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ABSTRACT 

 

ÁVILA DÍAZ, Álvaro Javier, D.Sc., Universidade Federal de Viçosa, February, 2020. 
Assessing Current and Future Changes in Extreme Climate Events in Brazil. Adviser: 
Flávio Barbosa Justino. Co-adviser: Roger Rodrigues Torres. 
 

Brazil is vulnerable to climatic variability, especially those related to climate extremes of the 

air temperature and precipitation because they provide expressive losses related to agricultural 

activities and the management of water resources. Climate change is expected to have a likely 

negative socio-economic impact, increasing the number of natural disasters in regions where 

climate change will be more pronounced. The main objective of this study was to evaluate the 

current and future changes of the climatic extremes in Brazil. To understand the magnitude of 

these changes, extremes of temperature and precipitation set by the team of experts from the 

climate extremes indices defined by the Expert Team on Climate Change Detection and Indices 

(ETCCDI) were selected. The first part of the research evaluated the performance of 25 Earth 

System Models (ESMs) in representing the variability of climatic extremes for the period 

between 1980 and 2005. ESMs use statistical and dynamic downscaling to reduce the original 

horizontal scale, which ranges from 1-3º for a spatial resolution of 0.25 ° (~ 25 km 

latitude/longitude). Statistical downscaling data were obtained from the National Aeronautics 

and Space Administration Earth Exchange Global Daily Downscaled Projections (NEX-

GDDP). Dynamic downscaling data was provided by the National Institute for Space Research 

(INPE). The results showed that the obtained indices, using ESM downscaling, were similar to 

the observed climate indices, although the performance metrics revealed that climate extremes 

are not adequately represented in the Amazon basin. In addition, there are uncertainties in heat 

wave simulations for almost all models. In general, the average of the set of simulations of the 

ESMs, or multi-model ensemble (MME), that used statistical downscaling has the best results 

in comparison to any individual model. The second part of the work, aimed to assess the trend 

and magnitude of climate extremes in the last four decades (1980-2016) using several databases 

(e.g., observations and reanalysis). The projected changes in the extreme indices up to the 

middle of the 21st century (2046-2065) and the end of the 21st century (2081–2100) in relation 

to the 1986-2005 reference period were also analyzed. Future climate changes were analyzed 

from the ensemble of 20 downscaled ESMs of the NEX-GDDP dataset. For the historical period 

(1980-2016), temperature-related indices showed consistent heating patterns across Brazil with 

increasing trends on hot days/nights and decreasing trends for cold days/nights. Also, a similar 

warming pattern is projetected for the mid and late 21st century. For precipitation-related 



 

 

 

indices, observations show an increase in consecutive dry days and a reduction in consecutive 

wet days in almost all of Brazil from 1980-2016. Additionally, future scenarios indicate that 

the frequency and intensity of extremely wet days are likely to be more intense. The results of 

this research aim to contribute to the current understanding of extreme weather events in Brazil, 

in order to provide further essential insights for studies of impact, adaptation and vulnerability 

to climate change. 

 

Keywords: Extreme climate indices. Hydrological Basins. Climate Change. Trends. CMIP5. 

Downscaling.  

 

  



 

 

 

RESUMO 

 

ÁVILA DÍAZ, Álvaro Javier, D.Sc., Universidade Federal de Viçosa, fevereiro de 2020. 
Avaliação das mudanças atuais e futuras dos eventos climáticos extremos no Brasil. 
Orientador: Flávio Barbosa Justino. Coorientador: Roger Rodrigues Torres. 
 
O Brasil é vulnerável às variabilidades climáticas, principalmente àquelas relacionadas aos 

eventos extremos de temperatura do ar e precipitação, por propiciarem expressivas perdas 

relacionadas às atividades agrícolas e à gestão dos recursos hídricos. Adicionalmente, espera-

se que as alterações no sistema climático relacionadas às mudanças climáticas tenham impactos 

socioeconômicos negativos por meio do aumento no número de desastres naturais em regiões 

onde tais alterações serão mais pronunciadas. O objetivo principal deste estudo foi avaliar as 

mudanças atuais e futuras dos extremos climáticos no Brasil. Para entender a magnitude dessas 

mudanças, foram selecionados extremos de temperatura e precipitação estabelecidos pela 

equipe de especialistas do Programa Mundial de Pesquisa Climática em Detecção e Índices de 

Mudanças Climáticas (ETCCDI). A primeira parte da pesquisa avaliou o desempenho de 25 

modelos do sistema terrestre (ESMs) em representar a variabilidade dos extremos climáticos 

para o período entre 1980 e 2005. Os ESMs usam downscaling estatístico e dinâmico para 

reduzir a escala horizontal original, que oscila entre 1-3º para uma resolução espacial de 0,25° 

(~25 km de latitude/longitude). Os dados do downscaling estatístico foram obtidos da National 

Aeronautics and Space Administration Earth Exchange Global Daily Downscaled Projections 

(NEX-GDDP). Os dados do downscaling dinâmico foram fornecidos pelo Instituto Nacional de 

Pesquisas Espaciais (INPE). Os resultados mostraram que os índices obtidos, usando os 

downscaling dos ESMs, foram semelhantes aos índices climáticos observados, embora as 

métricas de desempenho revelaram que os extremos climáticos não são representados 

adequadamente na bacia Amazônica. Adicionalmente, existem grandes incertezas nas 

simulações de ondas de calor para quase todos os modelos. Em geral, a média do conjunto de 

simulações dos ESMs, ou multi-model ensemble (MME), que usaram downscaling estatístico 

tem os melhores resultados em comparação a qualquer modelo individual. A segunda parte do 

trabalho, teve como objetivo avaliar a tendência e a magnitude dos extremos climáticos nas 

últimas quatro décadas (1980-2016) usando vários bancos dados (e.g., observações e 

reanálises). Também foram analisadas as mudanças projetadas nos índices extremos até meados 

do século XXI (2046-2065) e final do século XXI (2081–2100) em relação ao período de 

referência 1986-2005. As mudanças climáticas futuras foram analisadas a partir da MME de 20 

ESMs do conjunto de dados NEX-GDDP. Para o período histórico (1980-2016) os índices 



 

 

 

relacionados à temperatura mostraram padrões de aquecimento consistentes em todo o Brasil 

com tendências de aumento nos dias/noites quentes e tendência decrescentes para dias/noites 

frias. Além disso, um padrão de aquecimento semelhante é projetado para meados e final do 

século XXI. Para os índices relacionados à precipitação, as observações mostram um aumento 

nos em dias secos consecutivos e uma redução de dias úmidos consecutivos em quase todo o 

Brasil entre 1980-2016. Adicionalmente, as projeções dos cenários futuros indicam que a 

frequência e a intensidade de dias extremamente úmidos deverão ser mais intensos. Os 

resultados desta pesquisa almejam contribuir o atual entendimento dos eventos climáticos 

extremos no Brasil, no intuito de fornecer subsídios essenciais para os estudos de impacto, 

adaptação e vulnerabilidade às mudanças climáticas. 

 

Palavras-chave: Bacias hidrográficas. Índices Climáticos Extremos. Mudanças Climáticas. 

Tendências. CMIP5. Downscaling. 
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1. GENERAL INTRODUCTION 

 
1.1. Research questions and objectives  

 
Extreme events, in meteorological or climatological terms, are associated with large 

deviations from mean climate state that could occur in different ranges, and the frequency vary 

from days to millennia (Fundação Brasileira para o Desenvolvimento Sustentável - FBDS 2009; 

McPhillips et al. 2018). Extreme events have a negative effect on society and mainly contribute 

to the increase in the frequency and severity of hydrometeorological hazards, especially with 

regard to floods, flash floods, heat waves, landslides and droughts (Avila et al. 2016; Debortoli 

et al. 2017; Marengo et al. 2017; Santos et al. 2017; Geirinhas et al. 2018). There is an increase 

in the number of hydrometeorological hazards worldwide (Hoeppe 2016), these positive trends 

have been linked with climate change and human activities resulting in increased frequency of 

the hazards as the climate warms up (Grant 2017; IPCC 2018). 

In this sense, the current thesis contributes to solving some research questions relating to 

having a better understanding of the past and future occurrences of extreme climate events over 

Brazil. Below are key questions: Can the uncertainty be quantified in statistical quantities for 

observational, reanalyses, and downscaled model data? Which Brazilian hydrological basins 

have experienced significant warming/cooling or wetting/drying in recent decades? How well 

do downscaled products and reanalyses simulate the variability and trends of observed climate 

extreme events? Does increasing resolution improve the simulation (e.g., reanalyses and model 

data) in daily climate extremes? How can the performance evaluation of downscaled models 

and reanalyses improve the interpretation of the current climate trends and future changes? 

Considering the current limitations of downscaled Earth System Models (ESMs), how can one 

optimally evaluate the uncertainty in climate extreme projections of future emissions scenarios 
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adopted by the Intergovernmental Panel on Climate Change (IPCC)?  Is the climate warming 

or cooling in future climate projections? 

This research seeks to enhance the scientific understanding of the historical and projected 

changes in daily climate extremes of temperature and precipitation across Brazil. The specific 

objectives of this thesis are: 

1. To evaluate how well the current climate model downscaling products can simulate the 

variability and trends of climate extremes of temperature and precipitation over the major 

Brazilian watersheds during 1980-2005. 

2. To analyze the current state of climate extremes of temperature and precipitation over 

Brazil during 1980-2016 using several gridded datasets (e.g., Observations and 

reanalysis) 

3. To investigate the projected changes in extreme climate indices over the mid-21st 

century (2046-2065) and end-of-21st century (2081–2100) relative to the reference period 

1986–2005. 

Eight hydrological basins (Fig. 2.1 and Fig 2.2) under heterogeneity of climates over 

Brazil are selected for all analyses in this thesis as a way to divide the country in a limited 

number regions to study the historical/future changes of climate extremes. 

 

1.2. Structure and organization of the thesis 

 

This thesis primarily consists of two individual manuscripts, though related to the 

analyzes of the historical patterns and future changes of extreme climate events over Brazil 

through the indices defined by the World Climate Research Program’s Expert Team on Climate 

Change Detection and Indices (ETCCDI) framework. Chapter 1 presents a general introduction. 

