entanto, o RFE não elimina variáveis que podem causar ajuste excessivo e, por isso, outros métodos de seleção de variáveis, como o *Forward Feature Selection* (FFS) devem ser testados (MEYER et al., 2018).

Sendo assim, o objetivo geral do presente trabalho foi identificar o comportamento atual das vazões na bacia do rio Piranga de forma a auxiliar no processo de tomada de decisão na gestão de recursos hídricos, bem como buscar melhorias na modelagem hidrológica utilizando aprendizado de máquina para dar maior suporte e precisão na predição de vazões diárias.

No primeiro capítulo (Artigo 1) do presente trabalho, intitulado "Análise do comportamento das vazões em bacia hidrográfica com elevada frequência de ocorrência de eventos extremos", foram utilizadas técnicas estatísticas para fins de análise de tendências e identificação de eventos extremos com o objetivo de caracterizar o comportamento das vazões na bacia hidrográfica do rio Piranga.

O segundo capítulo (Artigo 2), intitulado "Efeito do método de seleção de variáveis no desempenho dos modelos de aprendizado de máquina para previsão de vazão diária", buscou analisar o efeito da seleção de variáveis com os métodos *Recursive Feature Elimination* (RFE) e *Forward Feature Selection* (FFS) no desempenho dos modelos de aprendizado de máquina para predição de séries temporais de vazão diária na bacia do rio Piranga.

REFERÊNCIAS

- ANAND, J. et al. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. Journal of Hydrology: Regional Studies, v. 16, n. February, p. 32–53, 2018.
- BOLÓN-CANEDO, V.; SÁNCHEZ-MAROÑO, N.; ALONSO-BETANZOS, A. Recent advances and emerging challenges of feature selection in the context of big data. Knowledge-Based Systems, v. 86, p. 33–45, 1 set. 2015.
- CHEN, J. et al. A novel variable selection method based on stability and variable permutation for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, v. 182, p. 188–201, 15 nov. 2018.
- DEO, R. C.; ŞAHIN, M. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental Monitoring and Assessment, v. 188, n. 2, p. 90, 16 fev. 2016.
- DEY, A. Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technologies, v. 7, n. 3, p. 1174–1179, 2016.
- DO, H. X.; WESTRA, S.; LEONARD, M. A global-scale investigation of trends in annual maximum streamflow. Journal of Hydrology, v. 552, p. 28–43, 2017.
- DUDLEY, R. W. et al. Low streamflow trends at human-impacted and reference basins in the United States. Journal of Hydrology, v. 580, n. April 2019, p. 124254, 2020.
- FAYAL, M. A. A. Previsão de Vazão por Redes Neurais Artificiais e TransformadaWavelet. [s.l.] Pontificia Universidade Católica do Rio de Janeiro PUC-Rio, 2008.
- KENDALL, M. G. Rank Correlation Methods. London: Griffin, 1975.
- MAHMOOD, R.; JIA, S. Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Science of The Total Environment, v. 675, p. 122–140, 20 jul. 2019.
- MANN, H. B. Nonparametric Tests Against Trend. Econometrica Jornal of the Econometric Society, v. 13, n. 3, p. 245–259, 1945.

- MEYER, H. et al. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling and Software, v. 101, p. 1–9, 1 mar. 2018.
- MISHRA, P. PyTorch Recipes: A problem-solution approach. eletronic ed. Bangalore: Apress, 2019.
- MOREIRA, M. C.; SILVA, D. D. Análise de Métodos para Estimativa das Vazões da Bacia do Rio Paraopeba. **Revista Brasileira de Recursos Hídricos**, v. 19, n. 2, p. 313–324, 2014.
- PETTITT, A. N. A Non-Parametric Approach to the Change-Point Problem. Journal of the Royal Statistical Society. Series C (Applied Statistics), v. 28, n. 2, p. 126–135, 1979.
- PETTY, T. R.; DHINGRA, P. Streamflow Hydrology Estimate Using Machine Learning (SHEM). JAWRA Journal of the American Water Resources Association, v. 54, n. 1, p. 55–68, 1 fev. 2018.
- VIEIRA, S. M.; SOUSA, J. M. C.; RUNKLER, T. A. Two cooperative ant colonies for feature selection using fuzzy models. Expert Systems with Applications, v. 37, n. 4, p. 2714–2723, abr. 2010.
- WEI, X.; LIU, W.; ZHOU, P. Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: A critical review of research methods. Water (Switzerland), v. 5, n. 2, p. 728–746, 2013.
- WILSON, D.; HISDAL, H.; LAWRENCE, D. Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections. Journal of Hydrology, v. 394, n. 3–4, p. 334–346, 26 nov. 2010.
- WORLAND, S. C.; FARMER, W. H.; KIANG, J. E. Improving predictions of hydrological low-flow indices in ungaged basins using machine learning. Environmental Modelling & Software, v. 101, p. 169–182, 1 mar. 2018.
- YASEEN, Z. M. et al. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. Journal of Hydrology, p. 603–614, 2016.

CAPÍTULO 1:

Análise do comportamento das vazões em bacia hidrográfica com elevada frequência de ocorrência de eventos extremos

RESUMO: Diante da recorrência de eventos extremos em bacias hidrográficas, surge a necessidade do entendimento do comportamento hidrológico em áreas com alta vulnerabilidade a cenários de enchentes e de escassez hídrica. O presente trabalho teve como objetivo caracterizar o comportamento das vazões na bacia hidrográfica do rio Piranga, que sofre com eventos extremos máximos e com longos períodos de estiagem. Para tanto, as séries históricas de sete estações fluviométricas presentes na bacia foram analisadas. O período estudado foi de 44 anos de dados (1975 a 2018), tendo sido determinadas as vazões: máximas, associadas aos períodos de retorno de 5, 10, 20, 50 e 100 anos; média de longa duração (Q_{mld}) e mínima média de sete dias consecutivos, associada a um período de retorno de 10 anos (Q7,10). A fim de se identificar a existência de tendência nos dados de vazão máxima, média e mínima em escala anual e mensal, foram aplicados às séries históricas das estações os testes estatísticos não paramétricos de Mann-Kendall (MK), Pettitt (PT) e Spearman (S). Para melhor compreender as tendências das vazões na bacia, também foram analisados os dados de precipitação, uso e ocupação da terra e demanda hídrica. Os resultados mostram que na estação fluviométrica localizada mais próxima da foz da bacia, no município de Ponte Nova, a vazão que faz o rio atingir a cota de inundação está associada a um período de retorno de dois anos, o que explica o fato do município apresentar problemas recorrentes de inundação. A análise da Q_{7,10} das estações mostrou que estas reduziram em relação a períodos anteriores, comportamento também observado para a Q_{mld} na maioria das estações. Foi possível observar, pela análise de tendência das vazões, que todas as estações apresentaram alguma tendência de redução da vazão, principalmente nos meses do período seco. Em escala anual, também foram evidenciadas tendências de redução nas vazões médias e mínimas. Nenhuma tendência significativa foi evidenciada para as vazões máximas anuais. A alteração no comportamento das vazões pode estar associada ao efeito combinado da distribuição da precipitação ao longo do ano, do aumento da demanda hídrica e de alterações no uso e ocupação das terras. Na bacia do rio Piranga é frequente a ocorrência de eventos extremos máximos e há tendência de redução das vazões mínimas, tornando necessário um adequado programa de planejamento e gestão de recursos hídricos, visando reduzir os impactos dos eventos hidrológicos extremos.

Palavras-chave: Estacionariedade; Tendência; Eventos Extremos.

1.1. INTRODUÇÃO

Identificar e entender o comportamento dos dados hidrológicos é essencial para gerir os recursos hídricos de forma eficiente em todos os níveis, seja ele local, regional ou nacional (WILSON; HISDAL; LAWRENCE, 2010). Tais informações são fundamentais para inferir sobre a disponibilidade hídrica de uma bacia hidrográfica ou região, o que afeta diretamente atividades importantes, tais como a agricultura, a geração de energia elétrica, a saúde pública, a manutenção de ecossistemas e o abastecimento humano (JAISWAL; LOHANI; TIWARI, 2015; MAHMOOD; JIA, 2019; WILSON; HISDAL; LAWRENCE, 2010).

De modo geral, as características hidrológicas sofrem influência das mudanças climáticas, do uso da terra, da gestão de infraestrutura hídrica, dentre outros fatores (RAJE, 2014; RODRIGUES et al., 2019; SALARIJAZI et al., 2012). Essa dinâmica do ambiente faz com que seja necessário se atentar a novos padrões que podem surgir no comportamento dos dados hidrológicos.

Dentre as variáveis utilizadas para identificar e entender o comportamento hidrológico de uma bacia hidrográfica destaca-se a vazão dos cursos d'água. A caracterização das condições de escoamento em um curso d'água é feita através de estudos das vazões máxima, média e mínima, sendo fundamentais para a tomada de decisão na gestão de recursos hídricos (DO; WESTRA; LEONARD, 2017; DUDLEY et al., 2020; MOREIRA; SILVA, 2014).

A vazão média de longa duração permite caracterizar a disponibilidade hídrica de uma bacia hidrográfica e o seu potencial energético, uma vez que, abstraindo-se as perdas por evaporação e infiltração, ela corresponde à maior vazão possível de ser regularizada no curso d'água. Já a importância de conhecer as vazões máximas e mínimas está relacionada a ocorrência de eventos extremos, que podem causar diversas perdas para sistemas humanos e naturais, podendo resultar em desastres (CAMUFFO; DELLA VALLE; BECHERINI, 2018).

Outra análise muito utilizada para identificar o comportamento da vazão nos cursos d'água é a análise de tendência em séries temporais (DIOP et al., 2018; FATHIAN et al., 2016; MAHMOOD; JIA, 2019). Para Joseph, Falcon e Sharif (2013), a identificação de tendências contribui para a compreensão da variabilidade climática global e é essencial para o desenvolvimento de modelos hidrológicos e a adoção de um adequado planejamento e gestão dos recursos hídricos. Há, no entanto, pouco entendimento de como os padrões espaciais e temporais das vazões nos cursos d'água mudaram ou estão mudando.

Para a análise de tendência em séries temporais, testes não paramétricos são mais adequados, uma vez que os dados de vazão dos corpos d'água não seguem uma normalidade (FU; BARBER; CHEN, 2010; OYERINDE et al., 2015; SONALI; NAGESH KUMAR, 2013). Dentre os testes não paramétricos, os de Mann-Kendall (KENDALL, 1975; MANN, 1945), Pettitt (PETTITT, 1979) e correlação (R) de Spearman são muito utilizados para análise de tendência em séries temporais de dados hidroclimáticos, permitindo confirmar a estacionariedade, ou não, de uma série histórica (ANAND; GOSAIN; KHOSA, 2018; CHEN et al., 2019; FATHIAN et al., 2016; MASIH et al., 2011).

No estado de Minas Gerais, a bacia hidrográfica do rio Piranga, que abriga a nascente do rio Doce, é frequentemente afetada por enchentes. Essa situação pode ser evidenciada com maior gravidade na região onde se localiza a sua foz, devido à concentração de fluxo. Além disso, o acentuado assoreamento dos rios na região, em decorrência do uso e ocupação desordenados das áreas urbanas e rurais, causa diminuição na capacidade de transporte destes e, consequentemente, aumenta os riscos de enchentes (SALVADOR, 2014).

Apesar dos problemas associados a ocorrência de eventos máximos de vazão, a bacia do rio Piranga também sofre com problemas associados a estiagem. Estudos recentes mostram que em mais de 50% dos meses a bacia do rio Doce apresentou algum nível de seca, sendo que no ano hidrológico de 2014/2015, a bacia teve sua condição climática classificada como de emergência (LIMA et al., 2019).

Diante da recorrência de eventos extremos em bacias hidrográficas, surge a necessidade de um melhor entendimento do comportamento hidrológico em áreas com alta vulnerabilidade a cenários de enchentes e de escassez hídrica. Sendo assim, o presente trabalho teve como objetivo caracterizar o comportamento das vazões na bacia hidrográfica do rio Piranga, analisando a ocorrência de eventos extremos e de tendências nas séries históricas de vazões, cujos resultados podem contribuir para a tomada de decisão em ações de planejamento e gestão dos recursos hídricos.

1.2. MATERIAL E MÉTODOS

1.2.1. Área de estudo

O estudo foi realizado na bacia hidrográfica do rio Piranga, pertencente à bacia do rio Doce, localizada na porção leste do estado de Minas Gerais (Figura 1.1). A bacia faz parte da Unidade de Gestão de Recursos Hídricos do Rio Piranga (UGRH1-Piranga), conforme codificação estabelecida pela Deliberação Normativa n° 51/2016, do Comitê da Bacia Hidrográfica do Rio Doce (CBH-DOCE, 2016). A bacia possui uma área de 6.606 km², que

corresponde a aproximadamente 38% do território da UGRH1 Piranga e a 8% do território da bacia do rio Doce (ECOPLAN-LUME, 2010a).

Figura 1.1. Localização da bacia hidrográfica do rio Piranga.

A maior parte da bacia do rio Piranga, aproximadamente 57%, é coberta por pastagem. O segundo uso mais abrangente, cerca de 25%, é vegetação nativa e, na sequência, áreas de cultivo e área urbana, com 14% e 0,52%, respectivamente (MAPBIOMAS, 2019). Neste último uso, destacam-se os municípios de Viçosa, com 72.220 habitantes, seguido de Ponte Nova, com 57.390 habitantes (IBGE, 2010).

O relevo da bacia varia de 395 a 1.447 m, com altitude média de 760 m (Figura 1.2a). A declividade média da bacia é de 27%, o que segundo a EMBRAPA (1979) classifica o relevo como fortemente ondulado (Figura 1.2b). Segundo UFV - FEAM - CETEC - UFLA (2010) a bacia hidrográfica do rio Piranga contém Argissolo Vermelho, Argissolo Vermelho Amarelo, Latossolo Vermelho, Latossolo Vermelho Amarelo e Cambissolo Háplico, sendo o tipo de solo predominante o Latossolo Vermelho Amarelo (Figura 1.2c). Em relação ao clima (Figura 1.2d), verifica-se que, segundo a classificação de Köppen, as áreas de cabeceira da bacia apresentam clima Cwb (Subtropical úmido, com inverno seco e verão temperado), enquanto as áreas centrais e mais a jusante são classificadas como Cwa (Subtropical úmido,

com inverno seco e verão quente), sendo uma pequena porção, ao norte, classificada como Aw (Tropical com inverno seco) (ALVARES et al., 2013).

Figura 1.2. Bacia do rio Piranga: a) modelo digital de elevação (MDE); b) declividade; c) tipo de solo e d) classificação climática segundo Köppen.

1.2.2. Obtenção dos dados hidrológicos

No estudo foram utilizadas as estações fluviométricas e pluviométricas pertencentes à Rede Hidrometeorológica Nacional da Agência Nacional de Águas (ANA), cujo inventário e suas respectivas séries históricas de dados encontram-se disponíveis no Sistema de Informações Hidrológicas (HidroWeb) (https://www.snirh.gov.br/hidroweb/apresentacao).

A seleção das estações foi realizada em duas etapas. A primeira consistiu em selecionar as estações que possuíam influência na área de estudo. Para as estações fluviométricas, foram selecionadas as que se encontram localizadas no interior da bacia. Já para as estações pluviométricas, a identificação das estações com influência na bacia foi realizada pelo método do polígono de Thiessen (Figura 1.3), conforme também realizado em diversos outros estudos (CHIAUDANI; DI CURZIO; RUSI, 2019; FRAGA et al., 2020; KAR et al., 2015; SHARMA; PATEL; JOTHIPRAKASH, 2019). A segunda etapa consistiu em selecionar, considerando as estações pré-selecionadas, as quais possuíam série histórica de dados igual ou superior a 30 anos.

Figura 1.3. Estações pluviométricas e fluviométricas utilizadas no estudo.

A seleção das estações resultou na escolha de sete estações fluviométricas e 14 estações pluviométricas (Tabela 1.1), sendo considerado um período base de dados de 44 anos (1975 a 2018) para a realização de todas as análises do presente trabalho. O início do período base em 1975 é justificado por ser o ano do início da coleta de dados nas estações menos antigas da bacia (estação fluviométrica 56110005 e estação pluviométrica 02042018). Após o ano de 2014 o Hidroweb não fornece séries consistidas, logo, para garantir a confiabilidade

dos dados neste período foi feita uma análise visual plotando os dados de vazão pelo tempo e verificando a ocorrência ou não de valores discrepantes.

<i></i>		Latitude	Longitude	Área de	rea de Período de
Código Nome		(Graus decimais)	(Graus decimais)	drenagem / Altitude	dados
	Estações fluviométricas				
				Área (Km ²)	
56028000	Piranga	-20,69	-43,30	1.400	1939-2018
56055000	Braz Pires	-20,85	-43,24	1.090	1939-2018
56065000	Senador Firmino	-20,91	-43,10	297	1942-2018
56075000	Porto Firme	-20,67	-43,09	4.260	1939-2018
56085000	Seriquite	-20,72	-42,92	342	1942-2018
56090000	Fazenda Varginha	-20,71	-42,10	328	1942-2018
56110005	Ponte Nova-Jusante	-20,38	-42,90	6.230	1975-2018
	Estações pluviométricas				
				Altitude (m)	
02042016	São Miguel do Anta	-20,68	-42,81	583	1967-2018
02042018	Ponte Nova-Jusante	-20,38	-42,90	350	1975-2018
02043005	Conselheiro Lafaiete	-20,67	-43,78	996	1941-2018
02043010	Piranga	-20,69	-43,30	620	1942-2018
02043011	Fazenda Paraíso	-20,39	-43,18	477	1942-2018
02043014	Porto Firme	-20,67	-43,09	598	1942-2018
02043018	Carandaí	-20,96	-43,80	1057	1942-2018
02043025	Usina da Brecha	-20,52	-43,02	529	1960-2018
02043026	Braz Pires	-20,85	-43,24	632	1967-2018
02043027	Fazenda Ocidente	-20,29	-43,10	462	1967-2018
02143001	Guarani	-21,36	-43,05	398	1941-2018
02143003	Desterro do Melo	-21,15	-43,52	780	1942-2018
02143007	Vargem do Engenho	-21,19	-43,61	1120	1942-2018
02143017	Tabuleiro	-21,36	-43,25	502	1944-2018

 Tabela 1.1. Estações fluviométricas e pluviométricas utilizadas no estudo

1.2.3. Determinação das vazões máximas, média e mínima

Visando caracterizar as vazões na bacia do rio Piranga, foram determinadas as vazões máximas, média e mínima das estações fluviométricas da área de estudo, sendo consideradas as vazões: máximas associadas aos períodos de retorno de 5 (Q_{max5}), 10 (Q_{max10}), 20 (Q_{max20}), 50 (Q_{max50}) e 100 (Q_{max100}) anos; média de longa duração (Q_{mld}); e mínima da média de sete dias consecutivos associada a um período de retorno de 10 anos ($Q_{7,10}$), que é a vazão mínima de referência utilizada no estado de Minas Gerais para fins de concessão da outorga dos direitos de uso de recursos hídricos.

Para a determinação das vazões supracitadas, o ano hidrológico foi definido como sendo de novembro a outubro, com o semestre chuvoso concentrado de novembro a abril e o semestre seco de maio a outubro. Tal determinação levou em consideração o número de ocorrência de Q_7 (vazão mínima média de sete dias consecutivos) em cada mês para as sete estações fluviométricas utilizadas no estudo ao longo do período base, conforme utilizado por Aires (2018). A partir da data de ocorrência das Q_7 's, verificou-se maior incidência nos meses de setembro e outubro e baixa ocorrência no mês de novembro. No Apêndice A apresenta-se o número de ocorrências de Q_7 nos diferentes meses do ano para cada uma das sete estações fluviométricas localizadas na área de estudo.

Para a determinação da Q_{max5} , Q_{max10} , Q_{max20} , Q_{max50} , Q_{max100} e $Q_{7,10}$ foram descartados os anos que apresentavam quaisquer falhas nos períodos de maior ocorrência das vazões que estavam sendo analisadas. Já para o cálculo da Q_{mld} foram descartados todos os anos com percentual de falhas maior ou igual a 5%, independente do período de ocorrência da falha. O descarte de anos com falhas seguiu a metodologia adotada por Oliveira (2008).

A fim de se obter as vazões com diferentes períodos de retorno, foram aplicadas às séries de vazão funções de densidade de probabilidade (PDF). Para a estimativa das vazões máximas, foram utilizadas as distribuições Gumbel, Pearson 3, Logpearson 3, Lognormal 2 e Lognormal 3, enquanto para as vazões mínimas as distribuições Weibull, Pearson 3, Logpearson 3, Lognormal 2 e Lognormal 3. Foi escolhida como estimativa dos valores de vazão a distribuição de densidade de probabilidade que apesentou a menor amplitude do intervalo de confiança dentre as estimativas obtidas em cada distribuição.

No processamento das séries históricas para a obtenção das vazões máximas, média e mínima foi utilizado o *software* SisCAH 1.0 (SOUSA, 2009), desenvolvido pelo Grupo de Pesquisa em Recursos Hídricos (GPRH), vinculado ao Departamento de Engenharia Agrícola da Universidade Federal de Viçosa.

1.2.4. Identificação de tendências temporais das séries de vazão

As análises de tendência foram realizadas para as séries mensais e anuais de vazões máxima, média e mínima (Q₇). As séries mensais foram compostas por valores de vazão média mensal, máxima diária do mês ou mínima mensal para cada mês do ano ao longo do período base (1975 a 2018). Já as séries anuais foram constituídas por valores de vazão média anual, máxima diária do ano ou mínima anual para cada ano do período estudado.

Para a identificação de tendências nas séries temporais foram utilizados três métodos estatísticos não paramétricos: Mann-Kendall (MK) (KENDALL, 1975; MANN, 1945) ou

Mann-Kendall Modificado (MKM); Pettitt (PT) (PETTITT, 1979); e a correlação de Spearman (SP) (GAUTHIER, 2001). O teste de SP só foi aplicado nos casos em que houve divergência entre os resultados dos testes de MK ou MKM e PT. Para a realização dos testes foi adotado um nível de significância (α) de 5% (0,05), conforme também adotado por outros autores (AIRES et al., 2020; FATHIAN et al., 2016; MUDBHATKAL et al., 2017).

1.2.4.1. Teste de Mann-Kendall (MK) e Mann-Kendall Modificado (MKM)

A aplicação do teste de MK exige que os dados sejam independentes e aleatórios (NEETI; EASTMAN, 2011). Portanto, para a verificação da independência da série temporal foi utilizado o teste de autocorrelação serial e para a aleatoriedade o teste de Run (SALVIANO; GROPPO; PELLEGRINO, 2016).

No teste de autocorrelação serial a série foi correlacionada com ela mesma defasada no tempo. Havendo correlações acima do limite da significância, os valores da série foram considerados dependentes. Já no teste de Run (THOM, 1966) foi contabilizado o número de oscilações de valores abaixo e acima da mediana de uma série de dados naturalmente ordenada. Sua distribuição amostral e a variância da distribuição foram estimadas, respectivamente, pelas equações:

$$E(u) = \frac{2N_1N_2}{N_1 + N_2} + 1 \tag{1.1}$$

$$Var(u) = \frac{2N_1N_2(2N_1N_2 - N_1 - N_2)}{(N_1 + N_2)^2(N_1 + N_2 - 1)}$$
(1.2)

em que:

E(u)	=	distribuição amostral, adimensional;
Var(u)	=	variância da distribuição, adimensional;
u	=	número total de oscilações, adimensional;
N_1	=	número de dados na série abaixo da mediana, adimensional; e
N_2	=	número de dados na série acima da mediana, adimensional.

A hipótese nula (H_0) de que a distribuição ocorre normalmente e que a amostra é aleatória foi testada pela estatística da Equação 1.3, tendo-se que quando o valor de Z estava no intervalo tabelado, a hipótese H_0 foi aceita (CERA; FERRAZ, 2015).

$$Z = \frac{u + E(u)}{\sqrt{Var(u)}}$$
(1.3)

em que Z corresponde a estatística do teste de Run.

Quando os dados foram considerados independentes e aleatórios, o teste de MK foi utilizado para determinar se a série de dados possuía uma tendência temporal de alteração estatisticamente significativa. Seu conceito matemático pode ser descrito pelo cálculo das estatísticas S, Vas(S) e índice Z_{MK} , conforme equações (DIOP et al., 2018):

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} sign(x_j - x_k)$$
(1.4)

$$sgn(x_{j} - x_{k}) = \begin{cases} +1, & se(x_{j} - x_{k}) > 0\\ 0, & se(x_{j} - x_{k}) = 0\\ -1, & se(x_{j} - x_{k}) < 0 \end{cases}$$
(1.5)

$$Var(S) = \frac{[n(n-1)(2n+5)] - \sum_{i=1}^{n} t_i(t_i - 1)(2t_i + 5)}{18}$$
(1.6)

em que:

valores da série, m³/s; $x_i e x_k$ = estatística do teste de MK, representa o somatório da diferença para a par de S = todos os valores da série (x_i) em relação a seu valor futuro (x_k), (m^3/s); sinal da operação $(x_i - x_k)$, adimensional; sgn = variância de S, $(m^3/s)^2$; Var(S) = tamanho da série, adimensional; e n =

t_i = Número de valores iguais para um dado valor i da série, adimensional.

O índice Z_{MK} geralmente segue uma distribuição normal padrão para n maior que 10. Valores de Z_{MK} positivos indicam tendência de crescimento, enquanto valores negativos indicam tendência de redução.

$$Z_{MK} = \begin{cases} \frac{S-1}{\sqrt{Var(S)}}, & se \ S > 0\\ 0, & se \ S = 0\\ \frac{S+1}{\sqrt{Var(S)}}, & se \ S < 0 \end{cases}$$
(1.7)

Para os casos em que a série não obedeceu as condições de independência e aleatoriedade, foi utilizado o teste de MKM (HAMED; RAO, 1998), no qual a variância deve ser modificada, conforme a Equação 1.8.

$$Var \times (S) = Var(S) \cdot \frac{n}{n^*}$$
(1.8)

$$n^* = \frac{n}{1 + 2\sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right) \cdot r_k}$$
(1.9)

$$r_{k} = \frac{\frac{1}{n-k} \sum_{t=1}^{n-k} \left[X_{t} - \left(\frac{1}{n} \sum_{t=1}^{n} X_{t}\right) \right] \left[X_{t+k} - \left(\frac{1}{n} \sum_{t=1}^{n} X_{t}\right) \right]}{\frac{1}{n} \sum_{t=1}^{n} \left[X_{t} - \left(\frac{1}{n} \sum_{t=1}^{n} X_{t}\right) \right]^{2}}$$
(1.10)

em que:

Var x (S) = variância modificada, (m³/s)²; n* = número efetivo de observações para explicar a correlação nos dados, adimensional; r. = coeficiente de correlação serial no *lag-k* adimensional:

$$r_k$$
 = coeficiente de correlação serial no *lag-k*, adimensional;

t e k = posições dos dados na série, adimensional; e

 $X_t e X_{t+k} = valores dos dados na posição t ou t+k, m³/s.$

O índice Z_{MK} corrigido (Z_{MKc}) foi determinado pela equação:

$$Z_{MKc} = \begin{cases} \frac{S-1}{\sqrt{Var \times (S)}}, & se \ S > 0\\ 0, & se \ S = 0\\ \frac{S+1}{\sqrt{Var \times (S)}}, & se \ S < 0 \end{cases}$$
(1.11)

O p-*value* (valor de probabilidade) para o teste de MK ou MKM foi estimado usando uma função de distribuição normal cumulativa, seguindo as Equações 1.12 e 1.13.

$$p = 0.5 - \Phi(|Z|), (Z = Z_{MK}, Z_{MKC})$$
(1.12)

$$\Phi(|Z|) = \frac{1}{\sqrt{2\pi}} \int_0^{|Z|} e^{-t^2/2} dt$$
(1.13)

A um nível de significância de 5%, se *p*-value $\leq 0,05$, a existência de tendência foi considerada estatisticamente significativa.