Chapters 2 and 3 correspond to original research papers submitted for publication in the 
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international journal Climate Dynamics (https://www.springer.com/journal/382). Finally, 

Chapter 4 presents the general conclusions and future research. 

Chapter 2 is entitled “Assessing current and future trends of climate extremes across 

Brazil using reanalyses and Earth System Model projections ". The reference number for this 

manuscript is CLDY-D-19-00584. The authors are Alvaro Avila (AA), Gabriel Abrahão (GA), 

Flávio Justino (FJ), Roger Rodrigues (RR), and Aaron Wilson (AW). Author Contributions: 

Conceptualization, AA, FJ, and RR; methodology, AA, FJ, and RR; software was managed by 

AA and GA; visualization AA, GA, and AW; original draft preparation, AA, and reviewing and 

editing, AA, GA, FJ, RR, and AW.  

Chapter 3 is entitled “Extreme climate indices in Brazil: Evaluation of downscaled Earth 

System Models at high horizontal resolution ". The reference number for this paper is CLDY-

D-19-00921. The authors are Alvaro Avila (AA), Victor Benezoli (VB), Flávio Justino (FJ), 

Roger Rodrigues (RR), and Aaron Wilson (AW). Author Contributions: Conceptualization, 

AA, FJ, and RR; methodology, AA, FJ, and RR; software was managed by AA and VB; 

visualization AA and VB; original draft preparation, AA, and AW; reviewing and editing, AA, 

VB, FJ, RR, and AW. 

For both manuscripts first, second, and third authors are from the Department of 

Agricultural Engineering of the Universidade Federal de Viçosa (Brazil). The fourth author is 

a professor at the Natural Resources Institute from the Universidade Federal de Itajubá (Brazil). 

The last author works at the Polar Meteorology Group in the Byrd Polar and Climate Research 

Center of The Ohio State University (USA).  

  

https://www.springer.com/journal/382
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1.3.  Relation to published work  

 

During the doctoral studies, I have worked on the variations in frequency, intensity, and 

duration of climate extremes over regions with unusual or severe weather conditions such as 

tropical regions (e.g., Colombia and Brazil) and North America Arctic Region. Besides, I 

evaluated the performance of global/regional reanalyses in estimating observed climate 

extremes over the North American Arctic at Ohio State University with the Byrd Polar and 

Climate Research Center, from June to December 2019. Thus, I published the following papers 

to scientific journals relative to the climate area: 

1. Avila, A., Justino, F., Lindemann, D., Rodrigues, J., and Ferreira, G. 2020. 

Climatological aspects and changes in temperature and precipitation extremes in Viçosa 

- Minas Gerais. (Accepted). Anais da Academia Brasileira de Ciências (ISSN: 2073-

4441). Manuscript ID: AABC-2019-0388 

2. Loaiza, W., Kayano., M., Andreoli, R., Avila., A, Canchala, T., Francés, F., Ayes, I., 

Alfonso-Morales, W., Ferreira de Souza, R., Carvajal, Y. 2020. Streamflow 

Intensification Driven by the Atlantic Multidecadal Oscillation (AMO) in the Atrato 

River Basin, Northwestern Colombia. Water, v. 12, 216. 

https://doi.org/10.3390/w12010216 

3. Justino, F., Wilson, A., Bromwich, David., Avila, A., Bai, L., and Wang, Sheng-Hung. 

2019. Northern Hemisphere Extratropical Turbulent Heat Fluxes in ASRv2 and Global 

Reanalyses. Journal of Climate. , v.32, p.2145 – 2166. https://doi.org/10.1175/JCLI-D-

18-0535.1 

4. Avila, A., Cardona, F., Carvajal, Y., and Justino, F. 2019. Recent Precipitation Trends and 

Floods in the Colombian Andes. Water. , v.11, 379. https://doi.org/10.3390/w11020379  

https://doi.org/10.3390/w12010216
https://doi.org/10.1175/JCLI-D-18-0535.1
https://doi.org/10.1175/JCLI-D-18-0535.1
https://doi.org/10.3390/w11020379
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5. Avila, A., Justino, F., Wilson, A., Bromwich, D. and Amorim, M. 2016. Recent 

precipitation trends, flash floods and landslides in southern Brazil. Environmental 

Research Letters, v.11, p.114029, 2016. https://doi.org/10.1088/1748-

9326/11/11/114029 

  

http://lattes.cnpq.br/2547112795321977
https://doi.org/10.1088/1748-9326/11/11/114029
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CHAPTER 2 

 
2. Extreme Climate Indices in Brazil: Evaluation of Downscaled Earth System Models 

at High Horizontal Resolution 

Alvaro Avila; Gabriel Abrahão; Flavio Justino; Roger Torres; Aaron Wilson..  

Climate Dynamics. Manuscript number: CLDY-D-19-00584 

 

Abstract: 

This study evaluated the performance of 25 Earth System Models (ESMs), statistically and dynamically 

downscaled to a high horizontal resolution (0.25° of latitude/longitude), in simulating extreme climate indices of 

temperature and precipitation for 1980-2005. Datasets analyzed include 21 statistically downscaled ESMs from 

the National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) and dynamically downscaled Eta Regional Climate Model simulations driven by 4 

ESMs generated by the Brazilian National Institute for Space Research (INPE). Downscaled outputs were 

evaluated against observational gridded datasets at 0.25° resolution over Brazil, quantifying the skill in simulating 

the observed spatial patterns and trends of climate extremes. Results show that the downscaled products are 

generally able to reproduce the observed climate indices, although most of them have poorest performance over 

the Amazon basin for annual and seasonal indices. We find larger discrepancies in the warm spell duration index 

for almost all downscaled ESMs. The overall ranking shows that three downscaled models (CNRM-CM5, CCSM4, 

and MRI-CGCM3) perform distinctively better than others. In general, the ensemble mean of the statistically 

downscaled models achieves better results than any individual models at the annual and seasonal scales. This work 

provides the largest and most comprehensive intercomparison of statistically and dynamically downscaled extreme 

climate indices over Brazil and provides a useful guide for researchers and developers to select the models or 

downscaling techniques that may be most suitable to their applications of interest over a given region. 

 

Key Words: CMIP5; Model evaluation; Climate extremes; Performance metrics; Trends 

 

2.1. Introduction 

The attention of global climate change impacts is progressively moving from the assessments of mean (or 

climatology) patterns to assessments of present and future trends of climate extreme events, such as the warmest 

day of the year, heat/cold waves, heavy or very heavy precipitation events, consecutive dry or wet spells (Burger 

et al. 2011; Alexander and Arblaster 2017). In this sense, the Expert Team on Climate Change Detection and 

Indices (ETCCDI) have been developing and publicizing a set of internationally-accepted indices based on daily 

measures of air temperature and precipitation (Alexander et al. 2006; Donat et al. 2013a; Sillmann et al. 2013a, b). 

Many studies around the world have applied the ETCCDI climate indices to analyze the risk of climate 

extremes to human and natural systems, for past events using historical data (e.g., Aguilar et al. 2005; Santos et 
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al. 2017), and for future trends in extremes using climate models projections (e.g., Debortoli et al. 2017; Mysiak 

et al. 2018; Alexander and Arblaster 2017). Despite all efforts, investigations on future climate extremes have been 

frequently constrained by coarse resolutions in climate models, that lead to results that can not be assumed to 

reproduce local weather extremes. For instance, using General Circulation Models (GCMs) from the Coupled 

Model Intercomparison Project Phase 3 (CMIP3), Rusticucci et al. (2010) and Marengo et al. (2010b) found that 

those models exhibit a higher frequency of some climate extremes compared to observations over South America. 

Additionally, Sillmann et al. (2013a) evaluated the CMIP3 and CMIP5 models over the South American region 

and noted that many models overestimate the total precipitation in wet days, underestimate the maximum 

consecutive dry days and generally overestimate temperature extremes.  

In light of an increasing need for finer resolution information of climate change projections (horizontal 

resolution less than 100 km), statistical and dynamical downscaling techniques provide more details of climatic 

patterns over a particular region, improving the accuracy and relevance of simulations and projections for climate 

impact studies (Burger et al. 2011; Ambrizzi et al. 2019). Although such research efforts are relatively rare in 

Brazil, several regionally/locally downscaled projections have been developed using various methodologies in 

recent years (Boulanger et al. 2006, 2007; Marengo et al. 2010a, 2012; Thrasher et al. 2012; Chou et al. 2014a; 

Valverde and Marengo 2014). For example, Valverde and Marengo (2014) and Chou et al. (2014a) assessed 

regional climate simulations applying dynamical downscaling using the Eta model and noted that the model 

reproduced reasonably well the extreme climatic events; although, simulations contain more extreme values than 

the observations. 

The Brazilian economy has been highly vulnerable to climatic variability, especially to climate extremes of 

air temperature and precipitation, that can lead to considerable losses in agricultural activities and problems in the 

management of water resources (Tomasella et al. 2013; Ray et al. 2015; Debortoli et al. 2017; Marengo et al. 

2017). In this way, current climate change projections are likely to have negative socio-economic impacts on the 

country, increasing the number of natural disasters in regions where climate change will be more pronounced 

(Torres and Marengo 2014; Darela-Filho et al. 2016). 

In recent years, impactful natural hazards related to climate extremes have affected Brazil, such as droughts 

in the Northeast from 2012 to 2016 (Marengo et al. 2017, 2018a; Brito et al. 2018) or dry and warmers summers 

(December-March) in 2014 and 2015 in Southeast Brazil (Coelho et al. 2016a, b). However, at the same time, 

unprecedented floods were reported in the summer of 2014 in the southwestern Amazon Basin (Espinoza et al. 

2014). The frequency of such catastrophes spurs the need for reliable simulations of climate extremes on local to 

regional scales that can inform the development of public policies, proper management of hydrological resources, 

and the mitigation of their impacts on human activity and the environment (Marengo et al. 2009).  