1.2.4.2. Teste de Pettitt (PT)

A hipótese nula (H₀) do teste PT admite ausência do ponto de mudança na série. Caso as duas amostras sejam discriminadas de populações diferentes, o teste identifica o ponto de ruptura. A estatística $U_{t,N}$ do teste foi obtida pela Equação 1.14 (ULIANA et al., 2014).

$$U_{t,N} = U_{t-1,N} + \sum_{j=1}^{N} sgn(x_t - x_j) \quad para \ t = 2, ..., N$$
(1.14)

em que:

A posição do possível ponto de mudança foi indicada pelo valor máximo absoluto $|U_{t,N}|$. Sendo assim, a estatística $k_{(t)}$, apresentada na Equação 1.15, representa o ponto de mudança t associado ao nível de significância p (Equação 1.16).

$$k_{(t)} = \max_{1 \le t \le N} \left| U_{t,N} \right|$$
(1.15)

$$\rho \simeq 2exp\left\{\frac{-6(k_t^2)}{(N^3 + N^2)}\right\}$$
(1.16)

em que:

 $k_{(t)}$ = ponto de mudança, adimensional;

t = posição dos dados na série, adimensional; e

p = valor crítico associado a um nível de significância α , adimensional.

Quando o valor de p foi menor que o nível de significância adotado, a hipótese nula foi rejeitada, prevalecendo a hipótese alternativa (H_1) de mudança estatisticamente significativa na série histórica dos dados.

1.2.4.3. Correlação de Spearman (SP)

Em seguida, nos casos em que houve divergência dos resultados dos testes de MK ou MKM e PT, foi verificada a autocorrelação da série temporal utilizando a correlação de Spearman. Para um conjunto amostral {Xi, com i = 1,2,...,n}, onde n é o tamanho da série de dados, a hipótese nula (H₀) foi de que todos os valores (Xi) são independentes e distribuídos de forma idêntica. Por outro lado, a hipótese alternativa (H₁) foi de que Xi aumenta ou diminui com i, caracterizando a existência de uma tendência.

A estatística do teste foi determinada pela Equação 1.17 (MASIH et al., 2011; YUE; PILON; CAVADIAS, 2002).

$$D = \frac{6\sum_{i=1}^{n} [R(X_i) - i]^2}{n(n^2 - 1)}$$
(1.17)

em que:

 $\begin{array}{lll} i & = & posição dos valores na série, adimensional; \\ X_i & = & valores da série, m^3/s; \\ R(X_i) & = & rank do valor X_i entre os valores da série, adimensional; e \\ n & = & número de valores na série, adimensional. \end{array}$

Considerando a hipótese nula, a distribuição de D é assintoticamente normal, com média e variância calculadas, respectivamente, pelas Equações 1.18 e 1.19.

$$E(D) = 0 \tag{1.18}$$

$$Var(D) = \frac{1}{n-1} \tag{1.19}$$

Como a estatística D segue aproximadamente uma distribuição normal com média zero e variância Var(D), utilizou-se o índice Z_{SP} (Equação 1.20).

$$Z_{SP} = \frac{D}{\sqrt{Var(D)}}$$
(1.20)

O p-value (valor de probabilidade) para o teste de Spearman foi estimado usando uma função de distribuição normal cumulativa, conforme as Equações 1.21 e 1.22.

$$p = 0.5 - \Phi(|Z_{SP}|) \tag{1.21}$$

$$\Phi(|Z_{SP}|) = \frac{1}{\sqrt{2\pi}} \int_0^{|Z_{SP}|} e^{-t^2/2} dt$$
(1.22)

A um nível de significância de 5%, se *p-value* $\leq 0,05$ a existência de tendência foi considerada estatisticamente significativa. Nesse caso, o sinal positivo ou negativo do coeficiente R indicou a tendência de elevação ou de redução, respectivamente, já que corresponde à correlação dos valores da variável com o tempo (TRINDADE et al., 2017).

Todos os procedimentos descritos do item 1.2.4.1 (Teste de Mann-Kendall (MK) e Mann-Kendall Modificado (MKM)) ao item 1.2.4.3 (Correlação de Spearman (SP)) foram executados no software R versão 3.5.3 (R CORE TEAM, 2019). Os testes de MK, MKM, PT e SP utilizaram, respectivamente, os pacotes *Kendall* (MCLEOD, 2011), *modifiedmk* (PATAKAMURI; O'BRIEN, 2020), *trend* (POHLERT, 2020) e *stats* (R CORE TEAM, 2018). Para o teste de Run foi utilizado o pacote *randtests* (CAEIRO; MATEUS, 2015), enquanto que para o teste de autocorrelação foi utilizado o pacote *stats*.

1.2.5. Fatores que influenciam a mudança de comportamento das vazões

A fim de se buscar compreender os resultados da análise de tendência nos dados de vazão, foram avaliados três fatores: a tendência nos dados de precipitação; as mudanças ocorridas no uso e ocupação das terras; e a evolução das demandas pelo uso dos recursos hídricos na bacia.

Os dados de totais mensais de precipitação tiveram eventuais falhas preenchidas pelo método de regressão linear simples (BERTONI; TUCCI, 2009). No Apêndice B estão apresentadas as estações de apoio adotadas para o preenchimento de falhas das estações pluviométricas, bem como o valor do coeficiente de determinação (\mathbb{R}^2) e os coeficientes β_0 e β_1 da regressão linear ajustada.

Após o preenchimento, foram estabelecidas séries de precipitação total anual, precipitação total mensal, precipitação total no semestre seco e precipitação total no semestre chuvoso para cada estação pluviométrica. Com o intuito de verificar se a mudança no comportamento das vazões teve relação com a precipitação, foram aplicados às séries de cada estação pluviométrica os testes MK ou MKM, PT e SP.

Os dados de uso e ocupação da terra foram obtidos da Coleção 4.1 de mapas do Projeto MapBiomas (MAPBIOMAS, 2019). Este fornece mapas anuais de uso e cobertura da terra para todo o território brasileiro no período de 1985 até os dias atuais. Foi realizado o download do mapa de 1985 (por ser o ano mais antigo fornecido pelo projeto), do mapa de 2018 (por ser o ano final do período base utilizado no estudo) e de mapas intermediários, referentes aos anos que representaram os principais pontos de mudança de tendência nos dados fluviométricos obtidos pelo teste de Pettitt.

No total, 11 classes de uso e ocupação foram obtidas em todos os anos avaliados. Para facilitar a análise, optou-se por mesclar algumas das classes fornecidas nos mapas (Tabela 1.2).

Nomenclatura do MapBiomas 4.1	Nomenclatura adotada	
Formação florestal	Floresta florestal (FF)	
Formação savânica	Formação savânica (FS)	
Floresta plantada	Floresta plantada (FP)	
Pastagem	Agropecuária (AG)	
Cultura anual perene	Agropecuária (AG)	
Mosaico agricultura e pastagem	Agropecuária (AG)	
Infraestrutura urbana	Infraestrutura urbana (IU)	
Outra área não vegetada	Infraestrutura urbana (IU)	
Afloramento rochoso	Afloramento rochoso (AR)	
Mineração	Mineração (MI)	
Rio, lago e oceano	Corpos hídricos (CH)	

Tabela 1.2. Uso e ocupação da terra obtidas no MapBiomas para a bacia do rio Piranga

Para quantificar a mudança de uso da terra como desmatamento, expansão agropecuária e urbana entre os anos adotados foi utilizada a ferramenta *Land Change Modeler* (LCM) do *software* Idrisi Selva (ABUELAISH; OLMEDO, 2016; RODRIGUES et al., 2019).

A evolução da demanda de recursos hídricos foi quantificada por meio dos volumes de água superficial e subterrânea e das vazões de água superficial outorgadas na bacia em cada ano. Para cada estação fluviométrica foram contabilizados os volumes e as vazões outorgadas dentro de sua área de drenagem. Estes dados foram obtidos pela Infraestrutura de Dados Espaciais do Sistema Estadual de Meio Ambiente e Recursos Hídricos de Minas Gerais (IDE-SISEMA) (SISEMA, 2019). Foi utilizada toda a disponibilidade de dados de volume e vazão outorgados para a região do estudo, de 2005 até 2018, considerando o período da vigência de cada outorga.

1.2.6. Quantificação da tendência das vazões na foz da bacia

Embora os testes de MK, MKM, PT e SP sejam eficientes na detecção de tendências, eles não fornecem a sua magnitude. Para realizar a quantificação da tendência na foz da bacia do rio Piranga aplicou-se as análises de inclinação de Theil-Sen (SEN, 1968; THEIL, 1950) e de mudança relativa à média (MR) (DIOP et al., 2018) aos dados da série histórica de vazão da estação 56110005. A inclinação de Theil-Sen é uma estimativa robusta da magnitude de uma tendência (ONYUTHA et al., 2016) e é calculada pela Equação 1.23.

$$B = mediana\left(\frac{x_j - x_i}{t_j - t_i}\right) \tag{1.23}$$

em que:

B = declividade da reta de tendência, m³.s⁻¹.ano⁻¹; $t_i e t_j = tempo de ocorrência dos valores da série, anos; e$ $x_i e x_j = valores da série nos tempos t_i e t_j, m³/s.$

Já a mudança relativa à média foi calculada pela Equação 1.24.

$$MR = 100 * \frac{n \cdot B}{|X|}$$
(1.24)

em que:

MR = mudança relativa à média, %;
 n = período com tendência, ano;
 |X| = valor médio absoluto da série temporal.

Para essa etapa da análise, foram avaliadas apenas as séries históricas mensais e anuais da estação 56110005, sendo essa escolhida por estar localizada próxima à foz da bacia do rio Piranga e, portanto, possuir a maior área de drenagem dentre todas as estações analisadas (aproximadamente 95% da área total da bacia do rio Piranga). Para a quantificação da magnitude da tendência utilizou-se o pacote *trend* do *software R* (POHLERT, 2020).

1.3. RESULTADOS E DISCUSSÃO

1.3.1. Determinação das vazões máximas, média e mínima

Na Tabela 1.3 pode-se observar os eventos de vazão máxima associados aos períodos de retorno de 5, 10, 20, 50 e 100 anos, bem como a PDF com maior aderência e o número de eventos na série histórica de cada estação associados a períodos de retorno maiores ou iguais aos especificados.

Tabela 1.3. Eventos máximos associados aos períodos de retorno de 5, 10, 20, 50 e 100 anos, distribuição probabilística adotada (PDF) e número de eventos nas séries históricas (N) associados a períodos de retorno (T) maiores ou iguais aos especificados

Estação	T (anos)	Evento (m ³ /s)	PDF	Ν
	5	190,94	Gumbel	19
56028000	10	234,22	Gumbel	8
	20	275,75	Gumbel	3
	50	329,49	Gumbel	1
	100	369,76	Gumbel	0
	5	144,03	Lognormal 3	14
	10	160,41	Lognormal 3	7
56055000	20	174,32	Lognormal 3	3
	50	190,41	Lognormal 3	0
	100	201,39	Lognormal 3	0
	5	40,06	Lognormal 3	16
	10	46,17	Lognormal 3	6
56065000	20	51,76	Lognormal 3	2
	50	58,72	Lognormal 3	1
	100	63,79	Lognormal 3	0
	5	489,92	Gumbel	22
	10	598,42	Gumbel	10
56075000	20	702,59	Gumbel	6
	50	837,43	Gumbel	3
	100	938,47	Gumbel	1
	5	64,99	Lognormal 3	15
	10	77,64	Lognormal 3	6
56085000	20	89,08	Lognormal 3	2
	50	103,13	Lognormal 3	1
	100	113,24	Lognormal 3	1
	5	24,83	Lognormal 3	22
	10	27,34	Lognormal 3	10
56090000	20	29,42	Lognormal 3	4
	50	31,77	Lognormal 3	1
	100	33,35	Lognormal 3	0
	5	791,07	Gumbel	24
	10	980,52	Gumbel	6
56110005	20	1.162,23	Gumbel	4
	50	1.397,45	Gumbel	1
	100	1.573,71	Gumbel	1

Quando se analisa o desempenho das PDFs em representar os dados de vazão máxima, destacam-se a aderência destes entre as distribuições Lognormal 3 e Gumbel. Tais resultados

corroboram com diversos estudos encontrados na literatura, nos quais ambas as PDFs também obtiveram os melhor resultados em estudos de eventos extremos (CALDEIRA et al., 2015; MIRANDA; THEBALDI; ROCHA, 2017). Pela Tabela 1.3 também é possível observar que as estações 56075000, 56085000 e 56110005 apresentaram em suas séries históricas eventos associados a períodos de retorno maiores que 100 anos. Com exceção da estação 56055000, todas as demais apresentaram eventos associados a períodos de retorno maiores que 50 anos.

Na Tabela 1.4 é apresentado o evento observado de maior magnitude da série histórica de cada estação, o período de retorno associado a ele e a distribuição de probabilidade utilizada.

Tabela 1.4. Eventos máximos de vazão das séries históricas consideradas para cada estação fluviométrica da bacia do rio Piranga, seus respectivos períodos de retorno (T) e distribuição probabilística utilizada (PDF)

Estação	Evento máx. da série (m ³ /s)	T associado (anos)	PDF
56028000	334,46	55	Gumbel
56055000	183,52	34	Lognormal 3
56065000	61,76	76	Lognormal 3
56075000	978,27	132	Gumbel
56085000	113,96	105	Lognormal 3
56090000	32,57	90	Lognormal 3
56110005	1.592,36	108	Gumbel

Como pode ser observado na Tabela 1.4, a estação 56075000 foi a que apresentou o evento associado ao maior período de retorno, 132 anos, correspondente a uma vazão de 978,27 m³/s. Na sequência, com o evento de 1.592,36 m³/s, associado a um período de retorno de 108 anos, aparece a estação 56110005. A estação cujo seu maior evento de vazão (183,52 m³/s) foi associado ao menor período de retorno, 34 anos, foi a estação 56055000.

A diferença encontrada na magnitude dos períodos de retorno pode estar associada a variabilidade espaço-temporal dos eventos de precipitação, que podem mudar constantemente de forma e intensidade à medida que passam por uma determinada área da bacia (ABREU; SOBRINHA; BRANDÃO, 2017; JENIFFER et al., 2010; RAO et al., 2020). Além disso, em Minas Gerais o relevo é um fator de instabilidade do ar, especificamente na região de estudo, onde o relevo é fortemente ondulado as chuvas orográficas constituem um reforço à formação dos eventos extremos (FERREIRA, 2015; MELLO; SILVA, 2009). Em adição a variabilidade espaço-temporal dos eventos de precipitação, fatores como a área de contribuição, existência

de reservatórios, declividade do terreno, tipo do solo e uso e ocupação da terra também podem influenciar na magnitude dos picos de vazão (CANUTO et al., 2019; CHEN et al., 2020; DOS R. PEREIRA et al., 2016).

A estação 56110005 é a que está localizada mais próxima da foz da bacia do rio Piranga, na cidade de Ponte Nova - MG. Este município sofre de forma recorrente com eventos de cheias, motivo pelo qual a estação 56110005 integra o Sistema de Alerta de Eventos Críticos (SACE) do Serviço Geológico do Brasil (CPRM). Com base no sistema da CPRM, a cota de inundação do município de Ponte Nova no local de instalação da estação é de 330 cm, que equivale a uma vazão de aproximadamente 423,5 m³/s. Tal valor de vazão demostra a alta susceptibilidade da ocorrência de inundações no município de Ponte Nova, uma vez que, para os dados avaliados, a vazão de 423,5 m³/s está associada a um período de retorno de aproximadamente dois anos. Resultados como esse alertam para o fato de que a ocorrência e a intensidade dos desastres naturais estão ligadas, muitas das vezes, ao grau de vulnerabilidade das comunidades afetadas.

Na Tabela 1.5 são apresentados os valores de Q_{mld} e $Q_{7,10}$ obtidos para as estações fluviométricas avaliadas no estudo.

Estação	Q_{mld} (m ³ /s)	Q _{7,10} (m ³ /s)	Distribuição probabilística
56028000	21,93	5,19	Logpearson 3
56055000	20,30	5,33	Logpearson 3
56065000	5,22	1,36	Logpearson 3
56075000	73,65	17,58	Logpearson 3
56085000	4,28	1,08	Logpearson 3
56090000	3,98	1,41	Logpearson 3
56110005	98,60	23,14	Logpearson 3

Tabela 1.5. Valores de Q_{mld} , $Q_{7,10}$ e distribuições probabilísticas (PDF) para a estimativa da $Q_{7,10}$ das estações fluviométricas avaliadas no estudo

No Estado de Minas Gerais, um dos estudos mais recentes de regionalização de vazão disponível foi realizado pela Universidade Federal de Viçosa (UFV), em parceria com o instituto Mineiro de Gestão das Águas (IGAM) e publicado no ano de 2012 (UFV; IGAM, 2012). Ao comparar os valores de Q_{mld} obtidos pelos autores supracitados com os obtidos no presente estudo, observa-se uma proximidade, no entanto, com redução de -8,9% para a estação 56028000, -5,9% para a estação 56065000, -3,2% para a estação 56090000 e -3,3% para a estação 56110005, por outro lado observou-se um aumento de +6,7% para a estação 56055000 e +0,4% para a estação 56075000. Já para a $Q_{7,10}$ a comparação entre os dois
estudos mostra uma redução da ordem de 4 a 20% em todas as estações avaliadas, sendo: - 8,7% (estação 56028000), -4,8% (estação 56055000), -20,8% (estação 56065000), -7,7% (estação 56075000), -17,2% (estação 56090000) e -16,0% (estação 56110005). Para a estação 56085000 não foi possível realizar a comparação, uma vez que ela não foi utilizada no estudo de UFV-IGAM (2012).

A diferença dos valores de Qmld e de Q_{7,10} encontrados pelos estudos pode ser explicada pelo critério de exclusão de dados com falhas, pelo ano hidrológico utilizado, pela distribuição de probabilidade ajustada e pelo período base utilizado. O critério de descarte de falhas é um ponto de divergência entre os trabalhos, uma vez que em UFV-IGAM (2012) foi realizado um descarte de todos os anos com 5% ou mais de falhas para o cálculo das vazões médias e mínimas, enquanto que para o presente estudo este critério só foi adotado para o calculo das vazões médias. A diferença entre os períodos base dos estudos também promove discrepância entre os valores de vazão. Enquanto UFV-IGAM (2012) utilizou um período base de 1975 a 2005, o presente estudo utilizou um período base de 1975 a 2018.

O período mais recente na bacia do rio Piranga é marcado por condições mais severas de seca, o que reforça a influência do período base nos valores de vazão obtidos. Em seu estudo sobre a ocorrência das secas na bacia do rio Doce, Lima et al. (2019) observaram que o ano hidrológico de 2014/2015 foi o pior ano de seca evidenciado para o período analisado, apresentando condição climática de emergência para a bacia do rio Piranga. Ainda conforme os autores, a seca de 2014/2015 é capaz de produzir reflexos por vários anos, pois comprometeu os níveis dos reservatórios, bem como a recarga dos aquíferos, que consequentemente reduz o fluxo de água para os rios durante a estação seca. Este fato reforça a importância de se trabalhar com séries atualizadas, uma vez que as perspectivas de mudanças climáticas e as alterações no uso e ocupação das terras da bacia hidrográfica elevam a possibilidade de ocorrência de eventos extremos.

1.3.2. Tendências temporais nas séries históricas de vazão

Os resultados estatísticos da aplicação dos testes de MK ou MKM, PT e SP, bem como os anos de mudança de tendência no comportamento dos dados de vazão da bacia do rio Piranga, para todas as estações analisadas, estão apresentados no Apêndice C.

Conforme pode ser observado na Figura 1.4, a maioria das estações fluviométricas apresentou tendência significativa de redução das vazões para diversos meses do ano, sendo que em nenhuma houve tendência significativa de aumento.

Figura 1.4. Distribuição espacial dos resultados das análises de tendência nas séries temporais de vazões para as sete estações fluviométricas analisadas: a) máximas

mensais; b) médias mensais; c) mínimas mensais; e d) anuais (máxima, média e mínima).

A análise das séries anuais (Figura 1.4d) mostrou que as vazões máximas seguem o mesmo padrão ao longo do tempo, uma vez que em nenhuma estação foi evidenciada tendência significativa. Por outro lado, o fato da maior parte das estações ter apresentado tendência significativa de redução tanto para as vazões médias quanto para as mínimas, indica a ocorrência de menores vazões no período seco da bacia.

Para as vazões máximas (Figura 1.4a), nos meses do período seco (maio a outubro), a maioria das estações apresentou tendência significativa de redução de vazão. Embora estes meses não sejam característicos de vazões elevadas, as análises mostraram que os maiores valores de vazão neste período estão reduzindo, provavelmente pelo efeito da redução das vazões médias e mínimas no semestre seco.

Para as vazões médias (Figura 1.4b), em fevereiro e nos meses entre julho a outubro a maioria das estações apresentou tendência significativa de redução, sendo que em julho, agosto e outubro todas as estações apresentaram esse comportamento.

Para as vazões mínimas (Q7) (Figura 1.4c), nos meses de janeiro, fevereiro e de maio até outubro, foi constatado, na maioria das estações, tendência significativa de redução das vazões, sendo que no mês de julho todas as estações apresentaram redução da vazão.

A hipótese de que o período seco tende a se intensificar na bacia do rio Piranga é reforçada com a análise das tendências mensais. Como exposto, para vazões máximas, médias e mínimas há tendência de redução da vazão na maioria das estações em quase todos os meses que compõem o período seco na região (maio a outubro), o que indica que a disponibilidade hídrica está cada vez menor nesses meses. A tendência de redução da vazão média e mínima em meses do semestre chuvoso (novembro a abril) é um indicativo que a queda na disponibilidade hídrica vem ocorrendo também nesta época do ano, o que agrava ainda mais a situação no período seco.

1.3.3. Análise da mudança de comportamento das vazões

Nas séries de precipitação das estações pluviométricas foi observada tendência em escala anual, nos meses de junho, julho, outubro e novembro, e nos semestres seco e chuvoso, como mostra a Figura 1.5. Nos meses de junho e novembro e no semestre chuvoso foi constatada tendência significativa de aumento da precipitação. Já nos meses de julho e outubro, na precipitação total anual e na precipitação do semestre seco, observaram-se

tendências de redução da precipitação. Os resultados da aplicação dos testes de MK ou MKM, PT e SP, bem como os anos de mudança de tendência no comportamento dos dados de precipitação, para todas as estações pluviométricas analisadas, estão apresentados no Apêndice D.

Figura 1.5. Distribuição espacial dos resultados das análises de tendência nas séries temporais de precipitação a) total mensal; e b) total anual e total nos semestres seco e chuvoso para as 14 estações pluviométricas analisadas.

As análises de tendência nos dados de precipitação mostraram que este fator tem pouca relação com as tendências encontradas nos dados de vazão. Percebe-se que para as vazões média e mínima anuais houve tendência de redução na maioria das estações, por outro lado, este comportamento não foi observado para as precipitações total anual, total no semestre seco e total no semestre chuvoso. Para estas séries de precipitação observa-se um comportamento estacionário para a maioria das estações, mostrando que na área de estudo o regime pluviométrico praticamente não sofreu alteração ao longo do período analisado.

O comportamento dos dados mensais reforça a ideia de constância no regime pluviométrico na bacia, uma vez que só foram evidenciadas tendências para poucas estações nos meses de junho, julho outubro e novembro. No mês de junho foi observada tendência significativa de aumento para três estações, no entanto, no mês subsequente (julho) outras três estações apresentaram tendência significativa de redução, o que pode ter causado um efeito de compensação. Nos meses de outubro e novembro também foi observado o mesmo comportamento de compensação, sendo detectada tendência de redução da precipitação em duas estações no mês de outubro e tendência de aumento da precipitação em uma estação no mês de novembro. Observa-se que a pouca variação do comportamento da precipitação nas séries mensais reflete a baixa ocorrência de tendência nas séries de precipitação semestrais e anuais.

Outra questão que corrobora com o fato da precipitação ter pouca influência no comportamento de redução dos dados de vazão é que a maioria das tendências detectadas nos dados de precipitação ocorreu nos meses secos do ano. Segundo Novaes et al. (2009), as vazões, de modo geral, não dependem das precipitações que ocorrem no período seco, pois além de serem em menor quantidade, o solo se encontra em elevado déficit de umidade, fazendo com que a precipitação fique retida na zona não saturada do solo e não atinja o lençol freático.

Na Figura 1.6 apresenta-se a evolução dos volumes de água superficial e subterrânea outorgados na área de drenagem a montante de cada uma das sete estações fluviométricas da bacia de estudo no período máximo disponível entre 2005 a 2018. Pela análise dos dados, verifica-se que os volumes outorgados tiveram um aumento expressivo ao longo do tempo no período analisado.

O aumento do volume outorgado, nas áreas de drenagem das estações, variou de 0,08 a 11,55 hm³ para as captações superficiais e de 0,25 a 4,23 hm³ para captações subterrâneas. Pode-se observar que o acréscimo dos volumes outorgados foi gradual ao longo dos anos, implicando, cada vez mais, na redução das vazões nos cursos d'água. O aumento da captação de água subterrânea na bacia, principalmente no período seco, pode estar contribuindo para o comportamento decrescente das vazões. Segundo De Graaf et al. (2019), a captação de água subterrânea pode causar rebaixamento do lençol freático, que por sua vez passa a contribuir menos para a vazão nos rios.

Figura 1.6. Evolução dos volumes de água superficial e subterrânea outorgados a montante das estações fluviométricas utilizadas no estudo.

Na Figura 1.7 apresenta-se a vazão de água superficial outorgada para a área de drenagem de cada estação fluviométrica considerada no estudo em comparação com o critério de vazão máxima permitida de ser outorgada (50% da Q_{7,10}) estabelecido pela resolução conjunta SEMAD-IGAM nº 1548 de 2012 (SEMAD; IGAM, 2012) para o Estado de Minas Gerais, válido para rios de domínio estadual.

O aumento notado na vazão outorgada se torna ainda mais crítico na região englobada pelas áreas de drenagem das estações 56055000 e 56085000. As outorgas a montante da estação 56085000 ultrapassaram o limite máximo de vazão outorgada, o que caracteriza a área como de conflito pelo uso da água. Já para a estação 56055000, a demanda de água dos usuários está próxima de atingir o limite de vazão outorgada, requerendo uma análise mais

cautelosa do órgão gestor na concessão de outorgas na região. Para as demais estações, apesar do aumento na vazão outorgada o grau de pressão sobre a utilização dos recursos hídricos é menor.

Figura 1.7. Vazão outorgada em comparação com a vazão máxima permitida de ser outorgada (50% da Q_{7,10}) para as sete estações fluviométricas consideradas no estudo.

O uso e ocupação das terras da bacia e sua evolução ao longo do tempo são apresentados na Tabela 1.6 e na Figura 1.8.

Tabela 1.6. Evolução do uso e ocupação das terras da bacia do rio Piranga nos anos de 1985,1994, 2012 e 2018

Charac da ana	Área (km²)				
Classe de uso	1985	1994	2012	2018	
Formação florestal (FF)	1.393,99	1.516,92	1.884,66	1.835,28	
Formação savânica (FS)	1,33	0,90	1,83	1,39	
Floresta plantada (FP)	15,40	68,70	148,26	213,33	
Agropecuária (AG)	5.166,75	4.982,60	4.523,14	4.500,73	
Infraestrutura urbana (IU)	11,91	17,68	28,22	36,23	
Afloramento rochoso (AR)	0,07	0,38	0,18	0,07	
Mineração (MI)	0,09	0,09	0,33	0,20	
Corpos hídricos (CH)	7,44	9,72	10,36	9,76	

Figura 1.8. Uso e ocupação da terra nos anos de 1985, 1994, 2012 e 2018 para a bacia do rio Piranga.

Na Tabela 1.7, é mostrado o valor de área, em km², perdidos ou ganhos por cada uso da terra considerando o período de 1985 a 2018. O sinal negativo indica que o uso mencionado na coluna perdeu área para o uso da respectiva linha, ao passo que o sinal positivo representa o ganho de área do uso descrito na coluna sobre o uso descrito na linha.

	Área de mudança (km ²)							
Classe de uso	FF	FS	FP	AG	IU	AR	MI	СН
FF	0	+0,53	+57,45	-498,63	+0,48	-0,01	+0,03	+0,21
FS	-0,53	0	0	+0,47	0	-0,01	0	+0,01
FP	-57,45	0	0	-139,78	0	0	0	0
AG	+498,63	-0,47	+139,78	0	+23,77	+0,02	+0,09	+2,07
IU	-0,48	0	0	-23,77	0	0	0	+0,02
AR	+0,01	+0,01	0	-0,02	0	0	0	0
MI	-0,03	0	0	-0,09	0	0	0	+0,01
СН	-0,21	-0,01	0	-2,07	-0,02	0	-0,01	0

Tabela 1.7. Perdas e ganhos de área para cada classe de uso da terra na bacia do rio Pirangadurante o período de 1985 a 2018

FF: Formação florestal; FS: Formação savânica; FP: Floresta plantada; AG: Agropecuária; IU: Infraestrutura urbana; AR: Afloramento rochoso; MI: Mineração; e CH: Corpos hídricos.

Nota-se um aumento expressivo nas áreas de FF e FP e uma grande redução nas áreas de AG. As áreas de FF tiveram ganho de 498,63 km² sobre áreas que anteriormente eram destinadas à AG, mas sofreu desmatamento de 57,45 km² para a implantação de FP. Estas (FP), por sua vez, além das áreas de FF também tiveram uma expansão de 139,78 km² sobre áreas de AG.

A alteração do uso das terras na bacia pode ser um fator que explica parte do comportamento das vazões dos rios (GUZHA et al., 2018). A substituição das áreas de agropecuária, que são compostas por vegetação de pequeno porte como pastagem e culturas anuais e perenes diversas por áreas de formação florestal (floresta nativa) e florestas plantadas (eucalipto, muito comum na região de estudo), que são vegetações de grande porte com dossel bem desenvolvido, raízes profundas e geralmente muito adensadas, pode provocar redução do fluxo nos corpos hídricos.

De acordo com Cheng et al. (2017), devido ao grande porte e ao adensamento dessas florestas, ocorre maior taxa de evapotranspiração e de interceptação da chuva, o que reduz o armazenamento de água no solo e o abastecimento do lençol freático. Este comportamento também foi evidenciado por outros autores (ADANE et al., 2018; BEWKET; STERK, 2005; OLIVEIRA et al., 2017; SILVEIRA et al., 2016). Por outro lado, outros estudos mostram que as florestas são capazes de aumentar a infiltração de água no solo e consequentemente a recarga dos aquíferos e o escoamento de base (BRUIJNZEEL, 2004; KRISHNASWAMY et al., 2013).

A posição das florestas na paisagem é um fator que também influencia no maior ou menor consumo de água. Dye (2013) afirma que quando o conteúdo de água do solo é

reduzido, a condutância estomática diminui, consequentemente, a transpiração também. Por outro lado, ainda de acordo com os mesmos autores, em condições de alta disponibilidade de água no solo e de radiação líquida, aparentemente o controle estomático não é exercido, ou seja, a planta se autorregula conforme a disponibilidade hídrica.

A Tabela 1.8 mostra a área de FF, FP, AG e IU para a área de drenagem de cada uma das sete estações fluviométricas consideradas no estudo, nos anos de 1985, 1994, 2012 e 2018.

F _*4 - • ? -			Área (km2)			
Estação	Classe de uso	1985	1994	2012	2018	
	Formação florestal (FF)	334,28	321,99	334,88	313,48	
56028000	Floresta plantada (FP)	8,46	38,30	45,08	76,75	
30028000	Agropecuária (AG)	868,47	850,82	829,32	818,99	
	Infraestrutura urbana (IU)	0,82	1,11	1,95	2,45	
	Formação florestal (FF)	145,87	186,31	220,24	227,73	
56055000	Floresta plantada (FP)	0,00	0,01	5,69	6,93	
30033000	Agropecuária (AG)	802,90	762,25	721,87	712,63	
	Infraestrutura urbana (IU)	0,48	0,63	1,36	1,91	
	Formação florestal (FF)	37,35	46,82	82,11	82,30	
56065000	Floresta plantada (FP)	0,00	0,01	12,60	14,02	
30003000	Agropecuária (AG)	220,00	210,33	161,59	159,48	
	Infraestrutura urbana (IU)	0,29	0,42	1,23	1,73	
	Formação florestal (FF)	813,66	880,03	1067,34	1039,77	
56075000	Floresta plantada (FP)	12,88	57,44	102,26	151,34	
50075000	Agropecuária (AG)	2867,56	2755,57	2519,11	2496,10	
	Infraestrutura urbana (IU)	2,04	2,74	5,97	8,08	
	Formação florestal (FF)	45,76	50,33	66,25	64,38	
56085000	Floresta plantada (FP)	0,01	0,08	4,75	5,18	
30083000	Agropecuária (AG)	246,33	239,48	215,30	213,77	
	Infraestrutura urbana (IU)	3,48	5,65	9,21	12,15	
	Formação florestal (FF)	54,62	58,31	80,12	78,57	
5600000	Floresta plantada (FP)	0,04	0,51	5,98	6,98	
30090000	Agropecuária (AG)	229,55	225,22	197,52	197,81	
	Infraestrutura urbana (IU)	0,16	0,34	0,70	0,96	
	Formação florestal (FF)	1166,14	1272,10	1577,01	1536,60	
56110005	Floresta plantada (FP)	13,35	59,68	125,43	182,28	
50110005	Agropecuária (AG)	4203,09	4044,42	3663,65	3641,70	
	Infraestrutura urbana (IU)	9,71	14,48	23,26	29,79	

Tabela 1.8. Evolução do uso e ocupação das terras das áreas de drenagem das sete estaçõesfluviométricas consideradas no estudo, nos anos de 1985, 1994, 2012 e 2018

Com base nos dados da Tabela 1.8, pode-se observar que praticamente todas as estações seguem um comportamento similar ao da bacia do rio Piranga como um todo, caracterizado principalmente pela substituição de áreas destinadas a agropecuária por áreas de formação florestal e de floresta plantada. Para todas as estações houve também um aumento das áreas urbanas. A área da estação 56028000 foi a única que apresentou redução de formação florestal, em contrapartida foi a área onde houve maior crescimento de florestas plantadas em relação à área total da bacia. Segundo Malmer et al. (2010), a variação nas características das bacias hidrográficas aumenta a complexidade em se determinar os pontos comuns do comportamento hidrológico atribuído ao uso e ocupação das terras.

O impacto das florestas no regime de vazão dos rios depende do equilíbrio entre fatores positivos, como aumento da infiltração de água no solo e negativos, como o aumento da evapotranspiração e da interceptação (MENDES; CECÍLIO; ZANETTI, 2018). Mesmo se uma das partes se sobressair, diversas características das bacias como topografia, tipo de solo, profundidade do lençol freático, dentre outros, podem causar impactos distintos em bacias diferentes (BI et al., 2014). Como no presente estudo foram detectadas inúmeras tendências de redução de vazão em várias estações fluviométricas, é plausível inferir que as condições da bacia proporcionaram um predomínio da evapotranspiração e da interceptação sobre a infiltração.

Apesar da possível influência das florestas (nativa ou exótica) na redução da vazão é importante ressaltar que estas trazem inúmeros benefícios, como por exemplo, amenização do microclima (temperatura e umidade), diminuição do pico do hidrograma (redução de enchentes), diminuição da perda de solo (pelo controle da erosão), melhoria na qualidade da água, atenuação da poluição atmosférica, aporte de oxigênio, absorção do gás carbônico, prevenção de danos causados pela força do vento, produção de biomassa e energia e preservação da biodiversidade (GREISER et al., 2018; KOBIYAMA, 2000; NEARY; ICE; JACKSON, 2009).

1.3.4. Análise da tendência das vazões na foz da bacia

Na Tabela 1.9 são mostrados os anos de mudança de tendência na estação fluviométrica 56110005 obtidos pelo teste de Pettitt, quando a tendência na série de dados foi significativa.

М А	Ano de mudança					
Ivies	Vazão máxima	Vazão média	Vazão mínima			
Jan	-	-	-			
Fev	-	2009	-			
Mar	-	-	-			
Abr	-	-	-			
Mai	1994	-	-			
Jun	1998	-	-			
Jul	1997	1994	1994			
Ago	1994	1994	1994			
Set	2009	1993	1994			
Out	2010	1998	1994			
Nov	-	-	2010			
Dez	-	-	-			
Anual	-	2012	1994			

Tabela 1.9. Ano de mudança das tendências nas séries históricas mensais e anuais da estação56110005, localizada na foz da bacia do rio Piranga

Pela análise dos valores da Tabela 1.9 é possível observar que para as vazões máximas e médias mensais não houve um ano predominante de mudança de tendência, apesar de que na maioria dos meses este variou entre 1994 e 1998. Nas vazões mínimas mensais pode-se observar domínio do ano de 1994 como ponto de mudança. Observa-se também a ocorrência nos anos de 2009 e 2010 para vazões máximas, médias e mínimas. Os pontos de alteração do comportamento das séries históricas de vazão média e mínima anual foram no ano de 1994 e 2012, respectivamente.

A correta identificação da causa da alteração de tendência em um determinado ponto da série histórica é algo extremamente complexo. No entanto, o exposto no item 1.3.3 (Fatores que Influenciam a Mudança de Comportamento das Vazões) leva a crer que os pontos de alteração de tendência entre 1994 e 1998, bem como em 2012, têm haver com a substituição de áreas destinadas à agropecuária por formação florestal e florestas plantadas, que se mostraram crescentes tanto em 1994 quanto em 2012. A modificação da tendência dos dados nos anos de 2009 e 2010 coincide com o ano de aumento expressivo na captação de água subterrânea na área de drenagem da estação 56110005, conforme exposto na Figura 1.6.

As magnitudes das tendências, expressadas pela declividade de Theil-Sen, para as escalas mensal e anual, são apresentadas na Tabela 1.10. Para fins de análise, foram consideradas apenas as séries de vazão em que foi constatada tendência.

Nas séries de vazão máxima mensal a magnitude das tendências variou de -0,851 a - 1,544 m³/s por ano, sendo o mês de outubro o que apresentou maior tendência decrescente. Para as vazões médias mensais o intervalo foi de -0,682 a -1,271 m³/s por ano, com o mês de fevereiro representando a maior tendência decrescente. Já para as vazões mínimas mensais a variação foi de -0,526 a -0,597 m³/s por ano, com maior tendência decrescente no mês de julho. Ao analisar a escala anual, foi observada uma tendência de -0,413 m³/s por ano na vazão mínima.

MA	Magnitude	da inclinação das tendê	ncias (m³/s)
Mes	Vazão máxima	Vazão média	Vazão mínima
Jan	-3,578*	-1,605*	-1,065*
Fev	-1,631*	-1,271	-0,999*
Mar	-0,745*	-0,226*	-0,301*
Abr	-1,020*	-0,762*	-0,749*
Mai	-0,887	-0,665*	-0,609*
Jun	-0,970	-0,596*	-0,562*
Jul	-1,144	-0,682	-0,597
Ago	-0,851	-0,596	-0,536
Set	-0,952	-0,698	-0,556
Out	-1,544	-0,794	-0,526
Nov	-1,447*	-0,797*	-0,584
Dez	-0,036*	-0,794*	-0,561*
Anual	-1,474*	-0,649*	-0,413

Tabela 1.10. Magnitude da inclinação das tendências na estação 56110005 em m³/s por ano

* Valores não significativos em um intervalo de confiança de 95%.

As mudanças relativas à média (MR) para as vazões em escala mensal e anual são apresentadas na Tabela 1.11. Na série de vazão máxima mensal a MR variou de -11,21% (setembro) a -34,44% (julho), sendo que os maiores valores absolutos foram nos meses de junho, julho e agosto. Para as vazões médias mensais, a MR variou de -9,02% (fevereiro) a - 34,76% (setembro) e os meses de maior MR absoluta foram julho, setembro e outubro. Para as vazões mínimas mensais, a MR foi de -10,04% (novembro) a -33,43% (setembro), com agosto, setembro e outubro sendo os meses que apresentaram maior alteração. Nas séries de vazões anuais foi encontrada uma MR de -26,69% para vazões mínimas.

		Mudança relativa (%)	
Mes	Vazão máxima	Vazão média	Vazão mínima
Jan	-	-	-
Fev	-	-9,02	-
Mar	-	-	-
Abr	-	-	-
Mai	-21,82	-	-
Jun	-23,21	-	-
Jul	-34,44	-29,06	-28,02
Ago	-31,13	-29,00	-28,99
Set	-11,21	-34,76	-33,43
Out	-12,41	-27,03	-30,37
Nov	-	-	-10,04
Dez	-	-	-
Anual	-	-	-26,69

Tabela 1.11. Mudança relativa à média nas séries temporais de vazão em escala mensal eanual para a estação 56110005

Os resultados mostram que mudanças relativas maiores tendem a ocorrer em meses em que se tem menor disponibilidade hídrica, ou seja, nos quais as vazões são menores. Portanto, espera-se que no futuro as vazões mínimas reduzam ainda mais, se a tendência persistir. Outra forma de explicar a elevada mudança relativa nos meses de baixa vazão é que qualquer aumento ou diminuição de um valor pequeno pode acarretar em mudanças relativas elevadas.

Lira e Cardoso (2018), em estudo de tendência de vazões realizado para as principais bacias brasileiras observaram tendências de redução de vazão na bacia do rio Doce (região hidrográfica do Paraná), na bacia do rio São Francisco e na bacia do rio Parnaíba. No estudo mencionado, as maiores inclinações decrescentes foram evidenciadas nos trimestres mais secos do ano. Isto mostra que o comportamento de redução de vazão com intensificação do período de estiagem, observado na bacia do rio Piranga, também se faz presente em demais bacias brasileiras.

1.4. CONCLUSÕES

As vazões máximas da bacia do Rio Piranga frequentemente superam o valor de vazão da cota de inundação no município de Ponte Nova – MG, próximo à foz da bacia, o que mostra a alta susceptibilidade da bacia à ocorrência de inundações.

Os valores de $Q_{7,10}$ para a bacia do rio Piranga mostraram uma redução em sua magnitude, quando comparada a estudos anteriores.

As vazões máximas, médias e mínimas na bacia do rio Piranga possuem tendência significativa de redução, principalmente nos meses mais secos do ano, mas também ocorrem em meses do período chuvoso. Este fato evidencia uma intensificação do período seco na bacia.

As vazões máximas anuais seguem o mesmo padrão ao longo do tempo, no entanto as vazões médias e mínimas anuais apresentam tendência significativa de redução.

Na bacia do rio Piranga é frequente a ocorrência de eventos extremos máximos e há tendência de redução das vazões mínimas. Sendo que as tendências de redução podem estar fortemente associadas ao aumento da demanda pelo uso da água e pelas alterações no uso e ocupação da terra, portanto, torna-se necessário um adequado programa de planejamento e gestão de recursos hídricos, visando minimizar conflitos pelo uso da água, favorecer o uso do solo conforme sua aptidão e, com isso, propiciar o desenvolvimento socioeconômico da região.

1.5. REFERÊNCIAS

- ABREU, F. G.; SOBRINHA, L. A.; BRANDÃO, J. L. B. Análise da distribuição temporal das chuvas em eventos hidrológicos extremos. Engenharia Sanitária e Ambiental, v. 22, n. 2, p. 239–250, 2017.
- ABUELAISH, B.; OLMEDO, M. T. C. Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models. Arabian Journal of Geosciences, v. 9, n. 4, p. 1–14, 1 abr. 2016.
- ADANE, Z. A. et al. Journal of Hydrology: Regional Studies Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills. Journal of Hydrology: Regional Studies, v. 15, n. February, p. 171–183, 2018.
- AIRES, U. R. V. Utilização de NDVI para análise da influência da modificação da cobertura vegetal no regime de vazões. [s.l.] Universidade Federal de Viçosa, 2018.
- AIRES, U. R. V. et al. The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil. Water Resources Management, v. 34, n. 6, p. 1933–1949, 2020.

- ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013.
- ANAND, J.; GOSAIN, A. K.; KHOSA, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of The Total Environment, v. 644, p. 503–519, dez. 2018.
- BERTONI, J. C.; TUCCI, C. E. Precipitação. In: UFRGS; ABRH (Eds.). Hidrologia: Ciência e Aplicação. 4. ed. Porto Alegre: 2 reimpr., 2009. p. 939.
- BEWKET, W.; STERK, G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. v. 458, n. September 2004, p. 445– 458, 2005.
- BI, C. et al. Scale effects and variability of forest water yield relationships on the Loess Plateau, China. v. 90, 2014.
- BRUIJNZEEL, L. A. Hydrological functions of tropical forests : not seeing the soil for the trees ? Agriculture, Ecosystems & Environment, v. 104, p. 185–228, 2004.
- CAEIRO, F.; MATEUS, A. Testing randomness in R, 2015.
- CALDEIRA, T. L. et al. Modelagem probabilística de eventos de precipitação extrema no estado do Rio Grande do Sul. Revista Brasileira de Engenharia Agricola e Ambiental, v. 19, n. 3, p. 197–203, 2015.
- CAMUFFO, D.; DELLA VALLE, A.; BECHERINI, F. A critical analysis of the definitions of climate and hydrological extreme events. **Quaternary International**, 12 out. 2018.
- CANUTO, N. et al. Influence of reservoir management on Guadiana streamflow regime. Journal of Hydrology: Regional Studies, v. 25, n. July, 2019.
- CBH-DOCE. **Deliberação Normativa CBH-Doce no 51/2016**.Brasil, 2016. Disponível em: <<http://www.cbhdoce.org.br/wp-content/uploads/2016/12/Deliberação-051-Ad-Referendum-Aprova-Realocação-do-PAP.pdf>>
- CERA, J. C.; FERRAZ, S. E. T. Variações climáticas na precipitação no sul do Brasil no clima presente e futuro. Revista Brasileira de Meteorologia, v. 30, n. 1, p. 81–88, 2015.

- CHEN, H. et al. Impacts of land use change and climatic effects on streamflow in the Chinese Loess Plateau: A meta-analysis. Science of the Total Environment, v. 703, p. 134989, 2020.
- CHEN, T. et al. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Science of The Total Environment, v. 653, p. 1311–1325, 25 fev. 2019.
- CHENG, L. et al. Quanytifying the impacts of vegetation changes on catchment soragedischarge dynamics using paired-catchment data. Water Resources Research, n. jul 2017, p. 5963–5979, 2017.
- CHIAUDANI, A.; DI CURZIO, D.; RUSI, S. The snow and rainfall impact on the Verde spring behavior: A statistical approach on hydrodynamic and hydrochemical daily time-series. Science of the Total Environment, v. 689, p. 481–493, 2019.
- DE GRAAF, I. E. M. et al. Environmental flow limits to global groundwater pumping. Nature, v. 574, n. 7776, p. 90–94, 3 out. 2019.
- DIOP, L. et al. Trend analysis of streamflow with different time scales: a case study of the upper Senegal River. **ISH Journal of Hydraulic Engineering**, v. 24, n. 1, p. 105–114, 2 jan. 2018.
- DO, H. X.; WESTRA, S.; LEONARD, M. A global-scale investigation of trends in annual maximum streamflow. Journal of Hydrology, v. 552, p. 28–43, 2017.
- DOS R. PEREIRA, D. et al. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT Model Part II: Simulation of hydrological variables and soil use scenarios. Journal of Hydrology: Regional Studies, v. 5, p. 149–163, 2016.
- DUDLEY, R. W. et al. Low streamflow trends at human-impacted and reference basins in the United States. Journal of Hydrology, v. 580, n. April 2019, p. 124254, 2020.
- DYE, P. A review of changing perspectives on Eucalyptus water-use in South Africa. Forest Ecology and Management, v. 301, p. 51–57, 2013.
- ECOPLAN-LUME. Plano de ação de recursos hídricos da unidade de planejamento e gestão dos recursos hídricos Piranga, 2010.

- EMBRAPA. Súmula da 10a Reunião Técnica de Levantamento de Solos. Rio de Janeiro, Serviço Nacional de Levantamento e Conservação de Solos, 1979.
- FATHIAN, F. et al. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrological Sciences Journal, p. 1–13, mar. 2016.
- FERREIRA, M. G. B. Análise regional da distribuição temporal de precipitações sub diárias para o estado de Minas Gerais. [s.l.] Universidade Federal de Minas Gerais, 2015.
- FRAGA, M. D. S. et al. Análise de tendência em séries históricas de precipitação e vazão na UGRH2 Piracicaba, Minas Gerais. Revista Ibero-Americana de Ciências Ambientais, v. 11, n. 2, p. 136–144, 2020.
- FU, G.; BARBER, M. E.; CHEN, S. Hydro-climatic variability and trends in Washington State for the last 50 years. Hydrological Processes, v. 24, n. 7, p. 866–878, 30 mar. 2010.
- GAUTHIER, T. D. Detecting trends using Spearman's rank correlation coefficient. Environmental Forensics, v. 2, n. 4, p. 359–362, 2001.
- GREISER, C. et al. Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest Meteorology, v. 250–251, n. May 2017, p. 147–158, 2018.
- GUZHA, A. C. et al. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies. Elsevier B.V., 1 fev. 2018.
- HAMED, K. H.; RAO, A. R. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, v. 204, n. 1–4, p. 182–196, 1998.
- IBGE. Censo demográfico de 2010., 2010. Disponível em: br/>https://censo2010.ibge.gov.br/">https://censo2010.ibge.gov.br/
- JAISWAL, R. K.; LOHANI, A. K.; TIWARI, H. L. Statistical Analysis for Change Detection and Trend Assessment in Climatological Parameters. Environmental Processes, v. 2, n. 4, p. 729–749, 27 dez. 2015.
- JENIFFER, K. et al. Estimation of spatial temporal rainfall distribution using remote sensing techniques : A case study of Makanya catchment , Tanzania. International

Journal of Applied Earth Observation and Geoinformation, v. 125, p. 90–99, 2010.

- JOSEPH, J. F.; FALCON, H. E.; SHARIF, H. O. Hydrologic trends and correlations in South Texas river basins: 1950-2009. Journal of Hydrologic Engineering, v. 18, n. 12, p. 1653–1662, 2013.
- KAR, A. K. et al. Rain gauge network design for flood forecasting using multi-criteria decision analysis and clustering techniques in lower Mahanadi river basin, India. Journal of Hydrology: Regional Studies, v. 4, p. 313–332, 2015.
- KENDALL, M. G. Rank Correlation Methods. London: Griffin, 1975.
- KOBIYAMA, M. Ruralização na gestão de recursos hídricos em área urbana. **Revista OESP Construção**, v. 32, n. ano 5, p. 112–117, 2000.
- KRISHNASWAMY, J. et al. The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the "infiltration-evapotranspiration trade-off hypothesis". Journal of Hydrology, v. 498, p. 191–209, 2013.
- LIMA, R. P. C. et al. Development of an annual drought classification system based on drought severity indexes. Anais da Academia Brasileira de Ciências, v. 91, n. 1, 8 abr. 2019.
- LIRA, F. A.; CARDOSO, A. DE O. Estudo de tendência de vazões de rios das principais bacias hidrográficas brasileiras. Revista brasileira de ciências ambientais (online), v. 48, p. 21–37, 2018.
- MAHMOOD, R.; JIA, S. Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Science of The Total Environment, v. 675, p. 122–140, 20 jul. 2019.
- MALMER, A. et al. Carbon sequestration in tropical forests and water : a critical look at the basis for commonly used generalizations. **Global change Biology**, v. 16, p. 599–604, 2010.
- MANN, H. B. Nonparametric Tests Against Trend. Econometrica Jornal of the Econometric Society, v. 13, n. 3, p. 245–259, 1945.

- MAPBIOMAS. **Coleção 4.0 mapas de uso do solo**, 2019. Disponível em: http://mapbiomas.org/>
- MASIH, I. et al. Streamflow trends and climate linkages in the Zagros Mountains, Iran. Climatic Change, v. 104, n. 2, p. 317–338, 2011.
- MCLEOD, A. I. Kendall rank correlation and Mann-Kendall trend test, 2011. Disponível em: http://www.stats.uwo.ca/faculty/aim
- MELLO, C. R. DE; SILVA, A. M. Modelagem estatística da precipitação mensal e anual e no período seco para o estado de Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental - Agriambi, v. 13, n. 1, p. 68–74, 2009.
- MENDES, N. G. DE S.; CECÍLIO, R. A.; ZANETTI, S. S. Forest coverage and streamflow of watersheds in the tropical Atlantic rainforest. **Revista Arvore**, v. 42, n. 2, 2018.
- MIRANDA, C. T. DA S.; THEBALDI, M. S.; ROCHA, G. M. R. B. Precipitação Máxima Diária Anual E Estimativa Da Equação De Chuvas Intensas Do Município De Divinópolis, Mg, Brasil. Scientia Agraria, v. 18, n. 4, p. 9, 2017.
- MOREIRA, M. C.; SILVA, D. D. Análise de Métodos para Estimativa das Vazões da Bacia do Rio Paraopeba. **Revista Brasileira de Recursos Hídricos**, v. 19, n. 2, p. 313–324, 2014.
- MUDBHATKAL, A. et al. Impacts of climate change on varied River-Flow regimes of southern india. Journal of Hydrologic Engineering, v. 22, n. 9, p. 1–13, 2017.
- NEARY, D. G.; ICE, G. G.; JACKSON, C. R. Linkages between forest soils and water quality and quantity. Forest Ecology and Management, v. 258, n. 10, p. 2269–2281, 2009.
- NEETI, N.; EASTMAN, J. R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Transactions in GIS, v. 15, n. 5, p. 599– 611, 2011.
- NOVAES, L. F. et al. Modelo para a Quantificação da Disponibilidade Hídrica: Parte 1 -Obtenção da Equação de Recessão. Revista Brasileira de Recursos Hídricos, v. 14, n. 1, p. 15–26, 2009.