Therefore, current impact projections rely on climate models with coarse resolutions (>100km), thus 

lacking the detail needed for regionally relevant impact assessments. The main goal of this work is to evaluate 

how well the current climate model downscaling products can simulate variability and trends of climate extremes 

events in Brazil. We investigate the performance of 25 statistically and dynamically downscaled ESMs to a high 

horizontal resolution in capturing the observed behavior of extreme temperature and precipitation events over the 

major Brazilian watersheds. Two main downscaled ESMs data sources were analyzed. First, 21 statistically 
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downscaled ESMs with a horizontal resolution of 0.25° × 0.25° of latitude/longitude (approximately 25 km x 25 

km) were taken from National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP). Second, 4 dynamically downscaled ESMs using the Eta model at a 20-km 

spatial resolution were provided by the Brazilian National Institute of Spatial Research (INPE). These two data 

sources, with relatively high spatial and temporal resolutions, have greatly captured the observed climatic patterns 

and have been used in studies of climate change impacts on a regional/local scale (Debortoli et al. 2017; Missirian 

and Schlenker 2017; Lyra et al. 2018; Raghavan et al. 2018; Liao et al. 2019).  

The paper is organized as follows: Section 2 describes the different data sources and methodology used; 

results focused on observations and model evaluations are presented in Section 3; and finally, summaries, 

discussions and concluding remarks are presented in Section 4. 

2.2. Data and methods 

2.2.1. Extreme climate indices 

Twenty-seven extreme climate indices are recommended by the ETCCDI and are calculated using daily 

maximum (TX) and minimum temperature (TN) and daily precipitation (PR). In this study, some ETCCDI indices 

are excluded, because their definitions are not appropriate across Brazil. For instance, the index was excluded if 

the study area has few records of extremely low temperatures as frost days (FD), ice days (ID), cold spell duration 

indicator (CSDI), and the common magnitude of growing season length is nearly 365 days (GSL). In addition,  

coldest day (TXn), warmest night (TNx), annual counts of daily minimum temperature greater than 20ºC (tropical 

nights–TR), the maximum temperature greater than 25ºC (summer days–SU), and days with rainfall greater than 

1/10 mm (R1mm/R10mm) were excluded from this analysis, because these thresholds are not relevant to describe 

extreme climate events in Brazil.   

We evaluate 16 extreme climate indices at the annual scale, 8 are associated with temperature and 8 with 

precipitation. Detailed descriptions are provided in Table 2.1, and further details may also be found in Zhang and 

Yang (2004) and Zhang et al. (2011), or at http://etccdi.pacificclimate.org/list_27_indices.shtml.  

 
Table 2.1 The extreme temperature and precipitation indices used in this study recommended by the ETCCDI. 

More details on definitions of the core indices given at http://etccdi.pacificclimate.org/list_27_indices.shtml 

Index Indicator name Indicator Definitions Units 
TXx Hottest day Monthly maximum value of daily maximum temp ºC 
TNn Coldest nights  Monthly minimum value of daily minimum temp ºC 
DTR Diurnal temperature range Monthly mean difference between TX and TN ºC 
TN10p Cool nights Percentage of days when TN<10th percentile % 
TN90p Warm nights Percentage of days when TN>90th percentile % 
TX10p Cool days Percentage of days when TX<10th percentile % 
TX90p Warm days Percentage of days when TX>90th percentile % 
WSDI Warm spell duration indicator Annual count of days with at least 6 consecutive days when TX>90th percentile days 
PRCPTOT Annual total wet-day precipitation Annual total precipitation (PR) in wet days (PR>=1mm) mm 
RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm 
RX5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm 
R95p Very wet days Annual total precipitation from days > 95th percentile mm 
SDII Simple daily intensity index The ratio of annual total precipitation to the number of wet days* (≥ 1 mm) mm/day 

R20mm 
Number of very heavy precipitation 
days 

Annual count of days when PR>=20mm days 

CWD Consecutive wet days Maximum number of consecutive days with PR>=1mm days 
CDD Consecutive dry days Maximum number of consecutive days with PR<1mm days 

*The ETCDDI defined a wet (dry) day when precipitation ≥ 1 mm (PR<1mm) 

 

http://etccdi.pacificclimate.org/list_27_indices.shtml
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The extreme climate indices chosen can be calculated seasonally or monthly, albeit most of the impactful 

extreme events mentioned in the previous section can be described by annual indices (Aerenson et al. 2018). 

However, the seasonal analysis was done for the two extreme climate seasons over Brazil: austral summer 

(December, January, and February – DJF) and winter (June, July, and August – JJA), representing the wet and dry 

seasons, respectively, for the most of the country  (Marengo et al. 2010a; Torres and Marengo 2014; Rao et al. 

2016; Lyra et al. 2018). For this purpose, seasonal analysis was carried out for selected warm extremes (TXx, 

TX90P), cold extremes (TNn, TN10P), wet extremes precipitation (PRCPTOT, RX1day, RX5day) and the 

maximum number of consecutive dry days (CDD), which is associated with dry conditions (Zhang et al. 2011) 

and also indicative of potential water stress (Aerenson et al. 2018). 

The climate indices were chosen, because they allow the assessment of intensity, frequency, and duration 

of extreme climate events. Also, this set of indices has been used to describe hydrometeorological hazards such as 

droughts, floods, heavy rains, and heat waves in Brazilian climate conditions (Alexander et al. 2006; Sillmann et 

al. 2013a, b; Skansi et al. 2013; Avila et al. 2016, 2019). Noteworthy, the ETCCDI indices are widely used to 

evaluate the capability of Earth System Models in simulating the observed climate extremes of temperature and 

precipitation (Marengo et al. 2010b; Rusticucci et al. 2010; Alexander and Arblaster 2017; Nguyen et al. 2017; 

Lyra et al. 2018; Dosio et al. 2019). 

All extreme indices were calculated using gridded datasets (observational and reanalysis) and 25 

downscaled ESMs that are shown in section 2.2 and 2.3, respectively. The calculations are performed with the 

climdex.pcic.ncdf package maintained by the Pacific Climate Impacts Consortium (PCIC), which runs on R 

software and is freely available at https://github.com/pacificclimate/climdex.pcic.ncdf.  

2.2.2. Observed datasets 

We examine the daily records from two gridded datasets. The first observational dataset (OBS-BR) contains 

daily fields of temperature and precipitation interpolated from 9259 rain gauges and 735 weather stations gridded 

to a regular grid of 0.25°x0.25° latitude/longitude covering all of Brazil territory over the period 1980-2015 (Xavier 

et al. 2015). The dataset is available at https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA. Noteworthy, daily 

fields of the observations and simulations covered 1980–2005, because the historical experiment for each 

downscaled model are only available through 2005 (see Section 2.3). The second dataset used is from Global 

Meteorological Forcing Dataset (GMFD) (Sheffield et al. 2006), which consists of 3-hourly, 0.25°-resolution fields 

of near-surface meteorological variables for global land areas for 1948–2016, available at the Terrestrial 

Hydrology Research Group website at Princeton University (http://hydrology.princeton.edu/data.GMFD.php). 

The GMFD is a merge of several datasets from the National Centers for Environmental Prediction - National 

Center for Atmospheric Research reanalysis (NCEP-NCAR), the satellite-based Global Precipitation Climatology 

Project (GPCP), Tropical Rainfall Monitoring Mission (TRMM) and interpolated ground observations from 

Climatic Research Unit (CRU). 

The OBS-BR and GMFD employ different interpolation methods, quality control, and station networks in 

their development. GMFD was designed for pixel-scale hydrological consistency and has to rely on the NCEP 

reanalysis as the basis for daily weather variability (Sheffield et al. 2006). The use of a reanalysis product 

http://pacificclimate.org/
https://github.com/pacificclimate/climdex.pcic.ncdf
https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA
http://hydrology.princeton.edu/data.GMFD.php
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introduces an additional error source, and can lead to smoother meteorological series in comparison to what is 

observed in the weather stations, which can dampen the magnitude of extreme climate events (Zhang et al. 2011). 

OBS-BR, on the other hand, directly interpolates the daily observations of its larger weather station/rain gauge 

network. For these reasons, we considered OBS-BR as the reference daily gridded dataset for meteorological 

variables (TN, TX, and PR) in Brazil. Special attention was given to the comparison between GMFD and OBS-

BR datasets, because the National Aeronautics and Space Administration (NASA) Earth Exchange Global Daily 

Downscaled Projections (NEX-GDDP) dataset (Thrasher et al. 2012) used GMFD as the observational reference 

for its statistical downscaling technique. The following subsection describes the NEX-GDDP dataset. 

2.2.3. Earth System Model data 

For each dynamical and statistical dataset (see Table 2.2 for the list of models), we used the daily output of 

maximum and minimum temperature, and daily precipitation to study extreme climate indices from 1980–2005. 

 

Table 2.2 Information on the 25 general circulation models used in the present analysis. (a) ESMs used for 

generating the NEX-GDDP dataset through statistical downscaling. (b) ESMs used as boundary conditions to 

generate the Eta-INPE dataset through dynamical downscaling 

Model  Modeling center 
Resolution 
(lat. × lon.) 

VL* 

(a) Statistical downscaled models 

1. ACCESS1-0 
Commonwealth Scientific and Industrial Research Organization and Bureau of 
Meteorology, Australia 

1.25º×1.875º 38 

2. BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration, China 2.8º×2.8º 26 
3. BNU-ESM Beijing Normal University, China 2.8º×2.8º 26 
4. CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8º×2.8º 35 
5. CCSM4 National Center for Atmospheric Research (NCAR), USA 0.9º×1.25°  27 
6. CESM1-BGC National Science Foundation, Department of Energy and NCAR, USA 0.9°×1.25° 27 

7. CNRM-CM5 
Centre National de Recherches Météorologiques and Centre Européen de Recherche et 
Formation Avancée en Calcul Scientifique, France 

1.4º×1.4 31 

8. CSIRO-MK3-6-0 Commonwealth Scientific and Industrial Research Organization, Australia 1.875º×1.875º 18 
9. GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 2.0º×2.5º 48 
10. GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 2.0º×2.5º 24 
11. GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 2.0º×2.5º 24 
12. INMCM4 Institute for Numerical Mathematics (INM), Russia ∼1.5º×2º 21 
13. IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 1.895º×3.75º 39 
14. IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 1.27º×2.5º 39 

15. MIROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine- Earth Science and Technology 

1.4º× 1.4º 40 

16. MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and National Institute for Environmental Studies 

2.8º×2.8º 80 

17. MIROC-ESM-CHEM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and National Institute for Environmental Studies 

2.8º×2.8º 80 

18. MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875º×1.875º 47 
19. MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875º×1.875º 95 
20. MRI-CGCM3 Meteorological Research Institute, Japan 1.125º×1.125º 48 
21. NorESM1-M Norwegian Climate Centre, Norway ∼1.89º×2.5º 26 

(b) Dynamical downscaled models 

22. BESM Brazilian Earth System Model version (Version 2.3.1), Brazil 1.875° × 1.875° 28 
23. CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8º×2.8º 35 
24. HadGEM2-ES Met Office Hadley Centre, UK 1.25º×1.875º 38 

25. MIROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 
for Environmental Studies, and Japan Agency for Marine- Earth Science and Technology 

1.4º× 1.4º 40 

*Vertical Layers 

The 21 statistically downscaled CMIP5 ESMs were obtained from the NEX-GDDP dataset (Thrasher et al. 