- OLIVEIRA, F. A. Procedimento para aprimorar a regionalização de vazões: Estudo de caso da bacia do rio Grande. [s.l.] Universidade Federal de Viçosa, 2008.
- OLIVEIRA, P. T. S. et al. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. n. May 2016, p. 1–8, 2017.
- ONYUTHA, C. et al. Analyses of rainfall trends in the Nile River Basin. Journal of Hydro-Environment Research, v. 13, p. 36–51, 1 dez. 2016.
- OYERINDE, G. T. et al. Hydro-climatic changes in the Niger basin and consistency of local perceptions. **Regional Environmental Change**, v. 15, n. 8, p. 1627–1637, 15 dez. 2015.
- PATAKAMURI, S. K.; O'BRIEN, N. Modified Versions of Mann Kendall and Spearman's Rho Trend Tests, 2020. Disponível em: https://cran.r-project.org/package=modifiedmk>
- PETTITT, A. N. A Non-Parametric Approach to the Change-Point Problem. Journal of the Royal Statistical Society. Series C (Applied Statistics), v. 28, n. 2, p. 126–135, 1979.
- POHLERT, T. Non-Parametric Trend Tests and Change-Point Detection, 2020. Disponível em: https://cran.r-project.org/package=trend
- R CORE TEAM. R: A language and environment for statistical computing.Vienna, AustriaR Foundation for Statistical Computing, , 2019. Disponível em: https://www.r-project.org/>
- R CORE TEAM, R. The R Stats Package, 2018.
- RAJE, D. Changepoint Detection in Hydrologic Series of the Mahanadi River Basin Using a Fuzzy Bayesian Approach. Journal of Hydrologic Engineering, v. 19, n. 4, p. 687– 698, abr. 2014.
- RAO, G. V. et al. Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India. Weather and Climate Extremes, p. 100265, 2020.

- RODRIGUES, A. L. M. et al. Influence of land use and land cover 's change on the hydrological regime at a Brazilian southeast urbanized watershed. Environmental Earth Sciences, v. 78, n. 20, p. 1–13, 2019.
- SALARIJAZI, M. et al. Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, v. 7, n. 32, p. 4540–4552, 2012.
- SALVADOR, M. DA M. Identificação e avaliação de eventos extremos na bacia hidrográfica do rio Piranga. [s.l.] Universidade Federal de Viçosa, 2014.
- SALVIANO, M. F.; GROPPO, J. D.; PELLEGRINO, G. Q. Trends analysis of precipitation and temperature data in Brazil. Revista Brasileira de Meteorologia, v. 31, n. 1, p. 64–73, 2016.
- SEMAD; IGAM. Resolução Conjunta SEMAD-IGAM no 1548, de 29 de março 2012.Brasil, 2012. Disponível em: http://www.agencia.baciaspcj.org.br/docs/resolucoes/resolucao-semad-igam-1548.pdf
- SEN, P. K. Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the Americal Statistical Association, v. 63, n. 324, p. 1379–1389, 1968.
- SHARMA, P. J.; PATEL, P. L.; JOTHIPRAKASH, V. Impact of rainfall variability and anthropogenic activities on streamflow changes and water stress conditions across Tapi Basin in India. Science of the Total Environment, v. 687, p. 885–897, 2019.
- SILVEIRA, L. et al. Effects of afforestation on groundwater recharge and water budgets in the western region of Uruguay. v. 3608, n. August, p. 3596–3608, 2016.
- SISEMA. Infraestrutura de Dados Espaciais do Sistema Estadual de Meio Ambiente e Recursos Hídricos. Belo Horizonte, 2019. Disponível em: http://idesisema.meioambiente.mg.gov.br/
- SONALI, P.; NAGESH KUMAR, D. Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology, v. 476, p. 212–227, jan. 2013.
- SOUSA, H. T. DE S. SisCAH 1.0: Sistema computacional para análises hidrológicas. Viçosa, 2009. Disponível em: http://www.gprh.ufv.br/?area=softwares

- THEIL, H. A rank-invariant method of linear and polynomial regression analysis. Proc. K. Ned. Akad. Wet. A, v. 53, p. 386–392, 1950.
- THOM, H. C. S. Some of methods of climatological analysis. World Meteorological Organization: Note 81, 1966.
- TRINDADE, A. L. C. et al. Tendências temporais e espaciais da qualidade das águas superficiais da sub-bacia do rio das velhas, estado de minas gerais. Engenharia Sanitária e Ambiental, v. 22, n. 1, p. 13–24, 2017.
- UFV FEAM CETEC UFLA. Mapa de solos do Estado de Minas Gerais. Belo Horizonte, 2010.
- UFV; IGAM. Estudo de regionalização de vazão para o aprimoramento do processo de outorga no estado de Minas Gerais. Belo Horizonte, 2012. Disponível em:<http://www.cbhsapucai.org.br/cbh/public/files/EstudodeRegionalizaodeVazoPara oAprimoramentodoProcessodeOutorganoEstadodeMinasGerais.pdf>. Acesso em: 2 abr. 2019
- ULIANA, E. M. et al. Análise de tendência em séries históricas de vazão e precipitação: uso de teste estatístico não paramétrico. Revista Ambiente e Água, v. 10, n. 1, p. 82–88, 2014.
- WILSON, D.; HISDAL, H.; LAWRENCE, D. Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections. Journal of Hydrology, v. 394, n. 3–4, p. 334–346, 26 nov. 2010.
- YUE, S.; PILON, P.; CAVADIAS, G. Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, v. 259, p. 254-271, 2002.

CAPÍTULO 2:

Efeito do método de seleção de variáveis no desempenho dos modelos de aprendizado de máquina para previsão de vazões diárias

RESUMO: A previsão das vazões é de grande importância para que o planejamento e a gestão de recursos hídricos sejam realizados de maneira eficiente. Existem diferentes métodos para previsão de vazões, sendo que nos últimos anos o aprendizado de máquina tem sido amplamente utilizado para esta finalidade. Esta técnica utiliza um vasto conjunto de covariáveis no processo de predição, as quais devem passar por um processo de seleção buscando aumentar a precisão e estabilidade dos modelos. Sendo assim, o trabalho teve como objetivo analisar o efeito da seleção de variáveis com o Recursive Feature Elimination (RFE) e com o Forward Feature Selection (FFS) no desempenho dos modelos de aprendizado de máquina para predição de séries temporais de vazões diárias. O estudo foi realizado na bacia do rio Piranga, localizada no Estado de Minas Gerais, Brasil. A base de dados foi composta por uma série histórica com 18 anos de dados (2000 a 2017) de vazão na foz da bacia e covariáveis derivadas da precipitação, uso da terra, sensor MODIS, vazão de rios afluentes e tempo. As variáveis altamente correlacionadas foram eliminadas utilizando-se como limiar o coeficiente de correlação de Pearson de 95% e a seleção de variáveis por importância foi realizada pelos métodos RFE e FFS para os modelos Regressão Adaptativa Multivariada (EARTH), Regressão Linear Múltipla (MLR) e Random Forest (RF). Os dados foram separados em um conjunto para treinamento (75%) e outro para validação (25%). Os modelos foram rodados por 50 vezes e tiveram o desempenho avaliado pelo coeficiente de eficiência de Nash Sutcliffe (NSE), Coeficiente de Determinação (R²) e Raiz Quadrada do Erro Quadrático Médio (RMSE). Os três modelos testados apresentaram desempenho satisfatório com ambos os métodos de seleção de variáveis, no entanto, todos eles se mostraram pouco precisos para a predição de valores associados a eventos máximos de vazão. O RF foi o modelo que apresentou a melhor performance. A utilização do FFS, na maioria dos casos, proporcionou melhoria no desempenho dos modelos e reduziu o número de covariáveis selecionadas. A utilização do aprendizado de máquina para predição de vazões diárias mostrou-se eficiente e a utilização do FFS na seleção de variáveis potencializou esta eficiência, demonstrando que esta abordagem pode ser útil na modelagem hidrológica para fins de planejamento e gestão de recursos hídricos.

Palavras-chave: Modelagem Hidrológica, Covariáveis Ambientais, Aprendizado Supervisionado.

2.1. INTRODUÇÃO

O cenário de mudanças climáticas e a intensificação das atividades antrópicas nas bacias hidrográficas tem resultado em modificações no ciclo hidrológico, em especial na amplitude e na frequência de ocorrência de eventos hidrológicos extremos (WEI; LIU; ZHOU, 2013), fazendo com que, cada vez mais, seja necessário prever a ocorrência destes eventos.

A previsão da ocorrência de vazões é de grande importância para que o planejamento e a gestão de recursos hídricos sejam realizados de maneira eficiente (ERDAL; KARAKURT, 2013), uma vez que fornece informações importantes para aplicações hidrológicas, como a otimização da alocação de recursos hídricos, avaliação da qualidade da água e da cobrança pelo seu uso, manejo adequado da agricultura irrigada e promoção de atividades para minimização dos impactos causados por secas e inundações (PETTY; DHINGRA, 2018; YASEEN et al., 2016).

A modelagem hidrológica é uma ferramenta amplamente utilizada para a previsão da ocorrência de vazões. Segundo Fayal (2008), pode ser realizada com base em modelos empíricos/conceituais, estocásticos e modelos heurísticos, como os baseados no aprendizado de máquina. Os modelos de aprendizado de máquina são muito úteis na modelagem de sistemas naturais e não exigem equações e pressupostos baseados em processos físicos frequentemente necessários em outros modelos (YASEEN et al., 2016).

Nos últimos anos, diferentes abordagens de aprendizado de máquina têm sido amplamente aplicadas para estudos hidrológicos e de predição de vazões (DEO; ŞAHIN, 2016; PETTY; DHINGRA, 2018; YASEEN et al., 2016). Essas abordagens têm apresentado bons resultados, muitas vezes superando metodologias tradicionais (AKUSOK et al., 2015; WORLAND; FARMER; KIANG, 2018).

Existem diversas categorias de aprendizado de máquina, sendo as principais o aprendizado supervisionado, o não supervisionado e por reforço (MISHRA, 2019). O aprendizado supervisionado é comumente utilizado na modelagem de dados hidrológicos (ISMAIL et al., 2018; SHORTRIDGE; GUIKEMA; ZAITCHIK, 2016; TONGAL; BOOIJ, 2018). Com essa técnica, os algoritmos de aprendizado de máquina aprendem o padrão nos dados de treinamento e o aplica nos dados de validação para realizar uma predição ou classificação (DEY, 2016).

Na predição de vazão com base no aprendizado de máquina supervisionado utilizamse diversas covariáveis ambientais, sendo uma das principais etapas do processo a seleção de um subconjunto de variáveis, eliminando aquelas que possuem baixa informação preditiva e são redundantes ou fortemente correlacionadas, aumentando a eficiência na geração dos modelos (VIEIRA; SOUSA; RUNKLER, 2010). A falta de uma adequada seleção, ou o uso de um grande conjunto de covariáveis, prejudica a precisão e a estabilidade dos modelos de predição (CHEN et al., 2018), bem como demanda grande quantidade de memória e custo computacional para as etapas de treinamento e validação (BOLÓN-CANEDO; SÁNCHEZ-MAROÑO; ALONSO-BETANZOS, 2015).

Atualmente, um algoritmo muito utilizado para seleção de variáveis no aprendizado de máquina é o *Recursive Feature Elimination* (RFE) (EBRAHIMY; AZADBAKHT, 2019; GOMES et al., 2019; MEYER et al., 2017; YAGMUR; MUSAOGLU; TASKIN, 2019), um algoritmo do tipo *Backward* (KUHN; JOHNSON, 2013), que seleciona o conjunto ideal de covariáveis partindo de um modelo com todas elas e eliminando as menos importantes. Neste algoritmo, no entanto, se uma covariável causa um ajuste excessivo, ela terá alta importância para o modelo e não será eliminada pelo RFE, mesmo apresentando elevados erros de validação (MEYER et al., 2018). Para tentar minimizar o problema do ajuste excessivo, outras abordagens de seleção de variáveis devem ser testadas.

Uma abordagem alternativa de seleção de variáveis é a *Forward Feature Selection* (FFS). Este algoritmo inicia o modelo com um número mínimo de covariáveis, vai adicionando uma a uma e avaliando o desempenho. Essa abordagem pode reduzir o efeito do ajuste excessivo (MEYER et al., 2018), entretanto, para Bonev (2010) a limitação de um algoritmo do tipo *Forward* é que este pode produzir um conjunto de recursos mais arbitrários nas primeiras iterações, e estas têm forte influência no restante do processo.

Diante da importância do conhecimento das previsões de vazões e a existência de diferentes abordagens para a modelagem hidrológica, sendo o aprendizado de máquina um modelo recente e que carece de mais estudos para aplicações hidrológicas, o presente trabalho teve como objetivo analisar o efeito da seleção de variáveis com o *Recursive Feature Elimination* (RFE) e com o *Forward Feature Selection* (FFS) no desempenho dos modelos de aprendizado de máquina para predição de séries temporais de vazões diárias.

2.2. MATERIAL E MÉTODOS

2.2.1. Enquadramento metodológico

Para avaliar o efeito dos métodos de seleção de variáveis na predição de séries de vazões diárias, foi adotada uma metodologia (Figura 2.1) aplicada aos dados diários de vazão

da estação fluviométrica mais próxima da foz da bacia do rio Piranga, bem como às diversas covariáveis, envolvendo a seleção de variáveis e a aplicação de modelos de aprendizado de máquina.

Para a realização da modelagem dos dados de vazão utilizando aprendizado de máquina supervisionado as covariáveis foram selecionadas pelos métodos *Recursive Feature Elimination* (RFE) e *Forward Feature Selection* (FFS). Os modelos de aprendizado de máquina utilizados foram a Regressão Adaptativa Multivariada (EARTH), a Regressão Linear Múltipla (MLR) e o *Random Forest* (RF).

No desenvolvimento dos modelos de aprendizado de máquina foram utilizados 75% dos dados para treinamento e 25% para validação externa, sendo que os processos de treinamento e de validação ocorreram 50 vezes com conjuntos de amostras diferentes a cada iteração.

O desempenho dos modelos de aprendizado de máquina utilizando as variáveis selecionadas pelo RFE e pelo FFS foi avaliado por meio do coeficiente de eficiência de Nash Sutcliffe (NSE), Coeficiente de Determinação (R²) e Raiz Quadrada do Erro Quadrático Médio (RMSE).

Figura 2.1. Metodologia aplicada no estudo.

2.2.2. Área de estudo

O local de estudo foi a área de drenagem a montante da estação fluviométrica Ponte Nova – Jusante (código 56110005), denominada estação Y, que possui extensão de 6.230 km², altitude máxima de 1.447 m e altitude mínima de 395 m (Figura 2.2). Esta área ocupa 95% da bacia do rio Piranga, que é uma sub-bacia de cabeceira da bacia do rio Doce, no Estado de Minas Gerais, Brasil. A estação Y foi selecionada por ser a estação localizada mais próxima da foz da bacia do rio Piranga, o que permite representar com fidelidade as caraterísticas dessa bacia.

Na bacia do rio Piranga foram utilizadas seis estações fluviométricas (Q1, Q2, Q3, Q4, Q5 e Y) distribuídas pelos principais rios da região e também 14 estações pluviométricas com disponibilidade de dados e com influência na área de estudo (Figura 2.2). A região é caracterizada por períodos longos de estiagem, mas frequentemente sofre com eventos extremos máximos, como enchentes e inundações (ECOPLAN-LUME, 2010b; LIMA et al., 2019).

Figura 2.2. Área de estudo com destaque para as estações pluviométricas e fluviométricas da bacia.

2.2.3. Obtenção da base de dados

As variáveis utilizadas neste estudo foram agrupadas em cinco categorias: dados de vazão de rios afluentes, precipitação, uso e ocupação da terra, dados dos sensores MODIS e tempo. De cada uma dessas categorias foi derivada uma série de possíveis variáveis preditoras, perfazendo um total de 74 variáveis.

Para a escolha do período de análise do estudo foi considerada a disponibilidade dos dados do sensor MODIS, que começaram a ser disponibilizados no ano de 2000. Sendo assim,

foi a variável limitante em relação ao início da série histórica de dados utilizada. Deste modo, as séries de dados de todas as variáveis estudadas contemplaram o período de 2000 a 2017, totalizando 18 anos de dados.

Para a obtenção dos dados de vazão em escala diária, foi utilizada a série histórica disponível na plataforma Hidroweb, da Agência Nacional de Águas (ANA) (https://www.snirh.gov.br/hidroweb/serieshistoricas), para as seis estações fluviométricas consideradas na área de estudo. Os dados de vazão da estação 56110005 (identificada como estação Y na Figura 2.2), localizada mais próxima da foz da bacia do rio Piranga, foram utilizados como variável dependente do presente trabalho.

As vazões das demais estações (Q1, Q2, Q3, Q4 e Q5 identificadas na Figura 2.2), que estão localizadas a montante da estação Y, formam a categoria de dados de vazão de rios afluentes. Na Tabela 2.1 são apresentadas as principais características das estações fluviométricas utilizadas no estudo.

Código	Variável	Latitude	Longitude	Área (km²)	Curso d'água
56028000	Q1	-20,69	-43,30	1.400	Rio Piranga
56055000	Q2	-20,85	-43,24	1.090	Rio Xopotó
56065000	Q3	-20,91	-43,10	297	Rio Turvo
56085000	Q4	-20,72	-42,92	342	Rio Turvo Sujo
56090000	Q5	-20,71	-42,10	328	Rio Turvo Limpo
56110005*	Y	-20,38	-42,90	6.230	Rio Piranga

Tabela 2.1. Estações fluviométricas da área de estudo

*Estação cujos dados foram utilizados como variável dependente.

Os valores de precipitação foram utilizados na escala diária e obtidos de duas bases de dados, sendo elas: I) estações pluviométricas localizadas na área de estudo, disponíveis na plataforma Hidroweb da ANA (https://www.snirh.gov.br/hidroweb/serieshistoricas); e II) produto 3B42_daily dos sensores TRMM (*Tropical Rainfall Measuring Mission*) (https://disc.gsfc.nasa.gov/mirador-guide) com resolução de 0,25° x 0,25°, disponibilizados pela NASA (*National Aeronautics and Space Administration*). Os dados diários das estações pluviométricas disponibilizados pela ANA foram interpolados pelos métodos do Inverso do Quadrado da Distância (IDW) com potência dois e máximo de cinco vizinhos e dos Polígonos de Thiessen para a obtenção das precipitações na área de estudo. Já os dados de precipitação do TRMM são fornecidos em mapas diários espacializados, tendo-se apenas realizado o recorte destes para a área de interesse.

Os dados de uso e ocupação da terra foram obtidos da coleção 4.0 de mapas fornecidos pelo projeto MAPBIOMAS (MAPBIOMAS, 2019). Foi feito o download de 18 mapas, um para cada ano analisado (2000 a 2017). De cada um desses mapas foi extraída a porcentagem de área da bacia coberta por floresta nativa, floresta plantada, usos agropecuários e infraestrutura urbana, estabelecendo-se, assim, a série temporal de mudança de uso e ocupação da terra.

Os produtos do sensor MODIS utilizados foram o MOD 11-8 *Day*, que fornece temperatura da superfície, e o MOD 13-16 *Day* que disponibilizam os índices de vegetação NDVI (*Normalized Difference Vegetation Index*) e EVI (*Enhanced Vegetation Index*), ambos com resolução espacial de 0,05° x 0,05°. O *download* dos produtos foi realizada utilizando o pacote MODIStsp (BUSETO; RANGHETTI, 2020) do *software* R, que possui uma interface capaz de baixar os dados diretamente do site da NASA.

Na Tabela 2.2 são apresentadas as 74 covariáveis derivadas das cinco categorias de variáveis adotadas no presente trabalho, as quais passaram pelo processo de seleção de variáveis para predição de vazões diárias. No Apêndice E são apresentadas medidas estatísticas que mostram a amplitude e a dispersão das 74 variáveis testadas.

Vazão de rios afluentes	Precipitação	Uso da terra	Sensor MODIS	Tempo
Q1	p_trmm	for_florest	t_max	mês
Q2	p_trmm_48h	florest_plant	t_med	
Q3	p_trmm_72h	agropec	t_min	
Q4	p_trmm_96h	urb	ndvi_max	
Q5	p_trmm_1sem		ndvi_med	
Q1_1	p_trmm_1		ndvi_min	
Q1_2	p_trmm_2		evi_max	
Q1_3	p_trmm_3		evi_med	
Q1_4	p_trmm_4		evi_min	
Q1_5	p_trmm_5			
Q2_1	p_thi			
Q2_2	p_thi_48h			
Q2_3	p_thi_72h			
Q2_4	p_thi_96h			
Q2_5	p_thi_1sem			
Q3_1	p_thi_1			
Q3_2	p_thi_2			
Q3_3	p_thi_3			
Q3 4	p thi 4			

Tabela 2.2. Variáveis a serem selecionadas para predição de vazão

Q3_5	p_thi_5
Q4_1	p_idw
Q4_2	p_idw_48
Q4_3	p_idw_72
Q4_4	p_idw_96
Q4_5	p_idw_1sem
Q5_1	p_idw_1
Q5_2	p_idw_2
Q5_3	p_idw_3
Q5_4	p_idw_4
Q5 5	p idw 5

Vazão diária de rios afluentes: Vazão da estação 56028000 (Q1), vazão da estação 56055000 (Q2), ..., vazão da estação 56090000 (Q5) (1, 2,..., 5 = 1 dia de defasagem, 2 dias de defasagem, ..., 5 dias de defasagem); **Precipitação:** Precipitação diária na área de drenagem obtida pelo sensor TRMM (p_trmm), pelos dados das estações pluviométricas interpolados com IDW (p_idw) e com polígonos de Thiessen (p_thi) (1, 2, ..., 5 =1 dia de defasagem, 2 dias de defasagem, 2 dias de defasagem, ..., 5 dias de defasagem; 48, 72, ..., 1sem = acumulado de 48 horas, acumulado de 72 horas, ..., acumulado de uma semana.); **Uso da terra:** Formação florestal (for_florest), floresta plantada (florest_plant), agropecuária (agropec) e infraestrutura urbana (urb); **Sensor MODIS:** Temperatura (temp), *Normalized Difference Vegetation Index* (ndvi) e *Enhanced Vegetation Index* (evi) (máx, méd, mín = máximo, médio, mínimo); **Tempo:** meses do ano (mês).

2.2.4. Pré-processamento das covariáveis

Antes do processo de seleção, todas as variáveis passaram por um pré-processamento, que consistiu na padronização. Este procedimento é essencial para evitar que os algoritmos ficassem enviesados para as variáveis de maior ordem de grandeza. Neste processo, a média dos valores de cada variável é igualada a zero e o desvio padrão a um (AHANI; SHOURIAN, 2018). Para a realização desta etapa calculou-se a média e o desvio padrão de cada variável para o período de 2000 a 2017 e utilizou-se a equação:

$$z = \frac{X_i - \bar{X}}{\sigma} \tag{2.1}$$

em que:

z = variável padronizada; $X_i = valor original da variável;$ $\overline{X} = média da variável calculada para o período de referência; e$ $\sigma = desvio padrão da variável calculado para o período de referência.$

2.2.5. Eliminação de covariáveis altamente correlacionadas

Com o resultado da padronização dos dados foi realizada a retirada de covariáveis altamente correlacionadas utilizando a correlação de Pearson com limite de 95%, conforme preconizado por Souza et al. (2018).

De acordo com metodologia detalhada por Kuhn e Johnson (2013), para essa eliminação foi feita uma matriz de correlação entre todas as variáveis explicativas potenciais. Essa matriz foi definida de forma que $X_1, X_2,..., X_n$ são as variáveis independentes e o termo a_{12} da matriz é o coeficiente de correlação entre as variáveis X_1 e X_2 . Da mesma forma, o termo a_{1n} da matriz é o coeficiente de correlação entre as variáveis X_1 e X_n . Quando um dos termos da matriz, que representa a relação entre um par de variáveis, é maior que 95%, procedeu-se a eliminação de uma das variáveis do par. Dessa forma, foi eliminada a variável do par que, quando correlacionada com as demais covariáveis potenciais (multicolinearidade), apresentou maior correlação.

Para este procedimento foi utilizada a função *findcorrelation*, disponível no pacote *caret* (KUHN et al., 2020) do *software* R.

2.2.6. Particionamento da amostra

Após a eliminação das variáveis altamente correlacionadas, o conjunto total de dados foi dividido na proporção de 75% (13 anos da série histórica) para a etapa de treinamento e 25% (5 anos da série histórica) para validação, procedimento conhecido como *holdout* (GOMES et al., 2019).

Este processo ocorreu com a seleção aleatória de amostras de treinamento e validação por 50 vezes conforme realizado por Shortridge, Guikema e Zaitchik (2016). A amostra de treinamento foi formada a cada rodada por um subconjunto de 13 anos completos, selecionados aleatoriamente, sem que houvesse repetição do subconjunto e da ordem dos anos dentro do subconjunto.

De forma complementar, a cada rodada os anos que não foram selecionados para o treinamento compuseram a amostra de validação. Sendo assim, foram utilizadas 50 amostras diferentes de treinamento e de validação. O processo de várias repetições é importante para determinar a variabilidade da previsão, pois diferentes grupos de conjuntos de dados de treinamento e validação podem gerar diferentes resultados de precisão (KUHN; JOHNSON, 2013).

2.2.7. Eliminação de covariáveis por importância (RFE e FFS)

Em cada uma das 50 divisões de conjuntos de dados os algoritmos de seleção de variáveis (RFE e FFS) foram aplicados aos dados de treinamento. O RFE e o FFS foram aplicados, a cada rodada, ao mesmo conjunto de treinamento e de validação para garantir que a variação da performance dos modelos fosse decorrente somente do conjunto de variáveis selecionadas e não de diferentes amostras de treinamento e validação.

O RFE avalia diversos subgrupos definidos pelo operador com diferentes quantidades de covariáveis, sempre começando do maior subgrupo para o menor. Foram definidos 19 subgrupos compostos por 5, 6, 7,..., 19, 20, 25, 30 variáveis e o número total de variáveis preditoras restantes do processo de eliminação por correlação, conforme utilizado por Gomes et al. (2019). Em cada subgrupo foram testadas todas as combinações possíveis de covariáveis e foi realizado um ranking de importância de cada covariável dentro do subgrupo. Com isso teve-se a melhor combinação de variáveis para cada um dos subgrupos, sendo escolhido aquele que, para cada modelo (EARTH, MLR e RF), apresentou o melhor desempenho.

O FFS é um algoritmo do tipo *Forward* (MEYER et al., 2018), sendo que a seleção das covariáveis ocorre adicionando variáveis a cada iteração. Inicialmente o FFS avaliou um subconjunto com cinco covariáveis e, para isso, foram testadas todas as combinações possíveis de cinco covariáveis, sendo mantidas aquelas que proporcionaram melhor desempenho em cada modelo de aprendizado de máquina (EARTH, MLR e RF). Posteriormente, a cada iteração, o número de variáveis foi aumentado e a melhoria do modelo foi medida. O processo chegou ao fim quando nenhuma das variáveis restantes aumentou o desempenho do melhor modelo atual.

Para avaliar o desempenho de cada subconjunto de variáveis nos modelos de aprendizado de máquina definidos pelo operador, (EARTH, MLR e RF), na etapa de eliminação de covariáveis por importância os métodos RFE e o FFS utilizaram o coeficiente de eficiência de Nash Sutcliffe (NSE) (Equação 2.3) e um método de validação em grupos (10K-fold), em que o conjunto de dados foi dividido em 10 grupos, sendo que um foi escolhido aleatoriamente para a validação e os outros nove se juntaram para treinar os modelos, repetindo o processo até que todos os grupos passassem pelo conjunto de validação. O NSE adotado como medida do desempenho dos modelos com cada subconjunto de variáveis foi obtido pela média deste coeficiente em todas as repetições da validação interna.

Dentro de cada subconjunto de covariáveis selecionado para cada um dos modelos de aprendizado de máquina (EARTH, MLR e RF) pelo RFE e pelo FFS, foi realizado um ranking de variáveis utilizando a importância relativa, em que para a variável mais importante

foi adotado 100%, e para a menos importante 0%, permitindo comparar todas as covariáveis selecionadas em relação a mais importante.

2.2.8. Treinamento dos modelos de aprendizado de máquina

A Regressão Adaptativa Multivariada (EARTH) é um método de regressão linear não paramétrico que particiona o fenômeno que se quer modelar. O conjunto de dados é separado em segmentos (spline) para os quais são calculadas regressões lineares com diferentes inclinações (GOH et al., 2018). Os pontos inicial e final dos segmentos são chamados de nós. O algoritmo é capaz de avaliar a importância das variáveis em cada um dos seguimentos e também posição dos nós. Uma de suas principais qualidades é não ter nenhuma suposição especifica entre a função que relaciona variáveis de entrada e de saída (ZHANG, 2020).

A regressão linear múltipla (MLR) é um método muito popular que correlaciona uma variável dependente com um conjunto de variáveis independentes (ESMAEELNEJAD et al., 2015; PINHEIRO et al., 2018). É usada em modelos empíricos ou funções de aproximação para descrever um modelo matemático que representa um fenômeno que ocorre naturalmente (JUNG et al., 2017), sendo descrita pela equação:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n$$
(2.2)

em que:

Y	= variável dependente (vazão), em m ³ s ⁻¹ ;
β_0	= intercepto, adimensional;
$X_1, X_2, X_3 e X_n$	= variáveis independentes (covariáveis); e
$\beta_1, \beta_2, \beta_3 \ e \ \beta_n$	= coeficientes da regressão, adimensionais.

O Random Forest (RF) é um algoritmo do tipo árvore de decisão que foi desenvolvido para classificação ou regressão, sendo baseado na ideia de aprendizado conjunto (*bagging*) (GOMES et al., 2019). O algoritmo ajusta a cada uma das árvores parte do conjunto de dados separado aleatoriamente. O restante do conjunto amostral é usado para validar o resultado da árvore. Ao avaliar cada árvore separadamente a mesma terá precisão ligeiramente melhor que uma escolha aleatória (BREIMAN, 2001). Este fato é devido, principalmente, às mesmas serem sensíveis a ruídos das amostras de treinamento. No entanto, a média de várias árvores de decisão reduz a sensibilidade a ruídos, desde que as mesmas não estejam correlacionadas (PEREZ et al., 2016).

Boa parte dos algoritmos de árvores de decisão cria um conjunto de árvores variando a amostra de treinamento para gerar árvores não correlacionadas. O diferencial do algoritmo Random Forest é que o mesmo faz a escolha aleatória dos preditores usados para treinar cada árvore (BREIMAN, 2001).

Antes do treinamento e da validação foi necessário realizar a calibração dos hiperparametros, que são parâmetros internos de configuração específicos de cada modelo. A otimização dos hiperparâmetros permite alcançar resultados robustos de desempenho com modelos de aprendizado de máquina (SCHRATZ et al., 2019). O hiperparâmetro otimizado para o RF foi o número de variáveis utilizadas para construir cada árvore (*mtry*). Para o EARTH foi o número máximo de variáveis (*nprune*) e o grau máximo de interação (*degree*). Já para o MLR, como é uma regressão linear, não há ajuste de hiperparâmetros. O ajuste dos hiperparâmetros foi feito automaticamente com o pacote caret (KUHN, 2008), utilizando um processo de validação interna em grupos (10K-fold) e o NSE como métrica de avaliação do desempenho.

Com os hiperparâmetros calibrados, os modelos foram treinados por 50 vezes. A cada rodada a amostra de treinamento, composta por 75% da série histórica adotada, foi alterada e esta foi utilizada para o treinamento dos três modelos. No treinamento dos modelos a estratégia de validação interna também foi a 10K-fold com o NSE como coeficiente de avaliação do desempenho.

2.2.9. Avaliação dos modelos de aprendizado de máquina

A influência do método de seleção de variáveis no desempenho dos modelos EARTH, MLR e RF foi avaliada aplicando o modelo ajustado na etapa de treinamento, com o melhor conjunto de covariáveis selecionado tanto pelo RFE quanto pelo FFS, aos dados de validação externa (25%), sendo a precisão avaliada pelos índices estatísticos: Coeficiente de eficiência de Nash Sutcliffe (NSE) (Equação 2.3), Coeficiente de determinação (R²) (Equação 2.4) e raiz quadrada do erro quadrático médio (RMSE) (Equação 2.5) conforme utilizado por Ghorbani et al. (2016).

$$NSE = 1 - \left[\frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}\right], -\infty \le E_{NS} \le 1$$
(2.3)

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (O_{i} - \overline{O_{i}}) \cdot (P_{i} - \overline{P_{i}})\right]^{2}}{\sum_{i=1}^{n} (O_{i} - \overline{O_{i}})^{2} \cdot \sum_{i=1}^{n} (P_{i} - \overline{P_{i}})^{2}}$$
(2.4)
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$
(2.5)

em que:

 P_i = valor estimado pelo modelo; O_i = valor observado no ponto amostral i; e n = número de pontos amostrados.

Para cada modelo, o processo de validação foi repetido 50 vezes, utilizando a cada rodada um conjunto de validação diferente, selecionado de forma aleatória na separação dos dados de treinamento e validação. Os modelos e os métodos de seleção de variáveis foram comparados pelos valores médios dos parâmetros de precisão (NSE, R² e RMSE).

Os modelos foram considerados como de bom desempenho quando apresentaram NSE maior que 0,75, conforme preconizado por Van Liew et al. (2007); R^2 maior que 0,8, conforme sugerido por Moriasi et al. (2015); e RMSE abaixo da metade do desvio padrão dos valores observados, conforme utilizado por Singh, Knapp e Demissie (2005).

2.3. RESULTADOS E DISCUSSÃO

2.3.1. Seleção de covariáveis para predição de vazão

Cada um dos modelos de aprendizado de máquina obteve melhores resultados com grupos de covariáveis diferentes, selecionadas utilizando os métodos de seleção de covariáveis RFE e FFS, conforme apresenta-se na Tabela 2.3. Utilizando o RFE foram selecionadas 15 covariáveis para o EARTH, 16 para o MLR e 25 para o RF, enquanto com o FFS, foram 10 para o EARTH, 23 para o MLR e 18 para o RF.

	RFE			FFS	
EARTH	MLR	RF	EARTH	MLR	RF
mês	evi_med	evi_min	mês	evi_med	evi_med
p_idw_48	florest_plant	mês	p_idw_1sem	evi_min	evi_min
p_idw_72	for_florest	ndvi_med	p_idw_96	florest_plant	for_florest
p_idw_96	mês	p_idw_1sem	Q1_1	for_florest	mês
p_thi_3	Q1_1	p_idw_72	Q1_2	mês	ndvi_min
Q1_1	Q1_2	p_idw_96	Q1_5	ndvi_min	p_idw_1sem
Q1_2	Q1_5	Q1_1	Q2_1	p_idw_48	p_idw_72
Q2_1	Q2_1	Q1_2	Q3_1	p_idw_96	p_idw_96
Q3_1	Q3_1	Q1_3	Q4_4	p_thi_5	p_trmm_1sem
Q4_1	Q4_1	Q2_1	Q5	Q1_1	Q1_1
Q4_4	Q4_4	Q2_2		Q1_2	Q1_2
Q4_5	Q4_5	Q2_3		Q1_5	Q2_1
Q5_5	Q5_1	Q3_1		Q2_1	Q3_1
Q3	Q5_2	Q3_2		Q2_5	Q4_1
Q5	Q3	Q4_1		Q2_5	Q4_5
	Q5	Q4_2		Q3_1	Q5_3
		Q4_3		Q4_1	Q5
		Q5_1		Q4_5	t_max
		Q5_2		Q5_2	
		Q5_3		Q5_5	
		Q1		Q5	
		Q2		t_max	
		Q3		t_min	
		Q4		urb	
		Q5			

Tabela 2.3. Grupo de covariáveis selecionadas em cada modelo de aprendizado de máquina(EARTH, MLR e RF) utilizando os métodos de seleção de covariáveis RFE e FFS

A Figura 2.3 mostra a importância relativa de todas as variáveis selecionadas por cada modelo de aprendizado de máquina utilizando o RFE e o FFS. Pode-se observar que as variáveis mais importantes para a predição de vazão em todos os casos analisados foram as vazões dos rios afluentes, principalmente as defasadas no tempo. Dentre as variáveis com maior importância também aparecem as precipitações acumuladas, mês e variáveis referentes ao uso e ocupação da terra e vegetação, como formação florestal, florestas plantadas e o índice EVI.

Por outro lado, as variáveis como precipitações defasadas, precipitação obtida pelo sensor TRMM, temperatura e o índice de vegetação NDVI apresentaram menor importância. A porcentagem de área urbana também apresentou baixa importância, no entanto para a bacia estudada a área urbana é pouca expressiva em relação à área total, de forma que em bacias mais urbanizadas essa variável pode apresentar maior relevância.

Na importância relativa é atribuído à variável mais importante 100% e à menos importante 0%, isso não implica que as variáveis com 0% sejam descartadas. Os conjuntos de variáveis representados na Figura 2.3 são os conjuntos que proporcionaram o melhor desempenho aos modelos, logo todas as variáveis representadas tiveram sua parcela de contribuição. Testes podem ser realizados com o intuito de verificar se a retirada de variáveis com baixa importância não afeta significativamente o desempenho dos modelos, mas para o presente trabalho, como o objetivo foi comparar os métodos de seleção de variáveis RFE e FFS, é importante que não haja influência do operador nesta etapa de seleção.

Figura 2.3. Importância relativa das variáveis selecionadas para cada modelo de aprendizado de máquina (EARTH, MLR e RF), utilizando os métodos de seleção de covariáveis RFE e FFS.

Os dados de vazão de rios afluentes defasados no tempo foram os mais importantes na predição de vazão próximo à foz da bacia, pois a vazão de um rio em um determinado ponto é resultado da combinação das vazões de pontos a montante, guardadas as devidas especificidades de cada bacia hidrográfica. Dados de vazão defasados no tempo também foram utilizados em outros trabalhos e foram importantes para o melhor desempenho dos modelos de predição de vazões (ERDAL; KARAKURT, 2013; HUANG et al., 2014; YASEEN et al., 2016).

Pela Figura 2.3 pode-se observar que a variável Q1_1, referente à vazão na estação Q1 defasada de um dia, liderou o *ranking* de importância para todos os modelos testados. Esta estação possui a maior área de drenagem dentre as estações consideradas como covariáveis. Este fato faz com que a contribuição de Q1 para compor a vazão que passa na estação Y seja maior que as demais e, portanto, sua variação tem maior peso na variação da vazão na estação Y. Já a questão da defasagem temporal indica que, pelo fato da estação Q1 estar a montante da estação Y, o volume de água demora um intervalo de tempo para ser transferido de uma até a outra. O correlograma entre as estações Q1 e Y (Figura 2.4) mostra uma elevada correlação entre as séries de vazão das duas estações, sendo que a maior correlação é observada na defasagem -1, ou seja, com atraso de um dia para Q1.

Figura 2.4. Correlograma entre as séries históricas de vazão das estações Q1 e Y.

O fato dos dados de vazão de estações fluviométricas localizadas a montante da foz da bacia terem sido considerados importantes pelos dois métodos de seleção de covariáveis (RFE e FFS), em todos os modelos de aprendizado de máquina estudados (EARTH, MLR e RF), mostra que os modelos gerados têm potencial para confecção de um sistema de previsão de vazões extremas.

As variáveis relacionadas à vegetação e cobertura da terra também foram importantes na predição de vazões no presente trabalho. Covariáveis dessa natureza também foram utilizadas por Worland, Farmer e Kiang (2018). A mudança na cobertura da terra influencia o regime de vazões de uma bacia hidrográfica, conforme evidenciado por Rodrigues et al. (2019) em estudo realizado em uma bacia também do sudeste brasileiro, reforçando a importância dessas variáveis nos processos de modelagem hidrológica.

Conforme observado na Figura 2.5, segundo os dados do MAPBIOMAS (2019), houve uma redução de 289 km² em áreas destinadas a agropecuária e aumento de 221, 70 e 10 km² das áreas de formação florestal, florestas plantadas e infraestrutura urbana, respectivamente. As alterações e a dinâmica do uso e cobertura da terra, principalmente em usos expressivos na bacia, como a redução de áreas destinadas à agropecuária e o aumento de áreas de florestas, podem causar impacto no regime de vazões nos rios (CHENG et al., 2017; GUZHA et al., 2018).

Figura 2.5. Evolução do uso da terra ao longo do tempo na área de estudo.

A precipitação representa a principal entrada de água no sistema hídrico e é bastante utilizada para predição de vazões (DEO; ŞAHIN, 2016; SHORTRIDGE; GUIKEMA; ZAITCHIK, 2016), logo, era esperado que esta covariável tivesse elevada importância. Para que um evento de chuva seja convertido em vazão nos rios, geralmente é necessário que tenha havido chuvas anteriores para saturar o solo e permitir a recarga dos aquíferos e o próprio escoamento superficial, que é o grande responsável pelo aumento abrupto das vazões nos rios. Tal fato explica por que, na maioria dos casos, as variáveis relacionadas à precipitação que tiveram maior relevância foram as precipitações acumuladas.

O mês também foi uma variável importante para que os modelos tivessem bom desempenho. Nesta variável está inserido o padrão hidrológico da região, que possui estações climáticas ao longo do ano bem definidas, com inverno seco e verão temperado em algumas regiões e quente em outras (ALVARES et al., 2013). A estação seca, com baixos índices pluviométricos e, consequentemente, vazões com magnitudes menores, e a estação chuvosa, com maiores índices pluviométricos e vazões mais elevadas, permitiram aos modelos identificar um padrão na magnitude das maiores vazões associado aos meses chuvosos e das menores vazões associado aos meses secos. Segundo Deo & Şahin (2016), o mês como covariável é importante para que o modelo considere a periodicidade dos eventos de vazão.

2.3.2. Desempenho dos modelos de aprendizado de máquina

Na Tabela 2.4 podem ser observados os valores máximo (V. máx), mínimo (V. mín), médio (V. méd), desvio padrão (Sd) e erro relativo de V. máx, V. mín e V. méd (Er) das séries de vazões diárias observadas e preditas pelos modelos de aprendizado de máquina (EARTH, MLR e RF) utilizando os métodos de seleção de covariáveis RFE e FFS.

Tabela 2.4. Valores máximo, médio e mínimo e desvio padrão para os dados de vazões observada e predita pelos modelos de aprendizado de máquina (EARTH, MLR e RF) utilizando os métodos de seleção de variáveis RFE e FFS

Método de		Vazão n	náxima	Vazão	mínima	Vazão r	_	
seleção de variáveis	Modelos	V. máx (m3/s)	Er (%)	V. mín (m3/s)	Er (%)	V. méd (m3/s)	Er (%)	Sd (m3/s)
-	Vazão observada	878,25	0,00	10,06	0,00	87,51	0,00	76,37
RFE	EARTH	735,60	16,24	11,82	17,49	85,12	2,73	65,21
FFS	EARTH	714,73	18,62	11,94	18,72	85,75	2,01	65,59
RFE	MLR	659,43	24,92	-2,15	121,41	84,87	3,01	65,64
FFS	MLR	654,71	25,45	-2,20	121,83	84,95	2,92	65,45
RFE	RF	550,91	37,27	18,37	82,60	85,16	2,69	62,42
FFS	RF	560,31	36,20	19,18	90,66	85,22	2,61	62,17

Valor máximo (V. máx); Valor mínimo (V. mín); Valor médio (V. méd); e Erro relativo (Er).

Observa-se que todos os modelos de aprendizado de máquina testados, com os dois métodos de seleção de covariáveis, subestimaram o maior valor da série de vazão observada,

característica muito comum na modelagem de vazões (RAZAVI; COULIBALY, 2017; YASEEN et al., 2018). Tal fato ocorre, pois as vazões de elevada magnitude são mais raras, o que dá pouco embasamento aos modelos no treinamento para predição desses valores. O EARTH, utilizando o RFE, foi o que mais se aproximou do valor máximo observado, tendo menor erro relativo.

Para o valor mínimo o EARTH, utilizando o RFE, teve o menor erro relativo em relação ao valor observado. O MLR, por ser uma regressão linear múltipla extrapolou os valores extremos mínimos do conjunto de dados de treinamento, o que resultou na estimativa de valores negativos de vazão. A predição de valores negativos de vazão com o MLR também foi observada por Ghorbani et al. (2016), sendo atribuída à formulação matemática do método de regressão linear múltipla. Já o RF apresentou elevados erros relativos.

Para o valor médio, todos os modelos de aprendizado de máquina utilizando o RFE e o FFS conseguiram se aproximar do valor observado, com erros relativos variando de 2,01 a 3,01 %, sendo o EARTH utilizando o FFS a configuração que obteve menor erro relativo.

Já o desvio padrão, tanto para os dados observados como preditos mostra-se elevado, em comparação com a amplitude dos dados, e isso ocorre devido ao fato de que as séries de dados são formadas por valores de vazão diária e estes, por sua vez, possuem alta variabilidade.

A distribuição dos índices estatísticos nas 50 rodadas da validação externa é mostrada na Figura 2.6 e seus valores médios podem ser observados na Tabela 2.5.

Figura 2.6. Boxplot mostrando a distribuição dos índices estatísticos (NSE, R² e RMSE) da validação nas 50 rodadas, para cada modelo de aprendizado de máquina (EARTH, MLR e RF) com os métodos de seleção de covariáveis RFE e FFS.

		Treinament	t 0		Validação						
Nodelo	NSE	\mathbb{R}^2	RMSE	NSE	\mathbf{R}^2	RMSE					
Recursive feature elimination (RFE)											
EARTH	0,922	0,929	18,045	0,821	0,832	29,779					
MLR	0,919	0,927	18,398	0,896	0,909	20,735					
RF	0,932	0,944	16,197	0,901	0,923	19,366					
		Forwa	rd feature selection	ion (FFS)							
EARTH	0,926	0,932	17,604	0,882	0,893	23,081					
MLR	0,921	0,929	18,123	0,899	0,912	20,403					
RF	0,936	0,947	15,727	0,893	0,921	19,921					

Tabela 2.5. Índices estatísticos (NSE, R² e RMSE) do treinamento e da validação para avaliação do desempenho médio dos modelos de aprendizado de máquina (EARTH, MLR e RF) nas 50 rodadas utilizando o RFE e o FFS.

Todos os modelos de aprendizado de máquina testados apresentaram bom desempenho para a predição das vazões diárias considerando os métodos de seleção de variáveis por importância (RFE e FFS), uma vez que, em todos os casos, o NSE foi maior que 0,75, o R^2 foi maior que 0,80 e o RMSE foi menor que a metade do desvio padrão dos dados observados (< 38,18 m³/s).

Utilizando as variáveis selecionadas pelo RFE, o RF teve o desempenho melhor comparativamente ao EARTH e MLR, com maiores valores de NSE e R² e menores valores de RMSE. O segundo melhor desempenho foi do MLR e o pior do EARTH. Com as variáveis selecionadas com o FFS os modelos seguiram a mesma ordem de desempenho, sendo o RF ligeiramente melhor e o EARTH o pior. Papacharalampous e Tyralis (2018), em seu estudo para previsão de vazão diária em um rio dos Estados Unidos, também observaram que o RF superou o MLR em termos de desempenho.

Embora o RF seja mais robusto e tenha apresentado desempenho melhor ele possui uma desvantagem que é uma exigência computacional mais intensiva que os demais modelos (HENGL et al., 2018). O MLR apresenta a vantagem de gerar uma equação que determina a vazão na foz em função das variáveis selecionadas, o que é interessante do ponto de vista de gestão de recursos hídricos, ao passo que os demais modelos precisam passar pelo processo de predição demandando maior capacidade computacional e pessoal especializado para a operação. Por outro lado, o MLR pode estimar valores irreais (menores que zero) para eventos extremos mínimos.

O EARTH foi o modelo que utilizou um menor número de covariáveis para predizer vazão, no entanto expressou maior variância nas 50 vezes que foi rodado, sendo menos preciso que o MLR e o RF. Tyralis, Papacharalampous e Langousis (2019) também observaram que o EARTH teve maior instabilidade na predição de vazão diária, apresentando vários *outliers* ao analisar o índice RMSE.

Na Figura 2.7 são apresentados gráficos de dispersão dos dados de vazão observados versus preditos com o uso dos três modelos de aprendizado de máquina (EARTH, MLR e RF) utilizando os dois métodos de seleção de variáveis (RFE e FFS) nas 50 rodadas de validação, em relação a uma linha 1:1 (linha vermelha), que representa um ajuste perfeito.

Figura 2.7. Dispersão da vazão predita e observada para os modelos de aprendizado de máquina (EARTH, MLR e RF) utilizando os métodos de seleção de covariáveis RFE e FFS nas 50 rodadas de validação.

Pode-se observar pela análise da Figura 2.7 que todos os modelos de aprendizado de máquina utilizados obtiveram uma dispersão próxima da linha 1:1, o que caracteriza um bom desempenho. Observa-se, também, que independente do método de seleção de variáveis empregado todos os modelos mostraram dificuldade de estimar valores maiores que, aproximadamente, 400 m³/s. Verifica-se que, acima desse limite, os modelos tendem a subestimar os valores de vazão. Adnan et al. (2019) também observaram problemas de subestimação nos modelos EARTH e MLR para previsão de vazão diária, ao passo que Li, Sha e Wang (2019) e Shortridge, Guikema e Zaitchik (2016) verificaram em seus estudos que o RF teve um desempenho prejudicado na predição de valores elevados de vazão.

O problema da subestimação dos valores mais elevados de vazão foi mais evidente no modelo RF. Este fato pode ser explicado por uma característica dos modelos do tipo árvores de decisão, como o RF. Estes modelos, por padrão, não podem extrapolar fora do intervalo de dados de treinamento, conforme mostrado por Hengl et al. (2018). Portanto, poucos valores

extremos nas amostras de treinamento podem acarretar em baixa precisão da previsão de valores altos e baixos de vazão (LI; CHENG, 2014; YASEEN et al., 2016).

Para uma melhor visualização do desempenho dos modelos em situações de eventos extremos são mostradas na Figura 2.8 as séries históricas de vazões preditas em comparação com as observadas para o EARTH, o MLR e o RF utilizando os métodos de seleção de covariáveis RFE e FFS no ano de 2005, que é o ano com maior média de vazões de todo o período estudado sem falhas nos dados. Em contrapartida, na Figura 2.9 são mostradas as séries históricas de vazões preditas pelos modelos de aprendizado de máquina em comparação com as observadas para o ano de 2014, que representa o ano com menor média de vazõe sem falha na série.

Figura 2.8. Vazões observadas e preditas para o ano de 2005 com os modelos de aprendizado de máquina (EARTH, MLR e RF) utilizando os métodos de seleção de covariáveis RFE e FFS.

Para o ano de 2005, todos os modelos estudados mostraram comportamento similar ao da vazão observada, com maiores divergências apenas nos dados extremos de vazão. Para as

menores vazões deste ano observa-se a similaridade entre as curvas preditas e observadas devido ao fato de que, como 2005 é o ano com maiores médias de vazão, na sua predição o conjunto de treinamento dos modelos, analisando o período seco, compreendiam vazões mais baixas e também mais elevadas do que as vazões no ano de 2005, o que facilitou a identificação do padrão das covariáveis neste período para predizer a vazão.

Figura 2.9. Vazões observadas e preditas para o ano de 2014 com os modelos de aprendizado de máquina (EARTH, MLR e RF) utilizando os métodos de seleção de covariáveis RFE e FFS.

Dentre os modelos testados o EARTH, com seleção de covariáveis feitas pelo FFS, se ajustou melhor aos menores valores de vazão do ano de 2014, mas não foi eficaz na predição dos maiores valores e, em alguns casos, superestimou valores intermediários. O MLR teve um comportamento parecido em 2014, subestimando as vazões máximas, se ajustando bem aos valores mais baixos e superestimando os valores intermediários de vazão. Já o RF teve um ajuste similar à vazão observada, mas superestimou os valores mais baixos e subestimou os maiores valores de vazão devido aos modelos do tipo árvores de decisão não extrapolarem fora do intervalo de treinamento.

Apesar de apresentarem algumas limitações, os modelos de aprendizado de máquina apresentam grande potencial de modelar as vazões diárias, ao superar metodologias tradicionais. Salvador (2014) modelou hidrologicamente a bacia do rio Piranga com o modelo físico bastante renomado, o HEC-HMS, e obteve um desempenho inferior ao que foi encontrado neste trabalho, com NSE na validação de 0,54. Lyra e Rigo (2019) usando o modelo MGB-IPH encontraram NSE de 0,67 para a bacia do rio Piranga. Trabalhos que modelaram outras bacias hidrográficas no sudeste brasileiro obtiveram NSE de 0,5 a 0,6 (DE MORAES et al., 2018; RODRIGUES et al., 2019), o que mostra que nesta região as metodologias consideradas tradicionais têm ajustes mais baixos que os modelos de aprendizado de máquina.

Em termos de aplicação prática, devido ao bom desempenho, a abordagem utilizando modelos de aprendizado de máquina tem potencial de ser utilizada para elaboração de um sistema de previsão de enchentes, bem como para o preenchimento de falhas nas séries históricas de estações fluviométricas caso estas venham a ter algum problema de operação.

Alguns avanços, no entanto, são necessários para melhorar a previsão de vazões, principalmente no que se refere às estimativas de valores máximos e mínimos. Para tanto, fazse necessário contemplar na amostra de treinamento maior quantidade de dados dessa natureza.

2.3.3. Método de seleção de variáveis

Os métodos de seleção de variáveis RFE e FFS proporcionaram aos modelos de aprendizado de máquina desempenhos satisfatórios. O RFE foi o melhor método de seleção

de covariáveis para o RF, embora o ganho na validação tenha sido de apenas 0,9% no NSE, 0,2% no R^2 e 2,8% no RMSE. Já o FFS foi o método que promoveu melhor desempenho nos modelos MLR e EARTH. Para o MLR, o ganho na validação foi de 0,3% no NSE e no R^2 e 1,6% no RMSE. No caso do EARTH, o ganho promovido pelo FFS na validação foi mais notável, em torno de 7,4% no NSE, 7,3% no R^2 e 29,0% no RMSE.

Apesar de o FFS ter proporcionado um desempenho ligeiramente menor para o RF, ainda assim este método se mostrou vantajoso. Com o FFS o modelo ajustado no RF teve apenas 18 covariáveis, enquanto que com o RFE o modelo necessitou de 25 covariáveis. Este fato, para o caso estudado neste trabalho, torna mais propícia a seleção de variáveis com o FFS quando se utiliza o RF, uma vez que este necessitou de sete covariáveis a menos para desenvolver um modelo com desempenho muito similar. Segundo Kuhn e Johnson (2013), modelos com menor número de preditores podem ser mais interpretáveis e menos onerosos. Em um dos estudos de caso do artigo onde foi proposto o FFS (*"Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation"*), Meyer et al. (2018b) também observaram que houve uma redução do número de variáveis para o modelo RF quando foi utilizado o FFS em comparação com o RFE.

Para o MLR, o RFE foi o método que selecionou um menor conjunto de covariáveis. Já para o EARTH foi o FFS. O modelo do MLR teve sete covariáveis a mais utilizando o FFS e o EARTH teve cinco a menos com o FFS em comparação com o RFE. No entanto, para ambos os modelos, o FFS promoveu melhorias no desempenho. Em seu estudo, Meyer et al. (2018b) também observaram essas características. Apesar de terem utilizado somente o RF como modelo nos dois estudos de caso do trabalho citado, em um deles o FFS selecionou menos variáveis que o RFE e no outro selecionou um número maior. Isso mostra que o FFS nem sempre seleciona um conjunto mais reduzido de covariáveis.