2012). This dataset is available at https://nex.nasa.gov/nex/projects/1356/. It consists of the results of 21 CMIP5 

models, bias-corrected and disaggregated to a grid of horizontal resolution of 0.25 degrees of latitude/longitude 

using a spacially designed statistical technique that compares the model’s historical runs (1950 to 2005) with the 

GMFD dataset.  

https://nex.nasa.gov/nex/projects/1356/
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On the other hand, the dynamically downscaled simulations employed in our study have been generated by 

the ETA regional climate model, provided by The Brazilian Center for Weather Forecasts and Climate Studies – 

CPTEC and Brazilian National Institute for Space Research – INPE, available at https://projeta.cptec.inpe.br 

(Chou et al. 2014a, b; MCTI 2016; Lyra et al. 2018).  

The ETA simulations are based on 4 ESMs that have been downscaled to a 20-km resolution (Table 2.2). 

The model domain covers South America and most of Central America, available from 1960 to 2005. Regarding 

to Chou et al. (2014a) and Lyra et al. (2018), the ETA model largely improves the seasonal cycles and precipitation 

frequency distributions when compared to the driving ESM. However, they retain some of the distortions of trends 

in extreme indices present in the ESM simulations, such as the cooling trend in maximum and minimum 

temperatures in Eta-MIROC5, and different spatial patterns of extreme precipitation trends among the models 

(Chou et al. 2014a). More information on the simulations, including a detailed comparison between their results 

for some extreme indices, can be found in Chou et al. (2014a) and Lyra et al. (2018). For intercomparison purposes, 

the ETA 20 km grid here was interpolated to a common 0.25°×0.25° grid, using a first-order conservative 

remapping technique (Jones 1999), as proposed in the literature (Giorgi 2006; Cheng and Knutson 2008; Sillmann 

et al. 2013a; Torres and Marengo 2014). 

Besides analyzing each model separately, we test whether using Multi-Model Ensembles (MMEs) can 

improve the representation of climate extremes. Taking the mean of a model ensemble is a common technique for 

avoiding the large spread found in individual model results (Knutti et al. 2010; Sillmann et al. 2013a; Nguyen et 

al. 2017). For that end, the mean of each index among the statistical (MME-Sta) and dynamical (MME-Dyn) 

models was calculated, and we treated those as separate results.  

2.2.4. Evaluation metrics and trend calculation  

The metrics used for evaluating the simulated indices include Percent Bias (PBIAS), RMSE-observations 

standard deviation ratio (RSR), refined index of agreement (dr) (Willmott et al. (2012) and the Pearson correlation 

coefficient (CORR). These statistical parameters are calculated as follows: 

𝑃𝐵𝐼𝐴𝑆 =  ∑ (𝑚i − 𝑂i𝑛i=1 ) ∗ 100∑ 𝑂i𝑛i=1  
(1) 

𝑅𝑆𝑅 = RMSESTDEVObs = √(𝑚i − 𝑂i)2√(𝑂i − �̅�)2  
(2) 

𝑑𝑟 = {  
  1 − ∑ |𝑚𝑖 − 𝑂𝑖|𝑛𝑖=12 ∗ ∑ |𝑂𝑖 − �̅�|𝑛𝑖=1 , when ∑|𝑚𝑖 − 𝑂𝑖|𝑛

𝑖=1  ≤ 2 ∗  ∑|𝑂𝑖 − �̅�|𝑛
𝑖=12 ∗ ∑ |𝑂𝑖 − �̅�|𝑛𝑖=1∑ |𝑚𝑖 − 𝑂𝑖|𝑛𝑖=1 − 1,when ∑|𝑚i − 𝑂𝑖|𝑛

𝑖=1 > 2 ∗  ∑|𝑂𝑖 − �̅�|𝑛
𝑖=1

 

(3) 

https://projeta.cptec.inpe.br/
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𝐶𝑂𝑅𝑅 = ∑ (𝑚𝑖 −𝑛𝑖=1 𝑚𝑖̅̅̅̅ ) (𝑂𝑖 − �̅�)√∑ (𝑂𝑖 − �̅�)𝑛𝑖=1  √∑ (𝑚𝑖 −𝑚𝑖̅̅̅̅ )𝑛𝑖=1  
(4) 

where Oi is the observed value, �̅�𝑖 is the mean of observed data, mi is the simulated value, 𝑚𝑖̅̅̅̅  is the mean of 

simulated data, and n is the total observation number. 

PBIAS indicates the average tendency of the simulation to be larger or smaller than the observed data (Gupta 

et al. 1999); values close to 0 indicate an optimal performance in a given model; positive and negative values 

indicate a bias toward overestimation or underestimation, respectively. RSR is calculated as the ratio of the RMSE 

and standard deviation of observed data (Moriasi et al. 2007); values closer to 0 mean better performing 

simulations. The refined index of agreement (dr) developed by Willmott et al. (2012) varies between –1 and 1. A 

dr of 1 indicates a perfect agreement and dr= –1 indicates either a lack of agreement between observed and 

simulated values or a lack of variability in the observed data (Willmott et al. 2015). Finally, CORR is used to 

describe the temporal association between observed data and model simulations. CORR is between –1 and 1. A 

CORR of 1 (-1) shows complete positive (negative) linear relation. If the CORR is 0, there is a lack of any linear 

relationship between observed (Oi) and simulated (mi) data. 

Individual extreme climate index scores allow us to rank models based on the performance metrics (PBIAS, 

RSR, dr, and CORR). To summarize all the ranking possibilities, the comprehensive model rank (MR) has also been 

calculated (Jiang et al. 2015; You et al. 2017; Zhang et al. 2018). MR is a measure of how consistently each model 

is classified among all the ranking possibilities (indices and metrics): 

𝑀𝑅 = 1 − 1𝑛 ⨯ 𝑚∑(Rank𝑖𝑃𝐵𝐼𝐴𝑆 + Rank𝑖𝑅𝑆𝑅 + Rank𝑖𝑑𝑟 + Rank𝑖𝐶𝑂𝑅𝑅) (5)𝑛
𝑖=1  

where n is the total number of indices, m is the number of models and the Ranki indicates downscaled 

model’s order on each index in a given performance metric. Note that we also rank all the downscaled ESMs along 

with the two MMEs (Table 2.2). Therefore, the maximum value of MR is 1, indicating that the model is the best in 

all indices and metrics (Jiang et al. 2015; You et al. 2017). 

The linear trends of extreme climate indices from downscaled ESMs are estimated and compared to two 

observed datasets using the Theil-Sen slope estimator (Sen 1968). The trend significance of the slope was evaluated 

through Mann-Kendall (Mann 1945; Kendall 1975) trend significance test at the 95% confidence level. These tests 

have been broadly used in hydrometeorological studies for detecting trends because of their non-parametric 

approach (Yue et al. 2002; Wang et al. 2012; Liu et al. 2013; Wang and Li 2015; Avila et al. 2019). 

The performance metrics and trends were evaluated for each grid point and averaged across each of the 

eight major hydrological basins (Fig. 2.1) used by the Brazilian National Water Agency (ANA). The basin 

acronyms in Fig. 2.1 refer to Amazon River (AMZ), Tocantins River (TOC), North Atlantic Region (NAR), São 

Francisco River (SFR), Central Atlantic Region (CAR), Parana River (PAR), Uruguay river (URU), and South 

Atlantic Region (SAR). The analysis in hydrological basins was done because the performance of each ESMs 
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within a given hydrological basin is expected to be consistently representative throughout that specific region 

(Nguyen et al. 2017; Xu et al. 2019). 

 

 

Figure 2.1 Geographical location of the eight hydrological basins in Brazil according to the Brazilian National 

Water Authority (ANA) classification- 

 

2.3. Results and discussion  

For sake of brevity, we discuss the results of climatology bias and spatial trend analysis for two indices, 

which represent extremes events of temperature (hottest days –TXx) and precipitation (annual total wet-day 

precipitation– PRCPTOT) as illustrative figures in the main text. Results for the other ETCCDI indices can be 

found in the supplementary material. 