Por outro lado, os mesmos autores também observaram o aumento do desempenho dos modelos com a utilização do FFS quando os dados de validação não contém, por exemplo, partes de um ano que foi utilizado para o treinamento (*target oriented validation*), pois este método tem potencial de eliminar variáveis que causam o ajuste excessivo nos modelos.

2.4. CONCLUSÕES

As variáveis mais importantes para predição de vazões diárias utilizando aprendizado de máquina na bacia do rio Piranga foram as vazões de rios afluentes defasadas no tempo.

Também foram importantes as precipitações acumuladas, porcentagem de floresta plantada e formação florestal, mês e o índice de vegetação EVI.

O Random Forest (RF) foi o modelo com melhor desempenho para predição de vazões diárias na bacia do rio Piranga, embora os modelos Regressão Adaptativa Multivariada (EARTH) e Regressão Linear Múltipla (MLR) também tenham apresentado resultados satisfatórios.

O MLR constitui-se numa opção interessante por gerar uma equação que determina a vazão na foz em função das variáveis selecionadas, apresentando grande aplicabilidade prática na gestão de recursos hídricos, ao passo que os demais modelos precisam passar pelo processo de predição demandando maior capacidade computacional e pessoal especializado para a operação.

O Forward Feature Selection (FFS), em comparação com o Recursive Feature Elimination (RFE), mostrou-se mais vantajoso como método de seleção de variáveis, tendo melhorado o desempenho dos modelos MLR e EARTH e no caso do RF, apesar de proporcionar um desempenho mais baixo, permitiu um ajuste similar do modelo com um número menor de covariáveis.

Embora o RFE seja atualmente o método de seleção de variáveis mais utilizado, devese levar em consideração a aplicação do FFS para selecionar o conjunto ideal de covariáveis. O FFS tem mostrado capacidade de eliminar variáveis que causam ajuste excessivo e melhorar o desempenho dos modelos de aprendizado de máquina.

Os modelos de aprendizado de máquina com a utilização do FFS podem ser utilizados para compor sistemas de alertas de enchente, preencher falhas em séries históricas e auxiliar a tomada de decisão na gestão de recursos hídricos.

2.5. REFERÊNCIAS

- ADNAN, R. M. et al. Daily streamflow prediction using optimally pruned extreme learning machine. Journal of Hydrology, v. 577, p. 123981, 1 out. 2019.
- AHANI, A.; SHOURIAN, M. Performance Assessment of the Linear, Nonlinear and Nonparametric Data Driven Models in River Flow Forecasting. p. 383–399, 2018.
- AKUSOK, A. et al. High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications. IEEE Access, v. 3, p. 1011–1025, 2015.
- ALVARES, C. A. et al. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013.

- BOLÓN-CANEDO, V.; SÁNCHEZ-MAROÑO, N.; ALONSO-BETANZOS, A. Recent advances and emerging challenges of feature selection in the context of big data. Knowledge-Based Systems, v. 86, p. 33–45, 1 set. 2015.
- BONEV, B. I. Feature Selection Based on Information Theory. [s.l.] University of Alicante, 2010.
- BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001.
- BUSETO, L.; RANGHETTI, L. A Tool for Automating Download and Preprocessing of MODIS Land Products Data, 2020. Disponível em: https://github.com/ropensci/MODIStsp
- CHEN, J. et al. A novel variable selection method based on stability and variable permutation for multivariate calibration. Chemometrics and Intelligent Laboratory Systems, v. 182, p. 188–201, 15 nov. 2018.
- CHENG, L. et al. Quanytifying the impacts of vegetation changes on catchment soragedischarge dynamics using paired-catchment data. Water Resources Research, n. jul 2017, p. 5963–5979, 2017.
- DE MORAES, T. C. et al. Effects on runoff caused by changes in land cover in a Brazilian southeast basin: evaluation by HEC-HMS and HEC-GEOHMS. Environmental Earth Sciences, v. 77, n. 6, p. 250, 23 mar. 2018.
- DEO, R. C.; ŞAHIN, M. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental Monitoring and Assessment, v. 188, n. 2, p. 90, 16 fev. 2016.
- DEY, A. Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technologies, v. 7, n. 3, p. 1174–1179, 2016.
- EBRAHIMY, H.; AZADBAKHT, M. Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels. **Computers and Geosciences**, v. 124, n. August 2018, p. 93–102, 2019.
- ECOPLAN-LUME. Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce e Planos de Ações para a Unidade de Planejamento e Gestão de Recursos Hídricos no Âmbito da Bacia do Rio Doce. Consórcio ECOPLAN - LUME, , 2010. Disponível em: http://www.cbhdoce.org.br//wp-content/uploads/2016/12/PIRH Doce Volume I.pdf>. Acesso em: 10 jul. 2019

- ERDAL, H. I.; KARAKURT, O. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. Journal of Hydrology, v. 477, p. 119–128, 16 jan. 2013.
- ESMAEELNEJAD, L. et al. Selection of a suitable model for the prediction of soil water content in north of Iran. Spanish Journal of Agricultural Research, v. 13, n. 1, p. 1–11, 2015.
- FAYAL, M. A. DE A. Previsão de Vazão por Redes Neurais Artificiais e Transformada Wavelet. [s.l.] Pontificia Universidade Católica do Rio de Janeiro - PUC-Rio, 2008.
- GHORBANI, M. A. et al. Modeling river discharge time series using support vector machine and artificial neural networks. Environmental Earth Sciences, v. 75, n. April 2016, p. 13, 2016.
- GOH, A. T. C. et al. Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach. Bulletin of Engineering Geology and the Environment, v. 77, n. 2, p. 489–500, 1 maio 2018.
- GOMES, L. C. et al. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, v. 340, p. 337–350, 15 abr. 2019.
- GUZHA, A. C. et al. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies. Elsevier B.V., , 1 fev. 2018.
- HENGL, T. et al. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. **PeerJ**, v. 6, n. e5518, p. 1–49, 2018.
- HUANG, S. et al. Monthly streamflow prediction using modified EMD-based support vector machine. Journal of Hydrology, v. 511, p. 764–775, 2014.
- ISMAIL, S. et al. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique. Journal of Physics: Conference Series, v. 995, n. 1, 2018.
- JUNG, C. et al. A study of spatial soil moisture estimation using a multiple linear regression model and MODIS land surface temperature data corrected by conditional merging. Remote Sensing, v. 9, n. 870, p. 1–20, 2017.
- KUHN, M. Building predictive models in R using the caret package. Journal of Statistical Software, v. 28, n. 5, p. 1–26, 2008.
- KUHN, M. et al. Package " caret ": Classification and regression training, 2020. Disponível em: https://github.com/topepo/caret/
- KUHN, M.; JOHNSON, K. Applied Predictive Modeling. New York: Springer US, 2013.

- LI, B. J.; CHENG, C. T. Monthly discharge forecasting using wavelet neural networks with extreme learning machine. Science China Technological Sciences, v. 57, n. 12, p. 2441–2452, 2014.
- LI, X.; SHA, J.; WANG, Z. L. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method. Hydrological Sciences Journal, v. 64, n. 15, p. 1857–1866, 2019.
- LIMA, R. P. C. et al. Development of an annual drought classification system based on drought severity indexes. Anais da Academia Brasileira de Ciências, v. 91, n. 1, 8 abr. 2019.
- LYRA, B. U.; RIGO, D. Deforestation impact on discharge regime in the Doce River Basin. Ambiente e Água, n. 2000, 2019.
- MAPBIOMAS. **Coleção 4.0 mapas de uso do solo**, 2019. Disponível em: http://mapbiomas.org/>
- MEYER, H. et al. Revealing the potential of spectral and textural predictor variables in a neural network-based rainfall retrieval technique. Remote Sensing Letters, v. 8, n. 7, p. 647–656, 2017.
- MEYER, H. et al. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling and Software, v. 101, p. 1–9, 1 mar. 2018.
- MISHRA, P. PyTorch Recipes: A problem-solution approach. eletronic ed. Bangalore: Apress, 2019.
- MORIASI, D. N. et al. Hydrologic and water quality models: Performance measures and evaluation criteria. **Transactions of the ASABE**, v. 58, n. 6, p. 1763–1785, 2015.
- PAPACHARALAMPOUS, G. A.; TYRALIS, H. Evaluation of random forests and Prophet for daily streamflow forecasting. Advances in Geosciences, v. 45, n. 2015, p. 201– 208, 2018.
- PEREZ, A. et al. Using the conflict in Dempster–Shafer evidence theory as a rejection criterion in classifier output combination for 3D human action recognition. Image and Vision Computing, v. 55, p. 149–157, 2016.
- PETTY, T. R.; DHINGRA, P. Streamflow Hydrology Estimate Using Machine Learning (SHEM). JAWRA Journal of the American Water Resources Association, v. 54, n. 1, p. 55–68, 1 fev. 2018.
- PINHEIRO, H. S. K. et al. Prediction of topsoil texture through regression trees and multiple linear regressions. Revista Brasileira de Ciencia do Solo, v. 42, p. 1–21, 2018.

- RAZAVI, T.; COULIBALY, P. An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds.
 Canadian Water Resources Journal, v. 42, n. 1, p. 2–20, 2017.
- RODRIGUES, A. L. M. et al. Influence of land use and land cover 's change on the hydrological regime at a Brazilian southeast urbanized watershed. Environmental Earth Sciences, v. 78, n. 20, p. 1–13, 2019.
- SALVADOR, M. DA M. Identificação e avaliação de eventos extremos na bacia hidrográfica do rio Piranga. [s.l.] Universidade Federal de Viçosa, 2014.
- SCHRATZ, P. et al. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling, v. 406, n. April 2018, p. 109–120, 2019.
- SHORTRIDGE, J. E.; GUIKEMA, S. D.; ZAITCHIK, B. F. Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci, v. 20, p. 2611–2628, 2016.
- SINGH, J.; KNAPP, H. V.; DEMISSIE, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. Journal of the American Water Resources Association, v. 41, n. 2, p. 343–360, 2005.
- SOUZA, C. M. P. DE et al. Multivariate Analysis and Machine Learning in Properties of Ultisols (Argissolos) of Brazilian Amazon. Revista Brasileira de Ciência do Solo, v. 42, n. 0, p. 1–20, 2018.
- TONGAL, H.; BOOIJ, M. J. Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, v. 564, p. 266–282, 2018.
- TYRALIS, H.; PAPACHARALAMPOUS, G.; LANGOUSIS, A. Super learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms. **arXiv preprint arXiv:1909.04131**, v. 1, p. 36, 2019.
- VAN LIEW, M. W. et al. Suitability of SWAT for the conservation effects assessment project: Comparison on USDA agricultural research service watersheds. Journal of Hydrologic Engineering, v. 12, n. 2, p. 173–189, 2007.
- VIEIRA, S. M.; SOUSA, J. M. C.; RUNKLER, T. A. Two cooperative ant colonies for feature selection using fuzzy models. Expert Systems with Applications, v. 37, n. 4, p. 2714–2723, abr. 2010.

- WEI, X.; LIU, W.; ZHOU, P. Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: A critical review of research methods. Water (Switzerland), v. 5, n. 2, p. 728–746, 2013.
- WORLAND, S. C.; FARMER, W. H.; KIANG, J. E. Improving predictions of hydrological low-flow indices in ungaged basins using machine learning. Environmental Modelling & Software, v. 101, p. 169–182, 1 mar. 2018.
- YAGMUR, N.; MUSAOGLU, N.; TASKIN, G. Detection of Shallow Water Area With Machine Learning Algorithms. n. September, 2019.
- YASEEN, Z. M. et al. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. Journal of Hydrology, p. 603–614, 2016.
- YASEEN, Z. M. et al. Non-tuned machine learning approach for hydrological time series forecasting. Neural Computing and Applications, v. 30, n. 5, p. 1479–1491, 2018.
- ZHANG, W. MARS Applications in Geotechnical Engineering Systems. Beijing, China: Sience Press Beijing, 2020.

CONCLUSÕES GERAIS

- As vazões máximas da bacia do Rio Piranga estão associadas a baixos períodos de retorno, frequentemente superando o valor correspondente à cota de inundação no município de Ponte Nova – MG, próximo à foz da bacia, o que mostra a alta susceptibilidade da bacia à ocorrência de inundações.
- Os valores de vazão mínima de 7 dias de duração e período de retorno de 10 anos (Q_{7,10}) e de vazão média de longa duração (Q_{mld}) para a bacia do rio Piranga mostraram uma redução em sua magnitude quando comparada a estudos mais antigos.
- As vazões máximas anuais apresentam comportamento estacionário ao longo do tempo, no entanto, as vazões médias e mínimas anuais apresentam tendência significativa de redução. Em escala mensal, todas as estações apresentaram tendência de redução em algum mês do ano, principalmente nos meses mais secos, o que caracteriza uma intensificação do período de estiagem na bacia.
- As tendências de redução das vazões tem forte ligação com o aumento da demanda pelo uso da água e com as alterações do uso e ocupação das terras na bacia hidrográfica.
- A modelagem hidrológica de vazão diária utilizando aprendizado de máquina apresentou desempenho satisfatório para os três modelos utilizados (Regressão Adaptativa Multivariada - EARTH, Regressão Linear Múltipla - MLR e *Random Forest* - RF) e ambos os métodos de seleção de covariáveis (Recursive Feature Elimination - RFE e Forward Feature Selection - FFS).
- Dentre as variáveis mais importantes para predição de vazão diária utilizando aprendizado de máquina destacam-se: vazões de rios afluentes defasadas no tempo, precipitações acumuladas, porcentagem de floresta plantada e formação florestal, mês e o índice de vegetação EVI.
- O FFS, em comparação com o RFE, mostrou-se mais vantajoso como método de seleção de covariáveis, melhorando o desempenho dos modelos MLR e EARTH. No caso do RF, apesar de proporcionar um desempenho mais baixo, permitiu um ajuste similar do modelo com um número menor de covariáveis.
- Os modelos de aprendizado de máquina apresentam grande potencial para fins de modelagem hidrológica visando a previsão de vazões diárias.

APÊNDICES

APÊNDICE A

Tabela 1A. Número de ocorrência de Q7 nos diferentes meses do ano ao longo do período analisado (1975 a 2018) para a série histórica de cada uma das sete estações fluviométricas localizadas na bacia do rio Piranga

E.4	~ .		Número de ocorrência de Q7												
Est	açao	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez		
5602	28000	0	0	0	0	0	0	1	7	17	14	3	0		
560	55000	0	0	0	0	0	0	0	5	17	18	2	0		
560	65000	0	0	0	0	0	2	0	6	14	14	5	1		
560′	75000	0	0	0	0	0	0	0	4	18	18	4	0		
560	85000	0	0	1	0	0	0	0	5	13	20	5	0		
560	90000	0	0	0	0	0	0	1	2	12	18	8	0		
561	10005	0	0	0	0	0	0	0	5	14	20	5	0		

APÊNDICE B

Tabela 1B. Estações pluviométricas envolvidas no preenchimento de falhas, bem como ovalor de R² e os coeficientes da regressão linear ajustada

Estação com falha (y)	Estação de apoio (x)	β0	β1	Coeficiente de determinação (R ²)
02042016	02043011	12,081	0,743	0,807
02042018	02043011	6,808	0,819	0,862
02043005	02143003	12,301	0,739	0,801
02043010	02043026	8,728	1,017	0,871
02043014	02043011	11,848	0,832	0,807
02043018	02043010	18,015	0,916	0,790
02043025	02043011	7,019	0,874	0,865
02043026	02042016	12,977	0,977	0,790
02043027	02043011	5,417	0,913	0,848
02143001	02043010	13,030	0,801	0,802
02143007	02143003	17,479	0,787	0,825
02143017	02143003	9,640	0,898	0,808

APÊNDICE C

 Tabela 1C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de vazões máximas anuais

Estação		Mann-Kenda	all		Pettitt				Spearman			
Estação	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
56028000	0,148	-0,861	-0,152	9775	0,489	143	1997	0,136	17430	-0,228	0,298	
56055000	0,903	0,065	0,014	9774	0,519	140	2012	0,991	14166	0,002	0,298	
56065000*	0,809	-0,032	-0,021	6187	0,670	126	2012	0,844	14622	-0,030	0,298	
56075000	0,407	-1,292	-0,088	9774	0,425	150	2012	0,352	16228	-0,144	0,298	
56085000	0,585	-0,145	-0,058	9772	0,670	126	1987	0,527	15581	-0,098	0,298	
56090000	0,053	-0,133	-0,204	9769	0,150	194	1988	0,041	18578	-0,309	0,298	
56110005	0,454	-1,474	-0,079	9772	0,407	152	2012	0,520	15602	-0,100	0,298	

*Série em que foi aplicado o teste de Mann Kendall modificado.

Tabela 2C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

1	1	1 / 1^	•	<i>,</i> .	1	~	/ 1.	•
ano de m	uidanca (ie tende	ncia nara	ac certec	de	VAZOAC	mediag	2111210
and up in	luuanea (ic icnuc	nula Dala	as series	uc	vazous	moulas	anuais

Estação		Mann-Keno	dall			ŀ	Pettitt	Spearman			
Estação	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
56028000	0,040	-0,137	-0,216	9775	0,085	214	2012	0,035	18716	-0,319	0,298
56055000*	0,103	-0,114	-0,161	8599	0,142	196	2012	0,132	17462	-0,231	0,298
56065000*	0,029	-0,036	-0,233	10030	0,058	227	2009	0,031	18820	-0,326	0,298
56075000*	0,031	-0,603	-0,216	8908	0,076	218	2012	0,043	18556	-0,308	0,298
56085000*	0,092	-0,034	-0,239	17779	0,091	212	1986	0,022	19104	-0,346	0,298
56090000*	0,018	-0,044	-0,256	10331	0,063	224	2012	0,017	19276	-0,358	0,298
56110005*	0,211	-0,649	-0,148	12331	0,076	218	2012	0,130	17478	-0,232	0,298

Este a 7 -		Mann-Ken	dall]	Pettitt		Spearman			
Estaçao	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
56028000*	0,024	-0,080	-0,273	12932	0,033	244	1998	0,006	20004	-0,410	0,298	
56055000*	0,069	-0,084	-0,237	15036	0,022	256	1994	0,018	19234	-0,355	0,298	
56065000*	0,004	-0,039	-0,426	19238	0,000	358	1998	0,000	22355	-0,575	0,298	
56075000*	0,052	-0,328	-0,279	18364	0,026	251	1993	0,006	20018	-0,411	0,298	
56085000*	0,016	-0,024	-0,369	20988	0,004	300	1994	0,000	21627	-0,524	0,298	
56090000*	0,303	-0,013	-0,135	15181	0,080	216	2012	0,234	16782	-0,183	0,298	
56110005*	0,046	-0,413	-0,277	17144	0,020	258	1994	0,005	20078	-0,415	0,298	

Tabela 3C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de vazões mínimas (Q₇) anuais

Tabela 4C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56028000

Mâa]	Mann-Kendall				Pettit	t	Spearman				
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,035	-1,319	-0,221	9774	0,314	164	2007	0,047	18464	-0,301	0,298	
Fev*	0,002	-0,666	-0,208	4187	0,280	169	2009	0,083	17941	-0,264	0,298	
Mar	0,671	-0,130	-0,046	9772	0,882	109	2011	0,705	15024	-0,059	0,298	
Abr	0,302	-0,174	-0,109	9770	0,602	132	1993	0,327	16338	-0,151	0,298	
Mai	0,018	-0,195	-0,248	9773	0,021	257	1998	0,020	19140	-0,349	0,298	
Jun	0,122	-0,117	-0,163	9771	0,249	174	1998	0,123	17540	-0,236	0,298	
Jul*	0,000	-0,228	-0,402	6351	0,001	326	1994	0,000	21944	-0,546	0,298	
Ago	0,008	-0,160	-0,281	9770	0,027	250	1994	0,012	19503	-0,374	0,298	
Set*	0,383	-0,090	-0,103	11101	0,915	103	1993	0,378	15068	-0,138	0,301	
Out	0,105	-0,331	-0,173	9129	0,183	180	1997	0,122	16411	-0,239	0,301	
Nov	0,810	0,057	0,027	9129	1,042	94	2007	0,882	12936	0,023	0,301	

Tabela 5C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56055000

Mâa	Ι	Mann-Kendall				Pettit	t	Spearman			
lvies	p-value	Sen's slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan*	0,517	-0,512	-0,069	9774	0,499	142	2012	0,528	15578	-0,098	0,298
Fev	0,270	-0,336	-0,116	9775	0,399	153	2009	0,234	16784	-0,183	0,298
Mar	0,903	0,027	0,014	9774	0,882	109	1980	0,859	13799	0,028	0,298
Abr*	0,678	0,076	0,044	9775	0,470	145	2003	0,590	13008	0,083	0,298
Mai*	0,000	-0,216	-0,294	5499	0,010	277	1995	0,008	19825	-0,397	0,298
Jun	0,039	-0,187	-0,217	9774	0,071	220	1994	0,042	18550	-0,307	0,298
Jul*	0,001	-0,196	-0,362	9771	0,003	306	1994	0,000	21483	-0,514	0,298
Ago	0,004	-0,177	-0,299	9771	0,020	258	1994	0,009	19680	-0,387	0,298
Set	0,008	-0,218	-0,280	9128	0,040	230	1993	0,007	18637	-0,407	0,301
Out	0,007	-0,416	-0,289	9130	0,025	244	1997	0,006	18760	-0,416	0,301
Nov	0,537	-0,171	-0,066	9775	1,386	73	1985	0,601	15336	-0,081	0,298
Dez*	0,738	0,098	0,037	9130	0,620	126	2002	0,733	12536	0,053	0,301

Tabela 6C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56065000

Mâa		Mann-Kendall				Pettit	t	Spearman					
wies	p-value	Sen's slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado		
Jan	0,254	-0,170	-0,122	9129	0,289	162	2007	0,263	15553	-0,174	0,301		
Fev	0,103	-0,162	-0,174	9130	0,093	204	2009	0,097	16640	-0,256	0,301		
Mar	0,824	0,027	0,024	9774	0,636	129	2013	0,908	13936	0,018	0,298		

Abr	0,106	-0,088	-0,170	9774	0,142	196	1994	0,157	17269	-0,217	0,298
Mai*	0,032	-0,067	-0,306	16365	0,056	220	1998	0,005	18871	-0,425	0,301
Jun*	0,007	-0,052	-0,288	9127	0,045	227	1998	0,008	18535	-0,399	0,301
Jul*	0,000	-0,072	-0,461	9129	0,003	298	1994	0,000	21393	-0,615	0,301
Ago*	0,000	-0,063	-0,426	9770	0,003	309	1998	0,000	22312	-0,572	0,298
Set*	0,001	-0,081	-0,362	9128	0,006	280	2009	0,000	19997	-0,510	0,301
Out*	0,329	-0,041	-0,106	8512	0,362	147	2012	0,279	14450	-0,171	0,305
Nov*	0,078	-0,086	-0,081	1670	0,819	110	2011	0,378	15064	-0,137	0,301
Dez	0,955	-0,017	-0,007	7927	0,742	108	2000	0,991	11502	-0,002	0,309

Tabela 7C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56075000

Mâa		Mann-Kendall					Pettitt	Spearman				
Nies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan*	0,345	-1,366	-0,070	3901	1,084	88	2012	0,557	13492	-0,093	0,305	
Fev	0,278	-1,029	-0,117	8514	0,728	113	2009	0,294	14384	-0,166	0,305	
Mar*	0,462	0,435	0,064	5386	0,463	136	1980	0,533	11119	0,099	0,305	
Abr	0,324	-0,544	-0,107	8513	0,415	141	1993	0,318	14291	-0,158	0,305	
Mai*	0,007	-0,908	-0,287	9128	0,035	234	1994	0,016	18090	-0,366	0,301	
Jun*	0,046	-0,635	-0,213	9129	0,183	180	1993	0,060	17071	-0,289	0,301	
Jul*	0,000	-0,851	-0,413	8741	0,001	325	1993	0,000	22275	-0,570	0,298	
Ago*	0,000	-0,765	-0,375	9774	0,002	323	1993	0,000	21484	-0,514	0,298	
Set	0,021	-0,673	-0,242	9774	0,096	210	1992	0,017	19281	-0,359	0,298	
Out	0,014	-1,135	-0,257	9772	0,046	234	2010	0,013	19452	-0,371	0,298	
Nov	0,436	-0,484	-0,082	9775	0,804	115	1981	0,425	15934	-0,123	0,298	
Dez	0,320	-0,872	-0,106	9129	0,553	132	1989	0,414	14938	-0,128	0,301	

Mâs		Mann-Ken	dall			ŀ	Pettitt	Spearman				
IVIES	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,317	-0,174	-0,106	9773	0,286	168	2012	0,307	16427	-0,158	0,298	
Fev	0,151	-0,106	-0,151	9774	0,489	143	2009	0,182	17099	-0,205	0,298	
Mar	0,620	0,065	0,053	9775	0,963	103	2003	0,753	13500	0,049	0,298	
Abr	0,166	-0,052	-0,146	9775	0,382	155	1995	0,210	16920	-0,192	0,298	
Mai	0,009	-0,066	-0,276	9774	0,076	218	1994	0,010	19611	-0,382	0,298	
Jun	0,064	-0,043	-0,195	9771	0,138	197	1989	0,064	18182	-0,281	0,298	
Jul*	0,000	-0,057	-0,393	8346	0,003	304	1992	0,000	21821	-0,538	0,298	
Ago*	0,000	-0,051	-0,344	7044	0,006	292	1992	0,001	20999	-0,480	0,298	
Set	0,017	-0,063	-0,250	9771	0,065	223	2009	0,015	19372	-0,365	0,298	
Out	0,023	-0,093	-0,239	9775	0,093	211	2001	0,024	19044	-0,342	0,298	
Nov	0,024	-0,247	-0,237	9775	0,162	191	2001	0,027	18924	-0,334	0,298	
Dez	0,237	-0,231	-0,126	9129	0,193	178	1991	0,262	15562	-0,175	0,301	

Tabela 8C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56085000

Tabela 9C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56090000

Mês		Mann-Kendall]	Pettitt	Spearman				
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,058	-0,171	-0,202	9127	0,183	180	2012	0,059	17088	-0,290	0,301	
Fev	0,112	-0,084	-0,169	9130	0,303	160	2008	0,121	16426	-0,240	0,301	
Mar*	0,925	-0,007	-0,011	9129	1,101	90	2003	0,988	13274	-0,002	0,301	
Abr	0,037	-0,081	-0,222	9129	0,093	204	1994	0,048	17263	-0,303	0,301	
Mai*	0,000	-0,070	-0,381	3460	0,004	291	1994	0,000	20210	-0,526	0,301	
Jun*	0,005	-0,049	-0,300	9128	0,058	219	1994	0,007	18621	-0,406	0,301	

Jul*	0,000	-0,070	-0,430	8908	0,002	311	1992	0,000	20562	-0,553	0,301
Ago*	0,001	-0,040	-0,353	9769	0,003	305	1992	0,001	21145	-0,490	0,298
Set	0,007	-0,052	-0,292	8510	0,038	224	1992	0,008	17296	-0,401	0,305
Out	0,023	-0,080	-0,244	8511	0,150	181	1993	0,021	16727	-0,355	0,305
Nov	0,146	-0,086	-0,157	8514	0,570	126	1992	0,146	15154	-0,228	0,305
Dez	0,036	-0,112	-0,226	8509	0,032	229	1990	0,045	16185	-0,311	0,305

Tabela 10C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de vazões máximas mensais da estação fluviométrica 56110005

Mâa		Mann-Kendall					Pettitt	Spearman				
wies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,197	-3,578	-0,134	10449	0,226	184	2012	0,207	18089	-0,192	0,298	
Fev	0,237	-1,631	-0,123	10448	0,215	186	2009	0,205	18105	-0,193	0,298	
Mar*	0,619	-0,745	-0,065	16044	0,272	176	2011	0,716	16025	-0,056	0,298	
Abr	0,132	-1,020	-0,157	10449	0,260	178	1994	0,160	18412	-0,213	0,298	
Mai*	0,039	-0,887	-0,242	13432	0,036	250	1994	0,022	20357	-0,341	0,298	
Jun*	0,040	-0,970	-0,213	10447	0,094	218	1998	0,039	19862	-0,308	0,298	
Jul*	0,001	-1,144	-0,393	13901	0,011	284	1997	0,000	23095	-0,521	0,298	
Ago*	0,000	-0,851	-0,301	7216	0,014	278	1994	0,004	21568	-0,421	0,298	
Set	0,026	-0,952	-0,231	10449	0,099	216	2009	0,027	20177	-0,329	0,298	
Out	0,006	-1,544	-0,285	10448	0,039	247	2010	0,007	21154	-0,394	0,298	
Nov	0,104	-1,447	-0,169	10449	0,566	140	1992	0,105	18897	-0,245	0,298	
Dez	0,967	-0,036	-0,006	9128	0,415	146	2003	0,980	13297	-0,004	0,305	

*Série em que foi aplicado o teste de Mann Kendall modificado.

Tabela 11C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões médias mensais da estação fluviométrica 56028000

		Mann-Ken	dall			ł	Pettitt		Spearman			
Nies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,059	-0,470	-0,199	9775	0,142	196	2012	0,060	18248	-0,286	0,298	
Fev	0,031	-0,289	-0,226	9775	0,037	241	2009	0,028	18894	-0,332	0,298	
Mar	0,911	-0,018	-0,013	9775	0,882	109	2011	0,890	14494	-0,021	0,298	
Abr	0,099	-0,173	-0,173	9775	0,204	182	1994	0,126	17508	-0,234	0,298	
Mai*	0,102	-0,134	-0,228	17238	0,061	225	1997	0,029	18890	-0,331	0,298	
Jun*	0,123	-0,099	-0,209	16317	0,080	216	1994	0,041	18588	-0,310	0,298	
Jul*	0,023	-0,123	-0,300	15526	0,010	278	1994	0,005	20162	-0,421	0,298	
Ago*	0,042	-0,107	-0,273	16040	0,006	292	1994	0,008	19848	-0,399	0,298	
Set	0,004	-0,121	-0,305	9130	0,025	244	1993	0,005	18838	-0,422	0,301	
Out	0,038	-0,117	-0,220	9130	0,033	236	1998	0,026	17766	-0,341	0,301	
Nov	0,516	-0,054	-0,070	9130	0,793	112	2011	0,488	14678	-0,108	0,301	
Dez	0,601	-0,083	-0,056	9130	0,491	138	2011	0,623	14262	-0,077	0,301	

Tabela 12C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de vazões médias mensais da estação fluviométrica 56055000

Mâa		Mann-Kendall					Pettitt		Spearman			
wies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,253	-0,267	-0,121	9775	0,261	172	2012	0,256	16666	-0,174	0,298	
Fev	0,051	-0,175	-0,205	9775	0,023	255	2009	0,036	18694	-0,317	0,298	
Mar	0,895	0,018	0,015	9775	0,499	142	1978	0,928	13992	0,014	0,298	
Abr*	0,525	-0,063	-0,066	9190	0,570	135	2013	0,615	15292	-0,078	0,298	
Mai*	0,102	-0,163	-0,235	18281	0,034	243	1997	0,027	18948	-0,335	0,298	
Jun*	0,179	-0,108	-0,186	16968	0,108	206	1994	0,073	18062	-0,273	0,298	
Jul*	0,090	-0,103	-0,230	16372	0,027	250	1994	0,023	19052	-0,343	0,298	
Ago*	0,032	-0,107	-0,273	14286	0,005	294	1994	0,010	19644	-0,384	0,298	

Set*	0,006	-0,127	-0,291	9130	0,013	262	1993	0,006	18744	-0,415	0,301
Out	0,013	-0,161	-0,265	9130	0,020	250	1998	0,010	18410	-0,390	0,301
Nov	0,084	-0,148	-0,182	9775	0,237	176	2010	0,088	17880	-0,260	0,298
Dez	0,944	-0,011	-0,008	9775	0,636	129	2011	0,819	14692	-0,035	0,298

Tabela 13C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões médias mensais da estação fluviométrica 56065000

Mâa		Mann-Kendall					Pettitt		Spearman			
Ivies	p-value	Sen's slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,179	-0,062	-0,142	9775	0,127	200	2012	0,151	17308	-0,220	0,298	
Fev	0,073	-0,069	-0,188	9775	0,117	203	2009	0,080	17980	-0,267	0,298	
Mar	0,460	-0,030	-0,078	9775	0,416	151	2011	0,453	15832	-0,116	0,298	
Abr*	0,000	-0,039	-0,158	1567	0,215	180	1995	0,155	17288	-0,218	0,298	
Mai*	0,010	-0,047	-0,290	11240	0,031	246	1998	0,005	20076	-0,415	0,298	
Jun*	0,040	-0,037	-0,279	16335	0,045	235	1995	0,006	19986	-0,408	0,298	
Jul*	0,002	-0,047	-0,442	17894	0,002	322	1998	0,000	22538	-0,588	0,298	
Ago*	0,002	-0,049	-0,459	19400	0,000	368	1998	0,000	22910	-0,615	0,298	
Set*	0,001	-0,049	-0,470	17625	0,000	354	1998	0,000	23032	-0,623	0,298	
Out	0,000	-0,046	-0,384	9130	0,002	306	1999	0,000	20430	-0,543	0,301	
Nov	0,061	-0,048	-0,197	9775	0,127	200	2010	0,047	18464	-0,301	0,298	
Dez	0,448	-0,027	-0,080	9775	0,909	107	1987	0,617	15286	-0,077	0,298	

*Série em que foi aplicado o teste de Mann Kendall modificado.

Tabela 14C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de vazões médias mensais da estação fluviométrica 56075000

Mâs	Mann-Kendall						Pettitt		Sj	oearman	
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado

Jan	0,340	-0,817	-0,103	8514	0,616	122	2012	0,328	14246	-0,154	0,305
Fev	0,159	-0,630	-0,152	8514	0,187	173	2009	0,114	15394	-0,247	0,305
Mar	0,795	0,182	0,029	8514	0,424	140	1978	0,781	11796	0,044	0,305
Abr*	0,465	-0,321	-0,092	11386	0,463	136	1994	0,449	13818	-0,120	0,305
Mai*	0,138	-0,532	-0,212	16392	0,064	216	1997	0,047	17280	-0,305	0,301
Jun*	0,118	-0,398	-0,214	15122	0,118	196	1993	0,052	17206	-0,299	0,301
Jul*	0,012	-0,561	-0,326	15043	0,010	278	1994	0,003	20454	-0,441	0,298
Ago*	0,010	-0,483	-0,334	14957	0,006	290	1994	0,002	20694	-0,458	0,298
Set*	0,001	-0,492	-0,353	9775	0,007	287	1993	0,001	21302	-0,501	0,298
Out	0,004	-0,615	-0,304	9775	0,014	268	1998	0,003	20394	-0,437	0,298
Nov	0,091	-0,528	-0,178	9775	0,209	181	2011	0,068	18140	-0,278	0,298
Dez	0,368	-0,492	-0,095	9775	0,321	163	2011	0,349	16238	-0,144	0,298

Tabela 15C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ · 1	~ / 1'	• 1 / ~	a · // · // · // · // · // · // · // ·
ano de mudanca de fendencia	nara as series de	vazoes medias	mensais da estacao	fluviometrica 56085000
and de madança de tendenera	para ab berreb ae	values meanas	monoulo du obtaguo	

Mâa			F	Pettitt	Spearman						
wies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,051	-0,098	-0,205	9775	0,194	184	2012	0,060	18254	-0,286	0,298
Fev	0,033	-0,053	-0,224	9775	0,154	193	2009	0,034	18736	-0,320	0,298
Mar	0,620	-0,008	-0,053	9775	0,682	125	2013	0,666	15138	-0,067	0,298
Abr*	0,075	-0,029	-0,159	7023	0,255	173	2013	0,138	17412	-0,227	0,298
Mai*	0,098	-0,034	-0,218	15337	0,146	195	2013	0,039	18622	-0,312	0,298
Jun*	0,067	-0,032	-0,240	15249	0,131	199	1994	0,026	18937	-0,335	0,298
Jul*	0,005	-0,034	-0,331	12422	0,024	253	1987	0,002	20504	-0,445	0,298
Ago*	0,002	-0,033	-0,357	12051	0,006	290	1994	0,001	21348	-0,504	0,298
Set*	0,000	-0,039	-0,395	9775	0,005	297	1993	0,000	21946	-0,547	0,298
Out*	0,000	-0,044	-0,370	9775	0,016	265	1993	0,000	21522	-0,517	0,298
Nov	0,007	-0,066	-0,285	9774	0,108	206	2012	0,006	19939	-0,405	0,298

Dez	0,424	-0,025	-0,085	9775	0,249	174	1984	0,406	16006	-0,128	0,298
that :	0 1 11 1	1	TT 1 11	1.0. 1							

Tabela 16C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões médias mensais da estação fluviométrica 56090000

Mês			I	Pettitt	Spearman						
	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,008	-0,102	-0,277	9775	0,091	212	2012	0,009	19728	-0,390	0,298
Fev	0,018	-0,057	-0,249	9774	0,117	203	2009	0,024	19015	-0,340	0,298
Mar*	0,436	-0,020	-0,082	9775	0,391	154	2012	0,507	15642	-0,102	0,298
Abr*	0,014	-0,042	-0,220	7052	0,215	180	1994	0,063	18208	-0,283	0,298
Mai*	0,056	-0,034	-0,245	14598	0,091	212	2012	0,021	19142	-0,349	0,298
Jun*	0,058	-0,030	-0,239	14102	0,108	206	2012	0,036	18692	-0,317	0,298
Jul*	0,037	-0,031	-0,257	13526	0,076	218	2012	0,021	19112	-0,347	0,298
Ago*	0,008	-0,025	-0,246	7691	0,085	214	2012	0,021	19113	-0,347	0,298
Set	0,106	-0,019	-0,174	8513	0,370	146	2012	0,156	15091	-0,223	0,305
Out	0,024	-0,029	-0,243	8514	0,105	193	1993	0,028	16548	-0,341	0,305
Nov	0,044	-0,042	-0,217	8514	0,299	155	2011	0,054	16048	-0,300	0,305
Dez*	0,010	-0,057	-0,271	9775	0,016	265	1987	0,008	19846	-0,399	0,298

Tabela 17C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões médias mensais da estação fluviométrica 56110005

Mês				ŀ	Pettitt	Spearman					
	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,154	-1,605	-0,150	9775	0,134	198	2012	0,133	17456	-0,230	0,298
Fev	0,035	-1,271	-0,222	9775	0,037	241	2009	0,038	18652	-0,314	0,298
Mar	0,754	-0,226	-0,034	9775	0,391	154	2012	0,675	15110	-0,065	0,298
Abr*	0,220	-0,762	-0,148	12843	0,189	185	2013	0,164	17218	-0,213	0,298
------	-------	--------	--------	-------	-------	-----	------	-------	-------	--------	-------
Mai*	0,153	-0,665	-0,203	17832	0,091	212	2012	0,048	18448	-0,300	0,298
Jun*	0,105	-0,596	-0,222	16597	0,080	216	1998	0,031	18814	-0,326	0,298
Jul*	0,028	-0,682	-0,279	14283	0,019	260	1994	0,008	19830	-0,397	0,298
Ago*	0,029	-0,596	-0,311	18063	0,006	290	1994	0,003	20442	-0,441	0,298
Set*	0,003	-0,698	-0,309	9775	0,023	255	1993	0,003	20404	-0,438	0,298
Out*	0,004	-0,794	-0,302	9775	0,012	272	1998	0,004	20338	-0,433	0,298
Nov	0,073	-0,797	-0,188	9775	0,111	205	2011	0,059	18268	-0,287	0,298
Dez*	0,135	-0,794	-0,120	4649	0,251	162	2010	0,264	14514	-0,176	0,305

Tabela 18C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

M		Mann-Kendall					Pettitt		Spearman				
Nies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado		
Jan*	0,070	-0,232	-0,190	9775	0,056	228	2012	0,055	18324	-0,291	0,298		
Fev	0,022	-0,219	-0,241	9775	0,051	231	2009	0,026	18976	-0,337	0,298		
Mar	0,677	-0,041	-0,049	11651	0,499	142	2012	0,613	15300	-0,078	0,298		
Abr*	0,042	-0,144	-0,201	8643	0,134	198	1994	0,063	18208	-0,283	0,298		
Mai*	0,056	-0,134	-0,218	11461	0,088	213	1997	0,043	18548	-0,307	0,298		
Jun*	0,093	-0,096	-0,209	13714	0,096	210	1994	0,045	18502	-0,304	0,298		
Jul*	0,082	-0,096	-0,244	17482	0,035	242	1994	0,020	19153	-0,350	0,298		
Ago*	0,025	-0,104	-0,304	16288	0,003	306	1994	0,002	20560	-0,449	0,298		
Set*	0,019	-0,104	-0,338	18407	0,003	308	1994	0,001	21294	-0,501	0,298		
Out*	0,001	-0,105	-0,355	9775	0,005	294	1998	0,000	21526	-0,517	0,298		
Nov	0,187	-0,080	-0,141	9130	0,275	164	2010	0,228	15728	-0,188	0,301		
Dez	0,461	-0,065	-0,080	8514	0,463	136	2010	0,410	13948	-0,130	0,305		

ano de mudança de tendência para as séries de vazões mínimas mensais (Q7) da estação fluviométrica 56028000

		Mann-Kendall					Pettitt	Spearman			
Mês	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S SP	Rho	R tabelado
Jan*	0,029	-0,159	-0,163	4937	0,096	210	2012	0,107	17682	-0,246	0,298
Fev	0,036	-0,154	-0,220	9775	0,078	217	2009	0,046	18496	-0,303	0,298
Mar	0,473	-0,060	-0,076	9775	0,351	159	2009	0,513	15622	-0,101	0,298
Abr*	0,202	-0,111	-0,175	16698	0,158	192	2012	0,102	17730	-0,249	0,298
Mai*	0,087	-0,139	-0,245	18203	0,040	238	1994	0,029	18866	-0,330	0,298
Jun*	0,198	-0,087	-0,188	18945	0,108	206	1994	0,075	18036	-0,271	0,298
Jul*	0,146	-0,089	-0,201	16860	0,038	240	1994	0,039	18642	-0,314	0,298
Ago*	0,051	-0,104	-0,283	18751	0,006	290	1994	0,007	19898	-0,402	0,298
Set*	0,027	-0,106	-0,298	16144	0,005	294	1994	0,005	20132	-0,419	0,298
Out*	0,023	-0,102	-0,292	14649	0,005	294	1994	0,003	20462	-0,442	0,298
Nov*	0,018	-0,097	-0,180	5096	0,175	188	2010	0,077	18016	-0,270	0,298
Dez	0,379	-0,062	-0,094	9130	0,289	162	2010	0,289	15430	-0,165	0,301

Tabela 19C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões mínimas mensais (Q7) da estação fluviométrica 56055000

Tabela 20C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de vazões mínimas mensais (Q₇) da estação fluviométrica 56065000

Mês		Mann-Kendall					Pettitt	Spearman			
wies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan*	0,038	-0,065	-0,278	14451	0,056	220	2012	0,010	18394	-0,389	0,301
Fev	0,047	-0,047	-0,212	9130	0,087	206	2009	0,043	17354	-0,310	0,301
Mar*	0,125	-0,041	-0,165	10182	0,074	219	2011	0,102	17732	-0,250	0,298
Abr*	0,009	-0,043	-0,260	8793	0,054	229	2009	0,018	19238	-0,356	0,298
Mai*	0,008	-0,043	-0,290	10467	0,016	264	1998	0,005	20086	-0,416	0,298
Jun*	0,005	-0,040	-0,332	11312	0,010	269	1994	0,001	19542	-0,476	0,301

Jul*	0,001	-0,043	-0,393	11803	0,002	318	1998	0,000	21826	-0,538	0,298
Ago*	0,003	-0,043	-0,428	18692	0,000	359	1998	0,000	22439	-0,581	0,298
Set*	0,001	-0,050	-0,515	17788	0,000	388	1998	0,000	22296	-0,683	0,301
Out*	0,002	-0,042	-0,461	17658	0,000	357	1997	0,000	21502	-0,624	0,301
Nov*	0,001	-0,041	-0,298	6115	0,015	258	2010	0,004	18920	-0,429	0,301
Dez	0,065	-0,027	-0,199	8514	0,159	179	1985	0,088	15632	-0,267	0,305

Tabela 21C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de vazões mínimas mensais (Q7) da estação fluviométrica 56075000

Mâa		Mann-Kendall					ettitt	Spearman				
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan*	0,072	-0,688	-0,192	9130	0,174	182	2012	0,070	16948	-0,280	0,301	
Fev	0,124	-0,530	-0,166	8514	0,257	161	2009	0,106	15460	-0,253	0,305	
Mar	0,965	0,029	0,006	8514	0,525	130	1978	0,949	12216	0,010	0,305	
Abr*	0,182	-0,465	-0,161	11655	0,226	172	1997	0,184	15976	-0,206	0,301	
Mai*	0,114	-0,460	-0,196	12382	0,093	204	1997	0,081	16810	-0,269	0,301	
Jun*	0,109	-0,428	-0,223	15595	0,125	194	11993	0,052	17202	-0,299	0,301	
Jul*	0,030	-0,503	-0,283	15101	0,031	246	1994	0,010	19692	-0,388	0,298	
Ago*	0,017	-0,448	-0,317	15825	0,011	276	1994	0,003	20352	-0,434	0,298	
Set*	0,011	-0,429	-0,342	16104	0,004	299	1993	0,001	21046	-0,483	0,298	
Out*	0,002	-0,388	-0,323	9775	0,009	281	1993	0,001	20886	-0,472	0,298	
Nov	0,049	-0,402	-0,228	11925	0,108	206	2010	0,035	18724	-0,320	0,298	
Dez*	0,132	-0,445	-0,161	9130	0,237	170	2009	0,112	16504	-0,246	0,301	

*Série em que foi aplicado o teste de Mann Kendall modificado.

Tabela 22C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões mínimas mensais (Q7) da estação fluviométrica 56085000

		ndall			F	Pettitt	Spearman				
Nies	p-value	Sen's slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,017	-0,050	-0,249	9775	0,102	208	2012	0,014	19436	-0,370	0,298
Fev	0,019	-0,039	-0,245	9775	0,076	218	2012	0,020	19168	-0,351	0,298
Mar	0,347	-0,020	-0,099	9775	0,146	195	2013	0,288	16508	-0,163	0,298
Abr*	0,180	-0,024	-0,171	14450	0,189	185	2013	0,118	17582	-0,239	0,298
Mai*	0,105	-0,027	-0,211	15098	0,146	195	2013	0,047	18470	-0,302	0,298
Jun*	0,106	-0,027	-0,218	16091	0,124	201	1987	0,040	18606	-0,311	0,298
Jul*	0,014	-0,029	-0,298	13158	0,033	244	1994	0,005	20102	-0,417	0,298
Ago*	0,014	-0,028	-0,331	16165	0,008	284	1994	0,001	21005	-0,480	0,298
Set*	0,003	-0,030	-0,379	14893	0,002	315	1993	0,000	21727	-0,531	0,298
Out*	0,003	-0,030	-0,438	19937	0,000	355	1993	0,000	22726	-0,602	0,298
Nov	0,001	-0,033	-0,363	9774	0,032	245	2011	0,001	21216	-0,495	0,298
Dez	0,075	-0,028	-0,189	9130	0,105	200	1985	0,070	16940	-0,279	0,301

Tabela 23C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de vazões mínimas mensais (Q7) da estação fluviométrica 56090000

Mês		Mann-Kendall					Pettitt	Spearman			
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan*	0,002	-0,063	-0,355	10346	0,016	256	1994	0,001	19754	-0,492	0,301
Fev	0,008	-0,048	-0,282	9130	0,060	218	2012	0,010	18412	-0,390	0,301
Mar*	0,270	-0,029	-0,154	15678	0,125	194	2012	0,157	16150	-0,219	0,301
Abr*	0,136	-0,034	-0,209	15869	0,125	194	2012	0,066	17000	-0,284	0,301
Mai*	0,105	-0,031	-0,228	15964	0,087	206	2012	0,037	17479	-0,320	0,301
Jun*	0,096	-0,026	-0,220	14114	0,087	206	2012	0,046	17298	-0,306	0,301
Jul*	0,099	-0,020	-0,206	13868	0,076	218	2012	0,067	18147	-0,279	0,298
Ago*	0,113	-0,018	-0,197	13617	0,076	218	2012	0,074	18056	-0,272	0,298

Set*	0,217	-0,018	-0,166	15990	0,085	214	2012	0,148	17340	-0,222	0,298
Out*	0,123	-0,019	-0,177	11593	0,085	214	2012	0,128	17495	-0,233	0,298
Nov	0,070	-0,020	-0,190	9775	0,040	238	2010	0,074	18054	-0,272	0,298
Dez*	0,040	-0,035	-0,289	16088	0,060	218	2011	0,007	18614	-0,405	0,301

Tabela 24C. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de vazões mínimas mensais (Q7) da estação fluviométrica 56110005

Mâa		Mann-Kendall					Pettitt	Spearman				
wies	p-value	Sen's slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan*	0,144	-1,065	-0,197	16036	0,063	224	2012	0,052	18376	-0,295	0,298	
Fev	0,051	-0,999	-0,205	9775	0,054	229	2009	0,044	18524	-0,305	0,298	
Mar	0,551	-0,301	-0,063	9775	0,185	186	2012	0,510	15632	-0,102	0,298	
Abr*	0,062	-0,749	-0,205	10665	0,108	206	2012	0,074	18058	-0,273	0,298	
Mai*	0,132	-0,609	-0,209	17071	0,078	217	1997	0,051	18396	-0,296	0,298	
Jun*	0,114	-0,562	-0,218	16870	0,099	209	1997	0,039	18636	-0,313	0,298	
Jul*	0,078	-0,597	-0,241	16544	0,046	234	1994	0,019	19214	-0,354	0,298	
Ago*	0,041	-0,536	-0,290	17783	0,008	282	1994	0,005	20186	-0,423	0,298	
Set*	0,013	-0,556	-0,321	14814	0,008	284	1994	0,002	20640	-0,455	0,298	
Out*	0,005	-0,526	-0,294	9775	0,019	260	1994	0,003	20360	-0,435	0,298	
Nov	0,031	-0,584	-0,226	9775	0,080	216	2010	0,030	18844	-0,328	0,298	
Dez	0,119	-0,561	-0,168	8514	0,251	162	2009	0,114	15396	-0,248	0,305	

APÊNDICE D

 Tabela 1D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total anual

F _4~		Mann-Ker	Idall				Pettitt	Spearman				
Estação	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
02042016	0,800	-0,494	-0,027	9775	0,804	115	1985	0,738	14924	-0,052	0,298	
02042018	0,077	-6,482	-0,186	9775	0,146	195	2009	0,057	18290	-0,289	0,298	
02043005	0,122	5,929	0,163	9775	0,175	188	1990	0,155	11100	0,218	0,298	
02043010	0,357	-2,560	-0,097	9775	0,300	166	2012	0,344	16256	-0,146	0,298	
02043011*	0,731	-2,252	-0,037	9774	1,301	79	1985	0,782	14800	-0,043	0,298	
02043014	0,927	-0,338	-0,011	9775	0,636	129	2011	0,925	14398	-0,015	0,298	
02043018	0,498	-3,419	-0,072	9775	0,991	101	1997	0,447	15854	-0,117	0,298	
02043025	0,073	-6,425	-0,188	9775	0,199	183	1985	0,055	18336	-0,292	0,298	
02043026	0,511	-1,817	-0,070	9775	0,613	131	2011	0,582	15398	-0,085	0,298	
02043027	0,485	-3,014	-0,074	9775	1,046	97	2009	0,604	15328	-0,080	0,298	
02143001	0,034	-6,885	-0,223	9774	0,215	180	1996	0,044	18512	-0,305	0,298	
02143003	0,693	-1,489	-0,042	9775	1,159	89	2011	0,773	14824	-0,045	0,298	
02143007*	0,742	1,182	0,042	14074	0,307	165	1999	0,695	13330	0,061	0,298	
02143017	0,564	-2,224	-0,06131	9775	0,434	149	2009	0,693	15056	-0,061	0,298	

Tabela 2D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de precipitação total do período seco

Estação		Mann-Kendall				Pettitt					Spearman				
Estação	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado				
02042016	0,132	-1,499	-0,159	9775	0,499	142	1992	0,161	17240	-0,215	0,298				

02042018	0,057	-1,997	-0,200	9774	0,096	210	1998	0,043	18558	-0,308	0,298
02043005	0,148	-1,619	-0,152	9775	0,382	155	2001	0,199	16990	-0,197	0,298
02043010	0,160	-1,506	-0,148	9775	0,560	136	1998	0,198	16994	-0,198	0,298
02043011	0,307	-1,129	-0,108	9775	0,936	105	1993	0,334	16300	-0,149	0,298
02043014	0,070	-2,195	-0,190	9775	0,300	166	1998	0,103	17728	-0,249	0,298
02043018	0,112	-1,671	-0,167	9775	0,158	192	1998	0,181	17100	-0,205	0,298
02043025	0,027	-2,300	-0,233	9775	0,131	199	1993	0,026	18972	-0,337	0,298
02043026	0,032	-1,330	-0,109	2273	0,977	102	1998	0,389	16080	-0,133	0,298
02043027	0,221	-1,526	-0,129	9775	0,804	115	2001	0,259	16652	-0,174	0,298
02143001	0,021	-2,468	-0,243	9775	0,067	222	1998	0,015	19372	-0,365	0,298
02143003	0,073	-1,864	-0,188	9775	0,134	198	1998	0,075	18038	-0,271	0,298
02143007	0,678	0,418	0,044	9775	0,509	141	1999	0,658	13218	0,068	0,298
02143017	0,055	-1,709	-0,202	9774	0,255	173	2009	0,054	18352	-0,293	0,298

 Tabela 3D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total do período chuvoso

		Mann-Ken	dall]	Pettitt	Spearman				
Estação	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
02042016	0,769	1,305	0,032	9775	0,682	125	2001	0,792	13610	0,041	0,298	
02042018	0,262	-3,649	-0,118	9775	0,293	167	2011	0,269	16604	-0,170	0,298	
02043005	0,022	6,632	0,241	9775	0,020	258	1990	0,022	9268	0,347	0,298	
02043010*	0,523	-2,225	-0,076	12331	0,366	157	2011	0,493	15690	-0,106	0,298	
02043011	0,816	0,908	0,025	9775	1,287	80	1978	0,825	13704	0,034	0,298	
02043014	0,678	1,480	0,044	9775	0,843	112	1994	0,594	13020	0,082	0,298	
02043018	0,754	-1,302	-0,034	9775	1,230	84	2016	0,800	14746	-0,039	0,298	
02043025	0,298	-3,411	-0,110	9775	0,636	129	2011	0,268	16608	-0,170	0,298	
02043026	0,816	-0,696	-0,025	9775	0,613	131	2011	0,897	14474	-0,020	0,298	
02043027	0,832	-0,607	-0,023	9775	0,869	110	1990	0,934	14372	-0,013	0,298	