2.3.1. Temperature indices 

2.3.1.1. Evaluation metrics  

Figure 2.2 presents the climatology bias of the hottest day index (TXx). Almost all downscaled ESMs and 

the reanalysis (GMDF) captured the spatial pattern of the TXx relatively well. Furthermore, the evaluation metrics 

(PBIAS, RSR, dr, and CORR) were calculated for each climate index, model, MMEs, and GMFD dataset in each 

hydrological basin and compared to observations during 1980-2005. These evaluation metrics are summarized in 

the portrait diagrams shown for annual and seasonal results in Figs. 3 and 4, respectively.  
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Figure 2.2 Climatology bias for the annual maximum of daily maximum temperature - TXx (ºC) for 21 statically 

(NEX-GDDP; models 1-21) and 4 dynamically (Eta-INPE; models 22-25) downscaled models, MME-Sta (26), 

MME-Dyn (27), and GMFD (28) from 1980 to 2005. Climatology for TXx in the observations dataset (OBS-BR; 

gray rectangle dataset 29) for 1980-2005 

In general, the statistical downscaling approach captures well the general spatial patterns of the temperature 

indices at the annual scale. However, the statistically downscaled ESMs more frequently overestimate TXx above 

2 ºC over the Amazon basin (Fig. 2.2). Also, there are generally low values of PBIAS for almost all temperature 

indices of GMFD (Fig. 2.3a) except for TXx, coldest night (TNn), and warm spell duration indicator (WSDI). The 

greatest PBIAS values for TXx are found over the Amazon, Tocantins, and Parana basins with values larger than 

12%.GMFD underestimated observed values for TNn except for the São Francisco River and Central Atlantic 

basins (overestimated by slightly more than 1%). The worst values of PBIAS for TNn are identified over the Parana 

and Uruguay basins with -4 and -13%, respectively.  
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Figure 2.3 Statistics of performance obtained for annual temperature indices for statically (NEX-GDDP) 

and dynamically (Eta-INPE) downscaled models, MME-Sta, MME-Dyn, and GMFD from 1980 to 2005 over eight 

hydrological basins (Fig. 2.1). (a) Percent Bias (PBIAS); (b) RMSE-observations standard deviation ratio (RSR); 

(c) a refined index of model performance (dr); (d) Correlation coefficients (CORR; the diagonal lines indicate 

significant correlations at 95% level). The horizontal purple lines refer to Eta-INPE datasets. For PBIAS and RSR, 

dark colors indicate models that perform worse than others, on average, and light colors indicate models that 

perform better than others, on average. Furthermore, for dr and CORR, dark (light) colors show models that have 

better (worse) statistical metrics than others, on average 
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Figure 2.4 As in Fig. 2.2, bur for extreme temperature indices in summer (DJF) and winter (JJA). The 

nomenclature of the ETCCDI indices was adapted to Index-“S” for summer and Index-“W” for winter 

The PBIAS of TNn (Fig. 2.3a; second column) shows that some downscaled models are too cold (e.g., Eta-

HadGEM2-ES (24) and Eta-MIROC5 (25)) or simulate higher values of minimum temperatures (e.g., MIROC-

ESM (16) and MIROC-ESM-CHEM (17)) over Brazil. Furthermore, models 2, 3, 16, and 17 did not perform well 

for the TNn index over the Parana River, Uruguay River, and South Atlantic basins with values above 19% (Fig. 

a)
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2.3a). In terms of the RSR, dr, and correlation, higher limitations have been found for the majority of the 25 

downscaled ESMs for TXx and DTR, especially for basins located in the North and Northeast of Brazil. It is 

important to note that TXx and TNn indices are generally underestimated in the Eta simulations over Brazil (e.g., 

models 24 and 25), in agreement with the results of Chou et al. (2014a).  

Figure 2.4 displays the performance obtained for temperature indices in summer and winter. In general, the 

downscaled models underestimate the observations of the TXx and TNn indices in summer in almost all basins 

except for the Uruguay basin, which shows a warm bias only for TXx. Two of the ETA-INPE models (BESM and 

CanESM2) have the reverse behavior, tending to overestimate Txx in the summer in most basins, which offsets 

the strong underestimating bias of ETA MIROC5 in MME-Dyn. The results for winter show that the downscaled 

ESMs overestimate the TXx over Amazon, Tocantins, and North Atlantic basins, but strongly underestimate 

(PBIAS > 30%) over Uruguay, Parana, and South Atlantic basins. The TNn index, for the winter, shows PBIAS 

values lesser than 2%; however, poor performance in RSR, dr, and CORR. The TXx index (TNn) shows that GMFD 

has a warm (cold) bias in both seasons (bottom of Fig. 2.4a). For the rest of the metrics (RSR, dr, and CORR), 

GMFD shows better performance to reproduce TNn than the TXx index over the majority of basins.  

The discrepancy of the majority of downscaled models is more evident for WSDI, which simulates higher 

values than the observations, especially over the Amazon, Tocantins, and Parana basins (Fig 2.3b). The WSDI 

underestimates the observed values by more than 25% and 30% for the Uruguay River and South Atlantic basins, 

respectively, and for the other basins by more than 66%. Moreover, eight temperature indices have values of RSR 

close to zero (Fig 2.3b), except for the TXx index. Additionally, the redefined index values (dr < 0.5; Fig 2.3c) and 

correlation coefficients (CORR < 0.5; Fig 2.2d) show the poor performance of the downscaled models to reproduce 

the TXx and DTR (diurnal temperature range), especially over the Amazon and Tocantins basins 

Evaluation metrics of the GMFD dataset demonstrate reasonable skill in the representation of the 

temperature-based percentile indices at the annual scale (e.g., TN10p, TX10p, TN90p, and TX90p) across all 

hydrological basins in Brazil (Fig. 2.3). For these four extreme climate indices in almost all basins, PBIAS is within 

± 3 %, RSR < 1, dr ≥ 0.50, and CORR ≥ 0.54. However, it has been found that TX10p has particularly poor 

performance over the Uruguay River and South Atlantic basins. Similar to the annual scale, GMFD performs well 

in reproducing the summer and winter patterns (Fig. 2.4a-d) of the selected percentile indices (TN10p, TX90p).  

The evaluation metrics display good performance of the downscaled models to reproduce TN10p, TX10p, 

TN90p, and TX90p at the annual scale (see four to seven columns of Fig. 2.3). For these indices, the PBIAS varies 

between -5 to 4%, and the RSR values are close to zero. According to dr and correlation, models CSIRO-MK3-6-

0 (8), CNRM-CM5 (7), and MRI-CGCM3 (20) show consistent performance over all eight basins shown in Fig. 

2.1. The seasonal patterns of TN10p and TX90p are reproduced reasonably well by downscaled models (Fig. 2.4a-

d). For TN10p and TX90p, the PBIAS varies between -8 to 6%, and the RSR and dr show good accuracy with 

values close to 0-1 over the majority of basins. 

The low bias found in percentile indices is similar to previous studies that used raw ESMs (Marengo et al. 

2010b; Rusticucci et al. 2010; Sillmann et al. 2013a) and regional climate model results over South America 

(Marengo et al. 2009; Dereczynski et al. 2013). The good performance for percentile indices is likely a 
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consequence of their construction, which includes exceedance rates (in percentage) of temperatures colder than 

the 10th percentile or warmer than the 90th percentile with respect to a base period, potentially minimizing model 

characteristics (Zhang et al. 2011). Moreover, the percentile indices have less extreme features of climate 

variability than absolute indices (e.g., TXx and TNn) (Sillmann et al. 2013a). Finally, the PBIAS magnitudes of 

WSDI are within ±200%. The worst performance (based on RSR, dr, and CORR) across almost all the 25 

downscaled ESMs is found in the basins located over the North, Northeast, and Central-West regions of Brazil 

(see Figures. S2.2 S2.3, and S2.4 ). 

In general, both MMEs over or underestimate the majority of temperature indices by less than 10%, except 

the WSDI, with PBIAS varying between -11 to 71% and -32 to 53% for MME-Sta and MME-Dyn, respectively. 

The MME-Sta display lower PBIAS and RSR and higher correlations and dr than MME-Dyn for nearly all 

temperature indices. Our results suggest that MMEs-Sta can better reproduce the interannual variability of 

temperature extremes in Brazil than MME-Dyn. Some of the downscaled models show better DTR (models 2, 8, 

7, 20, and MME-Sta) and WSDI (models 6 and 16) than the raw models analyzed by Sillmann et al. (2013a). This 

may be related to the quantile mapping applied to the statistical downscaling, which makes the probability 

distribution of the downscaled data more narrowed. As discussed by Tang et al. (2016), statistical downscaling is 

based on linear regression with fewer degrees of freedom with respect to the dynamical counterpart (Wilby and 

Dawson 2013). In terms of precipitation, the complexity in the latter approach is even higher due to the non-linear 

interaction between clouds, atmospheric circulation, meso-scale processes, and land-atmosphere interaction. 

2.3.1.2. Trend analysis in temperature indices  

Trends are calculated for the OBS-BR and GMFD observations and for each downscaled ESMs for 

temperature indices at the annual scale for 1980-2005 (Figs. 2.5, 2.6). The OBS-BR dataset shows warming trends 

for most of the temperature indices in all hydrological basins of Brazil, most of which are significant at the 95% 

confidence level. The interested reader is referred to Fig 2.S8 to follow the seasonal results for warm extremes 

(TXx, TX90P) and cold extremes (TNn, TN10P), that also shows warming trends. The warming is generally larger 

in indices related to the warmest days (TXx) than in the coldest days (TNn) (Fig. 2.5 and see the spatial trends of 

TXx in Fig. 2.6).  

The trend signal of percentile indices (TN10p, T90p, TX10p, and TX90p) is in line with observational 

analyses from Vincent et al. (2005), Skansi et al. (2013) and Donat et al. (2013a), indicating warmer conditions 

over Brazil at annual (Fig. 2.5) and seasonal scales. Furthermore, the positive trends in TXx (Figs. 5a, 6) and a 

narrowing tendency of DTR (Fig. 2.5c) over southern Brazil by the OBS-BR are consistent with the results 

observed by Marengo and Camargo (2008) and Rosso et al. (2015) during 1960-2002 and 1961-2011 periods, 

respectively. However, they found positive trends for the TNn index, but our results indicate negative trends in 

southern Brazil. These authors employed different periods and more years than the ones used in this study, with 

low-frequency features of the time series potentially changing the evaluated trends in TNn.  
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Figure 2.5 Trends per decade from 1980 to 2005 for temperature indices at the annual scale (a-h) for 21 NEX-

GDDP climate models (1-21), 4 Eta-INPE climate models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) 

and OBS-BR over eight hydrological regions in Brazil (Fig. 2.1). Diagonal lines indicate significant trends at 95% 

level. The vertical purple lines refer to ESMs from Eta-INPE datasets. 

The magnitude of warming trends in cold nights, warm nights, cold days, warm days, and warm spell 

duration indices is relatively coherent across all the downscaled ESMs datasets and model ensembles (Fig. 2.5). 

Also, seasonal trend patterns in summer and winter for percentile indices (e.g., TN10p and TN90p) are well 

captured in almost all downscaled models. The upward trends found for most indices are a common feature 

delivered on the models evaluated except for MIROC-ESM-CHEM (17). This model shows negative (cooling) 

trends in several indices at annual and seasonal scales that are positive (warming) according to the observations. 

MIROC family of models generally has contradictory trends in many indices (e.g., TXx, DTR, and TX90p) 

compared to observations, particularly MIROC-ESM-CHEM. 
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Few downscaled models capture even moderately well the diurnal temperature range (DTR; Fig. 2.5c 

models 1, 2, 3, and 5) trends in most hydrological basins. In the case of the Eta-INPE models, none are able to 

replicate even the sign of the trend in all basins. In fact, the GMFD dataset also shows DTR trends slightly different 

from OBS-BR. This is possibly because DTR is highly affected by land surface characteristics, which are both 

transient in time and very heterogeneous inside the grid cells of climate models for both the GCMs (> 100 km of 

horizontal resolution) and Eta (20 km). This affects both the Eta-INPE models, which contain raw GCM output, 

and the NEX-GDDP models, for which the downscaling procedure explicitly attempts to conserve the GCM 

modeled trends (Thrasher et al. 2012). Maximum and minimum temperatures in GMFD are affected by both the 

underlying NCEP-NCAR reanalysis model and the monthly average DTR of the CRU dataset, which uses fewer 

meteorological stations in the region than OBS-BR. Finally, our results suggest that the better alternative for 

estimating the sign and magnitude of the temperature indices at the annual and seasonal scales is the use of the 

downscaled model ensembles (MME-Sta and MME-Dyn). 
 

 

Figure 2.6 Trends (ºC/decade) in hottest days (TXx) for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE 

Models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 

2005. Hatching indicates where trends are significant at the 95% level 
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2.3.2. Precipitation indices 

2.3.2.1. Evaluation metrics  

For the annual total wet-day precipitation index (PRCPTOT; Fig. 2.7), all statistically downscaled models 

show low bias (close to zero), especially for ACCESS1-0 (1), CESM1-BGC (6), and NorESM1-M (21). The 

dynamically downscaled models show less precipitation in the North region and slightly higher in the South region 

respect to OBS-BR (Fig. 2.8a; first column).  

 

 

Figure 2.7 Climatology bias for the annual total wet-day precipitation - PRCPTOT (mm) for 21 statically (NEX-

GDDP; models 1-21) and 4 dynamically (Eta-INPE; models 22-25) downscaled models, MME-Sta (26), MME-

Dyn (27), and GMFD (28) from 1980 to 2005. Climatology for PRCPTOT in the observations dataset (OBS-BR; 

gray rectangle dataset 29) for 1980-2005. 
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Figure 2.8 Statistics of performance obtained for annual precipitation indices for statically (NEX-GDDP) and 

dynamically (Eta-INPE) downscaled models, MME-Sta, MME-Dyn, and GMFD from 1980 to 2005 over eight 

hydrological basins (Fig. 2.1). (a) Percent Bias (PBIAS); (b) RMSE-observations standard deviation ratio (RSR); 

(c) a refined index of model performance (dr); (d) Correlation coefficients (CORR; the diagonal lines indicate 

significant correlations at 95% level). The horizontal purple lines refer to Eta-INPE datasets. For PBIAS and RSR, 

dark colors indicate models that perform worse than others, on average, and light colors indicate models that 

perform better than others, on average. Furthermore, for dr and CORR, dark (light) colors show models that have 

better (worse) statistical metrics than others, on average 
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Most of the downscaled models underestimate the observed values for intensity indices such as the annual 

maximum 1-day (RX1day) and the maximum 5-day precipitation amount (RX5day), especially in the North 

Atlantic basin (Fig. 2.8a; second and third column). Besides, models from statistically downscaled models (NEX-

GDDP) overestimate the OBS-BR values, especially for the Tocantins River basin. Moreover, basins located in 

the South and Southern regions of Brazil show good performance according to RSR and dr. Additionally, for the 

very wet days (R95p) index, all evaluation metrics show poor performance for all models over the Amazon River 

basin (Fig. 2.8; fourth column). On the other hand, the dynamically downscaled models from the Eta-INPE dataset 

tend to underestimate the R95p index for almost all basins. We note that summer and winter indices (e.g., 

PRCPTOT, RX1day, and RX5day) are generally underestimated across all Brazil for almost all downscaled 

models except for Eta-INPE models (models 22, 23, 24, and 25) that show wet bias in winter over most of the 

watersheds (Fig. 2.9a-d). Similar to the annual scale (Fig. 2.8a), the weak performance of downscaled ESMs is 

more evident for the Amazon basin.  

In almost all basins, the statistically downscaled ESMs models underestimate the simple daily intensity 

index (SDII) and the number of very heavy precipitation day (R20mm) indices (see fifth and sixth columns of Fig. 

2.8). For these indices, the performance of the Eta-INPE dataset is better than NEX-GDDP. The PBIAS shows that 

the simulations underestimate the observed values for the Amazon River and overestimate in Uruguay River and 

South Atlantic basins. In general, for all downscaled ESMs, the poorest performance (RSR, dr, and CORR) is found 

over the Amazon River basin.  

For the duration indices like consecutive dry days (CDD) and consecutive wet days (CWD) (see last two 

columns of Fig. 2.8), some models show the largest disagreement when compared with the observed dataset, and 

thus indicate considerable uncertainty. For instance, models 8, 13, 14, and 23 are generally too dry while others 

too wet (models 2, 3, 4, 11, 13, 16, and 17) over the North and Northeast of Brazil. The statistically downscaled 

ESMs show worse performance over the Amazon River, Tocantins Rivers, and the North Atlantic basin (Fig. 2.8). 

On the other hand, some models such as CCSM4 (5) and CESM1-BGC (6) have relatively good performance in 

the Central-West, Southeast, and South of Brazil. Downscaled NEX-GDDP models show better skill in simulating 

the CDD index at seasonal scale than ETA-INPE models. Noteworthy, statistically downscaled ESMs have better 

scores (Fig. 2.9) in simulating CDD index in winter than summer (see models 8, 10, 13, 14 in Fig. 2.9). 

Comparison between observations (OBS-BR) and the reanalyses shows that the GMFD dataset 

underestimates approximately all precipitation indices at the annual scale (see dataset 28 of Fig. 2.7), except for 

PRCPTOT as the PBIAS varies between 0 and 6% (see bottom of Fig. 2.8a-d). However, in general, the RX1day, 

RX5day, and R95p indices are overestimated for all basins (Fig. 2.8a). The results do not indicate a dominant 

positive or negative pattern of PBIAS for SDII, R20mm, CDD, and CWD. It should be noted that the worst 

performance is found over the Amazon River, Tocantins Rivers, and North Atlantic basins (Fig. 2.8). In this sense, 

the main discrepancies between OBS-BR and GMFD are found for several indices such as RX1day, RX5day, 

R20mm, and CWD (Fig 8). Fig. 2.9a shows a consistently dry bias in PRCPTOT, RX1day, RX5day, and CDD 

indices during the summer and low skill in reproducing intensity indices (RX1day, RX5day). GMFD also shows 

a better winter precipitation indices estimation over most parts of Brazil, according to RSR, dr, and CORR (Fig. 
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2.9b-d). Furthermore, the Amazon River basin is poorly represented in GMFD for the annual, summer, and winter 

for almost all precipitation indices, except for PRCPTOT and CDD (see Figs. 8, 9).  

 

Figure 2.9 As in Fig. 2.8, but for extreme precipitation indices in summer (DJF) and winter (JJA). The 

nomenclature of the ETCCDI indices was adapted to Index-“S” for summer and Index-“W” for winter 
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The overall performance assessment (see bottom of Fig. 2.8) shows that the models from NEX-GDDP and 

Eta-INPE underestimate precipitation intensity (RX1day and R95p) and frequency (R20mm) over the Amazon 

River basin. However, the statistically downscaled models perform better for the PRCPTOT and CDD indices on 

the both annual and seasonal scale (Figs. 8, 9). The relative errors could be because PRCPTOT and CDD are less 

dependent on fine scale phenomena than the indices that represent extreme precipitation events (e.g., RX1day and 

RX5day). Besides, the coarse resolution of the underlying ESMs makes them have special difficulties in 

representing the spatial and temporal heterogeneity of precipitation over tropical regions (Marengo et al. 2010b; 

Rusticucci et al. 2010; Sillmann et al. 2013a).  

Of particular importance is the fact that for several models and regions, the sign of the bias in CDD is 

different in the annual and seasonal scales. For example, most models show a negative PBIAS (fewer dry days) at 

the annual scale, but a positive (more dry days) PBIAS in both summer and winter seasons in regions more to the 

south (e.g., models 6, 7 and 8). Transition seasons (spring, autumn) have a larger influence on the overall annual 

number of precipitation days across these higher-latitude regions of Brazil (Rao et al. 2016). The opposite is true 

for some statistically downscaled models in other regions, and the sign of the CDD bias is also reversed between 

summer and winter in the dynamically downscaled models. Since some activities such as agricultural production 

are particularly sensitive to dry spells in specific seasons (e.g., da Silva et al. (2013)) special care should be taken 

when selecting downscaled models for this kind of application.  

The MMEs have weakest representation of intensity indices principally over the Amazon basin at the annual 

and seasonal levels. Multi-model ensembles generally have a better performance than most individual models, but 

not all. Our results show that MME-Sta might be a better approach in precipitation indices (e.g., PRCPTOT and 

RX5day) over the Amazon River, where most models show poor performance (Figs. 8, 9). On the other hand, the 

SDII, R20mm, and CWD values from MMEs-Dyn generally agree more with the observations than MME-Sta over 

most hydrological basins. The MMEs-Sta and MME-Dyn overestimate and underestimate CWD and CDD, 

respectively, particularly over the Amazon, Tocantins, and North Atlantic basin. It should be highlighted that the 

bias is significantly smaller in the Eta simulations.  

In general, the dynamically downscaled models simulate less total precipitation than OBS-BR, even for the 

NCEP-NCAR reanalysis used in GMFD. This underestimation by the Eta-simulations discussed here is consistent 

with the results obtained by Chou et al. (2014a) and Valverde and Marengo (2014), especially in northern Brazil. 