02143001	0,172	-4,080	-0,144	9775	0,682	125	1997	0,212	16912	-0,192	0,298
02143003	0,635	1,875	0,051	9775	0,869	110	1978	0,673	13264	0,065	0,298
02143007*	0,655	2,032	0,063	17477	0,231	177	1999	0,552	12888	0,092	0,298
02143017	0,960	-0,314	-0,006	9775	0,529	139	1995	0,903	13922	0,019	0,298

Tabela 4D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02042016

Mâa		Mann-Kendall					Pettitt	Spearman				
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,473	-1,247	-0,076	9775	0,742	120	2012	0,535	15548	-0,096	0,298	
Fev	0,117	-1,073	-0,165	9775	0,273	170	2008	0,110	17660	-0,245	0,298	
Mar	0,448	0,586	0,080	9775	0,591	133	2003	0,459	12568	0,114	0,298	
Abr	0,824	0,119	0,024	9774	0,209	181	2003	0,774	13559	0,044	0,298	
Mai	0,384	-0,279	-0,092	9774	0,730	121	2002	0,393	16063	-0,132	0,298	
Jun	0,824	-0,006	-0,025	9745	1,131	91	1997	0,946	14340	-0,011	0,298	
Jul	0,046	-0,282	-0,213	9708	0,204	182	1992	0,053	18356	-0,294	0,298	
Ago*	0,920	0,000	0,008	4893	1,574	59	1987	0,894	13898	0,021	0,298	
Set	0,634	-0,236	-0,051	9771	1,230	84	2009	0,639	15223	-0,073	0,298	
Out	0,206	-0,766	-0,133	9773	0,779	117	1985	0,222	16856	-0,188	0,298	
Nov	0,824	0,140	0,024	9774	1,173	88	1994	0,759	13516	0,047	0,298	
Dez	0,221	1,270	0,129	9775	0,146	195	1999	0,239	11622	0,181	0,298	

Mês		Mann-Kendall					Pettitt	Spearman				
Nies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,185	-2,399	-0,140	9775	0,255	173	2005	0,173	17156	-0,209	0,298	
Fev*	0,867	-0,157	-0,015	5995	1,216	85	2009	0,916	14422	-0,016	0,298	
Mar	0,312	-0,933	-0,107	9774	0,694	124	1985	0,376	16131	-0,137	0,298	
Abr	0,800	-0,144	-0,027	9775	0,936	105	2003	0,867	14558	-0,026	0,298	
Mai	0,160	-0,505	-0,148	9767	0,470	145	1998	0,150	17322	-0,221	0,298	
Jun*	0,515	0,033	0,061	7665	0,730	121	2003	0,571	12944	0,088	0,298	
Jul	0,162	-0,137	-0,150	9609	0,779	117	1987	0,161	17239	-0,215	0,298	
Ago	0,180	-0,188	-0,143	9709	0,399	153	1993	0,175	17144	-0,208	0,298	
Set	0,992	0,003	0,002	9773	1,032	98	2009	0,910	14440	-0,018	0,298	
Out*	0,030	-1,540	-0,227	9774	0,049	232	1998	0,023	19056	-0,343	0,298	
Nov	0,754	-0,337	-0,034	9775	0,922	106	2002	0,687	15074	-0,062	0,298	
Dez	0,984	-0,022	-0,003	9774	1,117	92	1986	0,929	14385	-0,014	0,298	

 Tabela 5D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02042018

 Tabela 6D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043005

Mês		Mann-Kendall				I	Pettitt	Spearman				
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,511	1,099	0,070	9775	0,226	178	16	0,483	12654	0,108	0,298	
Fev	0,903	-0,151	-0,014	9774	1,074	95	35	0,904	14455	-0,019	0,298	
Mar*	0,157	1,195	0,133	7800	0,730	121	33	0,225	11544	0,186	0,298	
Abr	0,332	-0,409	-0,103	9774	0,374	156	23	0,385	16094	-0,134	0,298	
Mai	0,332	-0,287	-0,103	9774	0,869	110	32	0,406	16012	-0,128	0,298	
Jun*	0,597	0,073	0,069	14621	0,226	178	36	0,480	12638	0,109	0,298	

Jul*	0,319	-0,166	-0,105	9680	0,199	183	18	0,223	16853	-0,188	0,298
Ago	0,292	-0,159	-0,112	9731	0,682	125	29	0,357	16208	-0,142	0,298
Set	0,302	-0,592	-0,109	9774	0,682	125	35	0,336	16298	-0,149	0,298
Out	0,927	0,111	0,011	9775	0,869	110	6	0,920	13968	0,016	0,298
Nov*	0,055	2,213	0,246	14666	0,017	263	21	0,012	8834	0,377	0,298
Dez	0,103	1,908	0,171	9775	0,111	205	19	0,114	10760	0,242	0,298

Tabela 7D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043010

Mâa		Mann-Kendall					Pettitt	Spearman				
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,347	-1,690	-0,099	9775	0,560	136	2004	0,389	16074	-0,133	0,298	
Fev	0,498	-0,782	-0,072	9775	0,804	115	2009	0,562	15460	-0,089	0,298	
Mar	0,237	1,294	0,125	9775	0,391	154	1980	0,177	11252	0,207	0,298	
Abr	0,887	0,118	0,016	9774	0,682	125	2003	0,840	13746	0,031	0,298	
Mai	0,172	-0,341	-0,144	9773	0,670	126	2006	0,220	16866	-0,189	0,298	
Jun	0,022	0,239	0,241	9768	0,042	237	2003	0,021	9255	0,348	0,298	
Jul	0,055	-0,186	-0,205	9681	0,231	177	1990	0,057	18291	-0,289	0,298	
Ago	0,377	-0,094	-0,095	9708	0,499	142	1986	0,347	16249	-0,145	0,298	
Set*	0,389	-0,618	-0,105	12921	0,909	107	2002	0,403	16026	-0,129	0,298	
Out	0,322	-0,643	-0,105	9774	0,869	110	2012	0,480	15741	-0,109	0,298	
Nov	0,840	-0,340	-0,022	9774	1,088	94	1995	0,924	14400	-0,015	0,298	
Dez	0,185	-1,394	-0,140	9775	0,416	151	2009	0,247	16716	-0,178	0,298	

Mâs		Mann-Ken	dall			I	Pettitt	Spearman				
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,436	-1,730	-0,082	9775	0,779	117	2009	0,443	15868	-0,118	0,298	
Fev*	0,923	-0,056	-0,008	5310	0,804	115	2009	0,991	14164	0,002	0,298	
Mar	0,157	1,561	0,149	9774	0,480	144	2004	0,156	11104	0,217	0,298	
Abr	0,424	0,482	0,085	9775	0,138	197	2003	0,285	11856	0,164	0,298	
Mai*	0,265	-0,178	-0,073	3725	1,145	90	1998	0,547	15513	-0,093	0,298	
Jun*	0,343	0,038	0,095	8805	0,226	178	2003	0,400	12345	0,130	0,298	
Jul	0,159	-0,128	-0,152	9606	0,102	208	1992	0,171	17175	-0,210	0,298	
Ago	0,234	-0,140	-0,127	9683	0,452	147	1987	0,243	16741	-0,180	0,298	
Set	0,824	-0,071	-0,024	9774	1,468	67	1993	0,817	14699	-0,036	0,298	
Out	0,664	-0,440	-0,047	9773	1,188	87	1998	0,614	15299	-0,078	0,298	
Nov	0,492	-0,795	-0,073	9774	0,694	124	2012	0,500	15671	-0,104	0,298	
Dez*	0,356	0,717	0,051	2589	0,896	108	1978	0,662	13230	0,068	0,298	

 Tabela 8D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043011

 Tabela 9D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043014

Mês		Mann-Kendall				ł	Pettitt	Spearman				
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,424	-1,510	-0,085	9775	0,591	133	2009	0,400	16030	-0,130	0,298	
Fev	0,199	-1,384	-0,135	9775	0,480	144	2008	0,179	17116	-0,206	0,298	
Mar	0,080	1,806	0,184	9775	0,138	197	2003	0,083	10436	0,265	0,298	
Abr	0,693	-0,115	-0,042	9775	1,088	94	1994	0,720	14976	-0,055	0,298	
Mai	0,279	-0,346	-0,114	9771	0,602	132	1996	0,233	16795	-0,184	0,298	
Jun	0,168	0,100	0,147	9709	0,280	169	2003	0,216	11491	0,190	0,298	

Jul*	0,052	-0,100	-0,161	6024	0,074	219	1990	0,100	17757	-0,251	0,298
Ago*	0,299	-0,118	-0,109	9648	0,499	142	1987	0,318	16376	-0,154	0,298
Set	0,530	-0,300	-0,067	9770	0,991	101	2009	0,505	15654	-0,103	0,298
Out	0,448	-0,724	-0,080	9775	0,936	105	2001	0,508	15640	-0,102	0,298
Nov	0,664	0,424	0,047	9775	0,267	171	1995	0,582	12982	0,085	0,298
Dez	0,245	1,407	0,123	9775	0,286	168	2002	0,246	11662	0,178	0,298

Tabela 10D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043018

Mâa		Mann-Kendall					Pettitt	Spearman				
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,213	-2,100	-0,131	9775	0,682	125	1985	0,268	16608	-0,170	0,298	
Fev	0,157	-1,715	-0,149	9774	0,549	137	1997	0,183	17089	-0,204	0,298	
Mar	0,124	1,836	0,162	9774	0,461	146	1980	0,115	10767	0,241	0,298	
Abr	0,578	-0,282	-0,059	9775	0,581	134	1994	0,660	15154	-0,068	0,298	
Mai	0,379	-0,300	-0,093	9775	0,570	135	2005	0,333	16306	-0,149	0,298	
Jun*	0,026	0,461	0,234	9758	0,037	241	2003	0,026	9423	0,336	0,298	
Jul	0,178	-0,194	-0,143	9755	0,267	171	1993	0,185	17080	-0,204	0,298	
Ago	0,855	-0,012	-0,020	9745	0,694	124	1992	0,788	14782	-0,042	0,298	
Set	0,504	-0,425	-0,071	9774	1,159	89	1993	0,552	15498	-0,092	0,298	
Out	0,298	-0,740	-0,110	9775	0,499	142	1998	0,321	16356	-0,153	0,298	
Nov	0,793	-0,209	-0,029	9774	1,259	82	2016	0,789	14780	-0,042	0,298	
Dez	0,485	1,093	0,074	9775	0,519	140	2002	0,503	12722	0,103	0,298	

Mâs		Mann-Kendall					Pettitt	Spearman			
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,298	-2,029	-0,110	9775	0,591	133	2009	0,257	16664	-0,174	0,298
Fev	0,108	-1,760	-0,169	9775	0,237	176	1992	0,131	17472	-0,231	0,298
Mar	0,754	0,411	0,034	9775	0,804	115	2003	0,665	13240	0,067	0,298
Abr*	0,802	0,091	0,021	5766	1,117	92	1986	0,900	13914	0,019	0,298
Mai	0,262	-0,365	-0,119	9773	0,896	108	1987	0,340	16280	-0,147	0,298
Jun	0,261	0,119	0,119	9765	0,307	165	2003	0,281	11833	0,166	0,298
Jul	0,016	-0,387	-0,257	9683	0,204	182	1992	0,040	18591	-0,310	0,298
Ago*	0,377	-0,087	-0,093	9710	0,434	149	1993	0,379	16120	-0,136	0,298
Set	0,352	-0,460	-0,098	9772	0,896	108	2002	0,332	16314	-0,150	0,298
Out	0,172	-0,941	-0,144	9775	0,499	142	1998	0,138	17412	-0,227	0,298
Nov	0,664	-0,605	-0,047	9775	0,625	130	2012	0,620	15276	-0,077	0,298
Dez	0,708	-0,567	-0,040	9775	0,351	159	1987	0,736	14930	-0,052	0,298

 Tabela 11D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043025

 Tabela 12D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043026

Mês		Mann-Kendall				Pettitt				Spearman			
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado		
Jan	0,373	-1,271	-0,094	9774	0,434	149	2009	0,360	16197	-0,141	0,298		
Fev	0,237	-1,121	-0,125	9775	0,480	144	2004	0,293	16488	-0,162	0,298		
Mar*	0,143	0,878	0,121	5942	0,358	158	2004	0,236	11606	0,182	0,298		
Abr	0,936	0,033	0,010	9774	0,817	114	2003	0,879	13854	0,024	0,298		
Mai*	0,000	-0,414	-0,168	627	0,231	177	1998	0,102	17739	-0,250	0,298		
Jun	0,040	0,303	0,218	9728	0,032	245	2003	0,045	9882	0,304	0,298		

Jul	0,044	-0,110	-0,218	9506	0,131	199	1990	0,041	18575	-0,309	0,298
Ago*	0,465	-0,026	-0,042	2852	0,936	105	1987	0,646	15199	-0,071	0,298
Set	0,571	-0,251	-0,060	9772	1,004	100	1992	0,590	15376	-0,084	0,298
Out*	0,863	-0,174	-0,019	9775	1,230	84	2012	0,856	14590	-0,028	0,298
Nov*	0,934	-0,064	-0,008	7088	0,718	122	1994	0,917	14420	-0,016	0,298
Dez*	0,523	-0,727	-0,047	4539	0,856	111	1987	0,711	15004	-0,057	0,298

Tabela 13D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02043027

Mâa		Mann-Kendall					Pettitt	Spearman			
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,206	-1,859	-0,133	9775	0,314	164	2004	0,213	16904	-0,191	0,298
Fev	0,927	-0,110	-0,011	9775	1,330	77	2009	0,894	14482	-0,021	0,298
Mar	0,307	1,427	0,108	9775	0,570	135	1993	0,271	11788	0,169	0,298
Abr*	0,750	-0,281	-0,031	7707	0,922	106	2003	0,815	14706	-0,036	0,298
Mai	0,903	-0,041	-0,014	9772	1,441	69	2005	0,920	14410	-0,016	0,298
Jun	0,305	0,094	0,110	9681	0,407	152	2003	0,349	12136	0,145	0,298
Jul*	0,053	-0,085	-0,168	6678	0,231	177	1992	0,117	17590	-0,240	0,298
Ago*	0,716	0,000	-0,033	6788	1,330	77	2003	0,810	14718	-0,037	0,298
Set	0,585	-0,279	-0,058	9772	1,202	86	2002	0,598	15350	-0,082	0,298
Out	0,253	-0,973	-0,121	9775	0,581	134	1998	0,299	16456	-0,160	0,298
Nov	0,754	0,537	0,034	9775	0,539	138	1994	0,689	13312	0,062	0,298
Dez	0,686	0,399	0,043	9774	1,301	79	2013	0,802	13638	0,039	0,298

Mês		Mann-Kendall				I	Pettitt	Spearman			
Mes	p-value	Sen's slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,275	-1,484	-0,115	9774	0,804	115	2009	0,251	16697	-0,177	0,298
Fev	0,057	-1,771	-0,200	9774	0,150	194	1996	0,066	18155	-0,279	0,298
Mar	0,976	0,018	0,004	9775	1,173	88	1980	0,974	14118	0,005	0,298
Abr*	0,969	-0,006	-0,004	6052	0,328	162	1997	0,854	14595	-0,029	0,298
Mai	0,578	-0,156	-0,059	9773	0,830	113	1995	0,485	15722	-0,108	0,298
Jun	0,442	0,100	0,082	9755	0,255	173	2003	0,371	12230	0,138	0,298
Jul*	0,012	-0,385	-0,263	9756	0,021	257	1992	0,014	19411	-0,368	0,298
Ago*	0,083	-0,048	-0,059	1007	0,480	144	1986	0,519	15608	-0,100	0,298
Set	0,073	-0,730	-0,188	9773	0,261	172	2009	0,077	18010	-0,269	0,298
Out*	0,018	-1,139	-0,184	5322	0,286	168	1998	0,080	17972	-0,267	0,298
Nov*	0,462	0,556	0,053	4442	0,434	149	1994	0,537	12834	0,096	0,298
Dez	0,270	-1,412	-0,116	9773	0,267	171	1987	0,310	16411	-0,157	0,298

 Tabela 14D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02143001

 Tabela 15D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02143003

Mês		Mann-Kendall]	Pettitt	Spearman			
Ivies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan*	0,470	-0,908	-0,063	6662	0,718	122	2012	0,518	15606	-0,100	0,298
Fev*	0,862	-0,350	-0,015	5575	1,386	73	2009	0,877	14530	-0,024	0,298
Mar	0,108	1,979	0,169	9775	0,273	170	1980	0,108	10700	0,246	0,298
Abr	0,739	0,190	0,036	9775	1,060	96	1986	0,698	13338	0,060	0,298
Mai	0,936	0,035	0,010	9772	1,074	95	2011	0,929	13995	0,014	0,298
Jun*	0,384	0,100	0,092	9766	0,162	191	2003	0,321	12019	0,153	0,298

Jul	0,221	-0,236	-0,130	9765	0,321	163	1992	0,236	16777	-0,182	0,298
Ago	0,564	-0,050	-0,062	9757	0,328	162	1986	0,536	15550	-0,096	0,298
Set	0,210	-0,680	-0,132	9774	0,267	171	1993	0,209	16930	-0,193	0,298
Out	0,034	-1,732	-0,223	9774	0,162	191	1995	0,035	18712	-0,319	0,298
Nov	0,620	0,469	0,053	9775	0,730	121	1995	0,568	12938	0,088	0,298
Dez	0,517	0,852	0,069	9774	0,779	117	1993	0,547	12867	0,093	0,298

Tabela 16D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como o

ano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02143007

Mâa		dall]	Pettitt	Spearman				
wies	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado
Jan	0,708	-0,636	-0,040	9775	0,830	113	2009	0,714	14994	-0,057	0,298
Fev	0,895	-0,228	-0,015	9775	0,509	141	2009	0,723	14968	-0,055	0,298
Mar	0,122	1,423	0,163	9775	0,425	150	2000	0,157	11110	0,217	0,298
Abr*	0,821	0,115	0,021	7051	1,032	98	1994	0,984	14234	-0,003	0,298
Mai	0,384	-0,209	-0,092	9774	0,792	116	2007	0,410	15998	-0,127	0,298
Jun	0,140	0,200	0,156	9772	0,052	230	2003	0,104	10667	0,248	0,298
Jul	0,927	0,017	0,011	9773	0,779	117	1999	0,973	14116	0,005	0,298
Ago	0,832	0,029	0,023	9771	1,273	81	1997	0,869	13826	0,026	0,298
Set	0,606	-0,358	-0,055	9775	1,188	87	2009	0,568	15440	-0,088	0,298
Out	0,460	-0,558	-0,078	9775	0,220	179	2011	0,330	16318	-0,150	0,298
Nov	0,871	-0,141	-0,018	9774	0,936	105	1999	0,923	14404	-0,015	0,298
Dez*	0,575	0,739	0,049	6446	0,581	134	2000	0,737	13452	0,052	0,298

		Mann-Kendall					Pettitt	Spearman				
Mes	p-value	Sen's Slope	tau	Var(s)	p-value	U	ano de mudança	p-value	S	Rho	R tabelado	
Jan	0,739	-0,775	-0,036	9775	0,706	123	2009	0,808	14724	-0,038	0,298	
Fev	0,357	-1,221	-0,097	9775	0,529	139	2009	0,379	16112	-0,135	0,298	
Mar	0,976	-0,066	-0,004	9775	0,730	121	1981	0,924	13980	0,015	0,298	
Abr	0,571	0,438	0,060	9774	0,882	109	2003	0,554	12890	0,092	0,298	
Mai	0,944	-0,018	-0,008	9773	1,117	92	1982	0,998	14195	0,000	0,298	
Jun	0,678	0,043	0,045	9730	0,856	111	2003	0,622	13107	0,076	0,298	
Jul	0,054	-0,342	-0,204	9745	0,171	189	1991	0,052	18375	-0,295	0,298	
Ago	0,943	0,000	-0,009	9730	1,188	87	1986	0,954	14317	-0,009	0,298	
Set	0,210	-0,567	-0,132	9774	0,399	153	2003	0,227	16829	-0,186	0,298	
Out	0,182	-0,888	-0,141	9774	0,391	154	2010	0,214	16902	-0,191	0,298	
Nov	0,160	1,554	0,148	9775	0,154	193	1995	0,153	11086	0,219	0,298	
Dez*	0,913	0,187	0,015	14098	0,226	178	1994	0,807	13654	0,038	0,298	

Tabela 17D. Resultados estatísticos dos testes não paramétricos de Mann Kendall ou Mann Kendall modificado, Pettitt e Spearman, bem como oano de mudança de tendência para as séries de precipitação total mensal da estação pluviométrica 02143017

124

APÊNDICE E

Tabela 1E. Estatísticas de amplitude e dispersão das 74 variáveis testadas no estudo. Em que min representa o valor mínimo, méd o valor médio, máx o valor máximo, Sd o desvio padrão, mdn a mediana e cv o coeficiente de variação.

Variável	min	med	max	Sd	mdn	cv(%)
mês (mês)	1,00	6,52	12,00	3,45	7,00	52,88
t max (°C)	20,56	28,49	38,53	3,46	28,67	12,14
t_med (°C)	17,40	25,50	34,42	3,10	25,75	12,17
t_min (°C)	4,15	21,70	31,75	3,49	21,70	16,08
ndvi_max (adimensional)	0,61	0,78	0,88	0,05	0,79	7,08
ndvi_med (adimensional)	0,49	0,68	0,79	0,08	0,71	11,05
ndvi_min (adimensional)	0,34	0,58	0,73	0,09	0,60	15,49
evi_max (adimensional)	0,34	0,51	0,69	0,08	0,52	16,49
evi_med (adimensional)	0,26	0,42	0,58	0,08	0,43	18,66
evi_min (adimensional)	0,16	0,33	0,50	0,07	0,34	21,67
for_florest (%)	25,61	28,68	32,35	2,51	27,88	8,77
florest_plant (%)	0,04	0,52	1,15	0,40	0,37	76,61
agropec (%)	65,85	69,96	73,78	2,95	70,85	4,21
urb (%)	0,28	0,35	0,43	0,04	0,34	12,31
p_trmm (mm)	0,00	4,22	86,28	9,30	0,00	220,60
p_trmm_48h (mm)	0,00	8,43	144,66	15,49	0,36	183,66
p_trmm_72h (mm)	0,00	12,65	198,49	20,80	1,44	164,47
p_trmm_96h (mm)	0,00	16,87	222,84	25,62	3,75	151,92
p_trmm_1sem (mm)	0,00	29,50	267,81	38,39	12,92	130,16
p_trmm_1 (mm)	0,00	4,22	86,28	9,30	0,00	220,49
p_trmm_2 (mm)	0,00	4,22	86,28	9,30	0,00	220,55
p_trmm_3 (mm)	0,00	4,22	86,28	9,30	0,00	220,57
p_trmm_4 (mm)	0,00	4,21	86,28	9,30	0,00	220,65
p_trmm_5 (mm)	0,00	4,21	86,28	9,29	0,00	220,75
p_thi (mm)	0,00	3,77	228,60	8,51	0,07	225,58
p_thi_48h (mm)	0,00	7,54	236,22	14,40	0,70	190,86
p_thi_72h (mm)	0,00	11,31	260,50	19,45	1,97	171,89
p_thi_96h (mm)	0,00	15,09	285,14	24,06	3,89	159,46
p_thi_1sem (mm)	0,00	26,40	337,12	36,52	11,20	138,33
p_thi_1 (mm)	0,00	3,77	228,60	8,51	0,07	225,65
p_thi_2 (mm)	0,00	3,77	228,60	8,51	0,07	225,66
p_thi_3 (mm)	0,00	3,77	228,60	8,51	0,07	225,65
p_thi_4 (mm)	0,00	3,77	228,60	8,51	0,07	225,62
p_thi_5 (mm)	0,00	3,77	228,60	8,51	0,07	225,63
p_idw (mm)	0,00	3,83	259,83	8,57	0,15	223,65
p_idw_48 (mm)	0,00	7,66	267,10	14,48	0,92	189,07
p_idw_72 (mm)	0,00	11,49	267,74	19,56	2,24	170,30
p_idw_96 (mm)	0,00	15,32	276,15	24,20	4,05	158,00
p_idw_1sem (mm)	0,00	26,80	341,10	36,77	11,70	137,19

p_idw_1 (mm)	0,00	3,83	259,83	8,56	0,15	223,70
p_idw_2 (mm)	0,00	3,83	259,83	8,56	0,15	223,73
p_idw_3 (mm)	0,00	3,83	259,83	8,56	0,15	223,72
p_idw_4 (mm)	0,00	3,83	259,83	8,56	0,15	223,69
p_idw_5 (mm)	0,00	3,83	259,83	8,56	0,15	223,73
Q1 (m3/s)	2,41	19,92	285,19	17,64	13,97	88,54
Q1_1 (m3/s)	2,41	19,92	285,19	17,64	13,97	88,54
Q1_2 (m3/s)	2,41	19,92	285,19	17,64	13,97	88,54
Q1_3 (m3/s)	2,41	19,92	285,19	17,64	13,97	88,54
Q1_4 (m3/s)	2,41	19,92	285,19	17,64	13,97	88,53
Q1_5 (m3/s)	2,41	19,92	285,19	17,64	13,97	88,52
Q2 (m3/s)	1,53	18,33	183,53	16,48	13,53	89,90
Q2_1 (m3/s)	1,53	18,33	183,53	16,48	13,53	89,90
Q2_2 (m3/s)	1,53	18,33	183,53	16,48	13,53	89,90
Q2_3 (m3/s)	1,53	18,33	183,53	16,48	13,53	89,89
Q2_4 (m3/s)	1,53	18,33	183,53	16,47	13,53	89,89
Q2_5 (m3/s)	1,53	18,33	183,53	16,47	13,53	89,87
Q3 (m3/s)	0,23	4,53	49,62	4,59	3,13	101,51
Q3_1 (m3/s)	0,23	4,53	49,62	4,59	3,13	101,51
Q3_2 (m3/s)	0,23	4,53	49,62	4,59	3,13	101,51
Q3_3 (m3/s)	0,23	4,53	49,62	4,59	3,13	101,51
Q3_4 (m3/s)	0,23	4,53	49,62	4,59	3,13	101,51
Q3_5 (m3/s)	0,23	4,53	49,62	4,59	3,13	101,51
Q4 (m3/s)	0,44	4,03	77,47	4,72	2,84	117,20
Q4_1 (m3/s)	0,44	4,03	77,47	4,72	2,84	117,21
Q4_2 (m3/s)	0,44	4,03	77,47	4,72	2,84	117,20
Q4_3 (m3/s)	0,44	4,03	77,47	4,72	2,84	117,20
Q4_4 (m3/s)	0,44	4,03	77,47	4,72	2,84	117,19
Q4_5 (m3/s)	0,44	4,03	77,47	4,72	2,84	117,18
Q5 (m3/s)	0,46	3,46	31,35	2,63	2,87	76,02
Q5_1 (m3/s)	0,46	3,46	31,35	2,63	2,87	76,02
Q5_2 (m3/s)	0,46	3,46	31,35	2,63	2,87	76,04
Q5_3 (m3/s)	0,46	3,46	31,35	2,63	2,87	76,03
Q5_4 (m3/s)	0,46	3,46	31,35	2,63	2,87	76,02
Q5_5 (m3/s)	0,46	3,46	31,35	2,63	2,87	76,01
Y (m3/s)	10,06	87,51	878,25	76,37	66,95	87,27