The agreement is generally much better for the statistically downscaled models, although the sign of the errors has 

a similar spatial pattern, with modest underestimation of total precipitation in northern Brazil. All downscaled 

models capture the main spatial features of extreme precipitation indices climatology, but significant biases were 

found, particularly in the Amazon River basin (Figs. 8 and 9). The systematic rainfall underestimation by the 

models can be related to many factors, such as the poor representation of cumulus convection, the biosphere–

atmosphere interactions in the rainforest, soil moisture, and land surface processes (Torres and Marengo 2013; Yin 

et al. 2013). For example, representation of aerosol-related processes is a major source of uncertainty on climate 

models (Seinfeld et al. 2016), and precipitation extremes are particularly affected by it (Lin et al. 2018). On the 

other hand, there is poor data observation coverage in some portions of South America, mainly in the Amazon 
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Basin, in which few meteorological stations are available. This influences the magnitude and location of the bias 

patterns, mainly for precipitation (Torres and Marengo  2013). 

2.3.2.2. Trend analysis in precipitation indices 

Most of the climate trend analysis in precipitation extremes in Brazil have focused on specific basins in 

southern (Donat et al. 2013a; Skansi et al. 2013; Carvalho et al. 2014; Avila et al. 2016; Murara et al. 2018) or 

northern and northeastern Brazil (Oliveira et al. 2014, 2017; Valverde and Marengo 2014; Bezerra et al. 2019). It 

is quite challenging to compare these studies with ours since they included small areas and many factors can 

influence trends (e.g., study period, weather stations, data quality control, homogeneity and trend estimation 

methods). However, our findings are in line with the results of the prevalence of regions with an upward trend in 

the annual (Fig. 2.10) and summer maximum daily rainfall. The interested reader should refer to Fig. 2.S16 to the 

trends for the selected indices (PRCPTOT, RX1day, RX5day, and CDD) at the seasonal scale. Also, the positive 

trends in consecutive dry days are generally in line with those of Valverde and Marengo (2014) for southern 

Amazon, Upper São Francisco, Tocantins, and northern Paraná basins (Fig. 2.10). 

Brazil-wide trends in precipitation indices are generally not significant for OBS-BR and GMFD (Fig. 2.10). 

Some hydrological basins have the same patterns, mainly showing decreases in PRCPTOT and CWD and some 

increases in CDD (Figs. 10, 11), especially in northeastern, southeastern, and southern Brazil. Also, results for the 

CDD index in winter and summer indicate dry trends in many downscaled models across the southern watersheds 

(e.g., PAR, URU, and SAR). The extreme precipitation indices display mixed signal trends and show less 

agreement between the different datasets than the temperature indices in both annual and seasonal scales. The 

precipitation trends in GFDL-ESM2G (10) and Eta-HadGEM2-ES (24) are especially troublesome (see Figs. 10, 

11) in annual and seasonal trends, suggesting a much stronger drying trend than OBS-BR and other downscaled 

ESMs. Moreover, MMEs appear to agree better with trends in OBS-BR than trends in GMFD precipitation indices.  

In general, there is not a single model that is the most appropriate to represent the observed trends for each 

index over the basins in both annual and seasonal temporal scales for the period 1980–2005. Although trend 

patterns vary widely across datasets (21 NEX-GDDP climate models, 4 Eta-INPE models, MMEs, GMFD, and 

OBS-BR), especially for precipitation indices, the multi-model ensembles are a good alternative to better capture 

observed trends.  
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Figure 2.10 Trends per decade from 1980 to 2005 for precipitation indices at the annual scale (a-h) for 21 NEX-

GDDP climate models (1-21), 4 Eta-INPE climate models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) 

and OBS-BR over eight hydrological regions in Brazil (Fig. 2.1). Diagonal lines indicate significant trends at 95% 

level. The vertical purple lines refer to ESMs from Eta-INPE datasets. 
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Figure 2.11 Trends (days/decade) in annual total wet-day precipitation - PRCPTOT (mm) for 21 NEX-GDDP 

climate models (1-21), 4 Eta-INPE climate models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and 

OBS-BR (29; gray rectangle) from 1980 to 2005. Hatching indicates where trends are significant at the 95% level. 

2.3.3. The comprehensive model rank (MR) 

Table 2.3 provides the ranking for all models analyzed using 16 climate indices at the annual scale over 

eight hydrological basins throughout Brazil. In terms of temperature indices, the best models for the whole domain 

are, in order, CSIRO-MK3-6-0 (8) and CNRM-CM5 (7); these are the only models with MR ≥  0.85. The models 

with the lowest MR are Eta-CanESM2 (23) and GFDL-ESM2M (11). When considering the precipitation indices, 

the three four models are CCSM4 (5) followed by MRI-CGCM3 (20), and CNRM-CM5 (7), whereas models with 

the worst MR are MIROC-ESM (16), IPSL-CM5A-LR (13) and CanESM2 (4). Considering all climate indices 

over all basins, the best individual models are CNRM-CM5 and CCSM4, followed by MRI-CGCM3, and the worst 

on the overall ranking are MIROC-ESM (16), GFDL-ESM2M (11) and CanESM (4). Furthermore, analyzing the 

country as a whole (Table 2.3), the multi-model ensemble of NEX-GDDP models (MME-Sta, MRoverall = 0.927) 
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generally leads to better skill scores than individual models and ensemble of Eta-INPE models (MME-Dyn, 

MRoverall = 0.872).  

 
Table 2.3 Ranking of downscaled ESMs and MMEs for temperature and precipitation indices at the annual scale 

over Brazil. Downscaled models or MMEs in bold achieve a skill score ≥ 0.85. The optimal value of MR is 1.0 

Overall Ranking  
(Average of MR-temperature and MR-precipitation) 

 

 

Temperature  
Indices  

 

Precipitation  
Indices 

Models and MMEs (ID) Rank Skill score (MR) Rank MR Rank MR 

MME-Sta (26) 1 0.927 1 0.956 1 0.899 
CNRM-CM5 (7) 2 0.877 3 0.883 4 0.870 
MME-Dyn (27) 3 0.872 4 0.877 5 0.868 
CCSM4 (5) 4 0.863 8 0.827 2 0.898 
MRI-CGCM3 (20) 5 0.859 5 0.844 3 0.875 
MPI-ESM-MR (19) 6 0.835 6 0.832 9 0.838 
MIROC5 (15) 7 0.830 10 0.810 8 0.850 
CESM1-BGC (6) 8 0.823 16 0.781 6 0.865 
ACCESS1-0 (1) 9 0.822 13 0.790 7 0.853 
CSIRO-MK3-6-0 (8) 10 0.819 2 0.887 21 0.751 
BCC-CSM1-1 (2) 11 0.797 7 0.830 17 0.763 
Eta-BESM (22) 12 0.791 19 0.771 12 0.810 
Eta-HadGEM2-ES (24) 13 0.786 12 0.794 14 0.779 
MPI-ESM-LR (18) 14 0.786 21 0.739 10 0.834 
GFDL-ESM2G (10) 15 0.780 15 0.784 15 0.775 
GFDL-CM3 (9) 16 0.779 11 0.796 18 0.761 
INMCM4 (2) 17 0.778 21 0.739 11 0.818 
BNU-ESM (3) 18 0.774 9 0.825 24 0.723 
IPSL-CM5A-MR (14) 19 0.753 18 0.773 22 0.732 
Eta-MIROC5 (25) 19 0.753 23 0.736 16 0.769 
NorESM1-M (21) 21 0.750 17 0.776 23 0.724 
IPSL-CM5A-LR (13) 22 0.744 14 0.789 26 0.699 
MIROC-ESM-CHEM (17) 23 0.741 24 0.731 20 0.752 
Eta-CanESM2 (23) 24 0.736 27 0.693 13 0.780 
MIROC-ESM (16) 25 0.733 20 0.751 25 0.715 
GFDL-ESM2M (11) 26 0.730 26 0.707 19 0.754 
CanESM2 (4) 27 0.705 25 0.724 27 0.687 

Furthermore, the ranking of the downscaled ESMs obtained at the seasonal scale is very similar to those 

presented at the annual scale. For instance, the best models are MRI-CGCM3, CNRM-CM5, and CCSM4, using 

the overall ranking of the selected temperature (TXx, TNn, TN10p, and TX90p) and precipitation (PRCPTOT, 

RX1day, RX5day, CDD) indices. Also, the MMEs-Sta performed better than MMEs-Dyn and individual 

downscaled ESMs in both summer and winter. Being aware of these results, we decided to emphasize the ranking 

discussion on an annual scale. Readers interested in the ranking for summer and winter can refer to Table 2.S1.  

It is important to note that the top three models in Table 2.3 have a native horizontal resolution finer than 

2º×2º – latitude/longitude (Table 2.1), which could indicate that a finer resolution allows the models to resolve 

better processes associated with climate extremes. Although models with coarser resolutions do tend to perform 

poorly, having a finer resolution is not necessarily a determining factor to choose the best performing model. For 

instance, the downscaled results of models with very fine native horizontal resolutions (e.g., CESM1-BGC: 0.924º 

× 1.250º) do not perform better in temperature indices than coarser resolution models such as BNU-ESM 

(2.8º×2.8º) or BCC-CSM1-1 (2.8º×2.8º). However, this association is stronger when considering precipitation 
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indices, as the top four models have native horizontal resolutions less than 1.5º×1.5º (Table 2.3), and the worst 

ones greater than 2º×2º such as CanESM2 (2.8º×2.8º) and MIROC-ESM (2.791º×2.813º). This is likely due to the 

higher spatial heterogeneity of the precipitation and has also been observed with raw ESM results over Australia 

(Alexander and Arblaster 2017) and East Asia (Kusunoki and Arakawa 2015). The number and extent of vertical 

layers in the model does not seem to be an important factor for either temperature or precipitation indices, as was 

previously observed over higher altitude regions such as the Equatorial Andes (Campozano et al. 2017). 

Although the ensembles generally perform better in a larger number of basins than individual models, some 

models are better than both ensembles for some particular basins, especially for precipitation (Fig. 2.12). For 

example, although MME-Sta ranks better than most models for precipitation for the South Atlantic basin, 

individual models like CCSM4 (5), CESM1-BGC (6), and INMCM4 (12) rank considerably better than the 

ensemble. Although an improvement over most individual dynamically downscaled models for precipitation in 

most basins, MME-Dyn does not rank better than the best model in half of the basins and ranks especially poorly 

in the Amazon River basin. For temperature indices, using MMEs more consistently leads to better results than 

individual models, though not always. For example, individual models such as MPI-ESM-MR (19) show the 

highest values of MR among models and ensembles for the Parana River basin. It is important to note that MME-

Dyn is considerably worse than MME-Sta for most basins. However, MME-Dyn ranks better in the South Atlantic 

basin at both temperature and precipitation indices, and in the Tocantins, Parana, and South Atlantic basins for 

precipitation indices. 

 

 

Figure 2.12 Model rank (MR) value for temperature (a) and precipitation indices (b) at the annual scale. Each 

symbol represents a given basin. White, gray and yellow areas refer to 21 NEX-GDDP climate models, four (4) 

Eta-INPE climate models and multi-model ensembles (MMEs), respectively 
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Noteworthy, the most successful downscaling simulations based on the Eta Regional Climate Model, are 

the ones forced by BESM (22) and HadGEM2-ES (24) (Table 2.3). The Eta-HadGEM2-ES appear to be better 

than Eta-BESM for temperature indices over hydrological basins located in the southern part of Brazil, and worse 

for precipitation indices over basins on the northeast of the country (Fig. 2.11). 

The large difference in the number of models among different datasets used in the ensemble mean 

complicates a proper comparison between the dynamical and statistical downscaling techniques. Although none 

of the dynamically downscaled models are among the best in the overall ranking (Table 2.3), they perform very 

well in some aspects. Eta-BESM, for example, is ranked the best for precipitation indices in the Uruguay River 

basin, although it is ranked the worst for temperature indices in the same basin (Fig. 2.12). A more useful 

comparison can be made using the ESMs that were downscaled using both techniques, CanESM2 and MIROC5, 

but also show that one technique is not necessarily better than the other for evaluating climate extremes. Although 

the statistically downscaled CanESM2 is among the worst ranking models in all indices, the dynamically 

downscaled version performs reasonably well in all basins, except for the Amazon and Tocantins basins. On the 

other hand, the statistically downscaled MIROC5 is generally better than its dynamically downscaled counterpart, 

except for the Tocantins River basin.  

2.4. Summary and conclusions 

This paper provides an overview of the performance of 25 downscaled Earth System Models, generated by 

statistical (NEX-GDDP) and dynamical (Eta-INPE) downscaling techniques, to evaluate extreme climate indices 

during historical climate over eight hydrological basins across Brazil. Performance was evaluated for annual and 

seasonal indices (summer and winter) by contrasting simulations with an observational gridded dataset at high 

horizontal resolution. 

The GMFD dataset used as reference for the statistical downscaling is problematic for precipitation over 

the Amazon River basin in both annual and seasonal scale, with little capacity to simulate the climatology and 

temporal variability of most precipitation indices, except for PRCPTOT and CDD. GMFD also tends to reproduce 

much higher TXx and lower WSDI than the observed values, and shows trends with the wrong sign (positive or 

negative) for several indices and basins. These discrepancies point to the possibility of improvement of statistically 

downscaled products for Brazil by using denser observational networks as reference.  

Although the CNRM-CM5, CCSM4, and MRI-CGCM3 (NEX-GDDP models) statistically downscaled 

products have the best results among individual models in an overall comparison for Brazil for annual, summer 

and winter indices, the results varied widely among basins. Finer horizontal resolutions of the original ESMs 

appear to be somewhat related, but not determinant, to the performance of the downscaled product in representing 

extreme climate events, especially precipitation. The use of multi-model ensembles, although improving the 

overall representation, does not always lead to the best results depending on the region considered. The multi-

model ensembles also show considerable discrepancies, especially across northern Brazil, in several extremes 

climate indices, particularly ones related to the persistence of climate events such as cumulative wet and dry days 

and warm spell duration. These conclusions are generally valid at both annual and seasonal scales. However, some 

models and regions present conflicting behaviors at the annual scale and in different seasons, especially for 
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consecutive dry days (CDD). Caution must be taken when selecting model products for applications that are 

particularly sensitive to extremes in specific seasons. 

The downscaled ESMs appear to compare better with OBS-BR in terms of trend patterns than the GMFD 

dataset. Furthermore, downscaled product trends are much more spatially coherent in temperature than 

precipitation indices when compared with the observational dataset. In this sense, the trend pattern in most climate 

indices is generally better captured by multi-model ensembles than individual downscaled ESMs (especially for 

precipitation indices). 

In conclusion, despite some models being generally better than others, no single downscaled product or 

ensemble is the best choice for every region. The results presented in this paper can guide researchers in choosing 

the best data for each particular application, as well as inform climate modelers about the shortcomings of models 

and downscaling approaches over Brazil.  
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2.6. Supplementary material 
 

Extreme Climate Indices in Brazil: Evaluation of Downscaled Earth System Models at 

High Horizontal Resolution 

Alvaro Avila; Gabriel Abrahão; Flavio Justino; Roger Torres; Aaron Wilson. 2020.  

Climate Dynamics. Manuscript number: CLDY-D-19-00584 

 
Table S2.1 Ranking of downscaled ESMs and MMEs for temperature and precipitation indices at seasonal scale 
over Brazil. Downscaled models or MMEs in bold achieve a skill score ≥ 0.85. The optimal value of MR is 1.0. 

Overall Ranking  
Temperature Indices  Precipitation Indices 

Summer Winter Summer Winter 

Models and MMEs (ID) Rank 
Skill score 

(MR)  
Rank MR Rank MR Rank MR Rank MR 

MME-Dyn (26) 1 0.910 1 0.928 1 0.921 1 0.906 1 0.883 
MME-Sta (27) 2 0.863 3 0.866 3 0.860 2 0.879 7 0.845 

MRI-CGCM3 (20) 3 0.842 5 0.850 9 0.813 3 0.854 5 0.851 
CCSM4 (5) 4 0.840 8 0.818 5 0.849 7 0.838 4 0.855 
CNRM-CM5 (7) 5 0.832 7 0.826 3 0.860 16 0.792 6 0.849 

ACCESS1-0 (1) 6 0.828 17 0.778 8 0.836 11 0.817 2 0.882 
MPI-ESM-LR (18) 7 0.824 4 0.854 11 0.804 8 0.836 12 0.801 

BCC-CSM1-1 (2) 8 0.820 2 0.898 17 0.778 6 0.843 18 0.762 

MPI-ESM-MR (19) 9 0.820 13 0.798 6 0.842 4 0.850 14 0.788 

CESM1-BGC (6) 10 0.813 19 0.772 10 0.813 5 0.844 9 0.824 

MIROC5 (15) 11 0.806 10 0.816 14 0.800 10 0.817 13 0.790 

Eta-BESM (22) 12 0.802 12 0.800 7 0.837 9 0.826 24 0.744 

GFDL-ESM2G (10) 13 0.799 14 0.798 13 0.801 19 0.767 8 0.827 

CSIRO-MK3-6-0 (8) 14 0.798 6 0.833 2 0.862 25 0.725 16 0.773 

INMCM4 (12) 15 0.797 21 0.769 12 0.804 20 0.750 3 0.867 
IPSL-CM5A-MR (14) 16 0.788 9 0.816 16 0.781 21 0.743 11 0.813 

BNU-ESM (3) 17 0.779 16 0.785 15 0.788 15 0.795 23 0.747 

Eta-HadGEM2-ES (24) 18 0.778 18 0.778 20 0.769 12 0.807 21 0.760 

NorESM1-M (21) 19 0.768 11 0.806 23 0.735 18 0.768 17 0.763 

GFDL-CM3 (9) 20 0.758 23 0.741 17 0.778 22 0.733 15 0.778 

MIROC-ESM (16) 21 0.756 20 0.769 26 0.713 17 0.788 22 0.752 

MIROC-ESM-CHEM (17) 22 0.752 24 0.741 27 0.702 13 0.806 19 0.761 

Eta-CanESM2 (23) 23 0.752 26 0.694 19 0.770 23 0.731 10 0.813 

GFDL-ESM2M (11) 24 0.746 25 0.736 21 0.761 24 0.725 20 0.761 

IPSL-CM5A-LR (13) 25 0.735 15 0.788 24 0.735 26 0.716 27 0.702 

CanESM2 (4) 26 0.734 22 0.760 22 0.740 27 0.700 25 0.737 

Eta-MIROC5 (25) 27 0.733 27 0.673 25 0.731 14 0.800 26 0.729 
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Figure S2.1 Climatology for the coldest night – TNn for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE 

models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 

2005. (b) Climatology bias for 1980-2005  
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Figure S2.2 Climatology for diurnal temperature range – DTR for 21 NEX-GDDP climate models (1-21), 4 Eta-

INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 

to 2005. (b) Climatology bias for 1980-2005 

Recourse: Authors  
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Figure S2.3 Climatology for cool nights – TN10p for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE models 

(22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 2005. (b) 

Climatology bias for 1980-2005  
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Figure S2.4 Climatology for warm nights – TN90p for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE models 

(22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 2005. (b) 

Climatology bias for 1980-2005  
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Figure S2.5 Climatology for cool days – TX10p for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE models 

(22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 2005. (b) 

Climatology bias for 1980-2005  
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Figure S2.6 Climatology for warm days – TX90p for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE models 

(22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 2005. (b) 

Climatology bias for 1980-2005 
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Figure S2.7 Climatology for warm spell duration indicator – WSDI for 21 NEX-GDDP climate models (1-21), 4 

Eta-INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 

1980 to 2005. (b) Climatology bias for 1980-2005 
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Figure S2.8 Trends per decade from 1980 to 2005 for temperature indices at the seasonal scale (a-h) for 21 NEX-

GDDP models, 4 Eta-INPE models, MME-Sta, and MME-Dyn over eight hydrological basins in Brazil (Fig. 2.1). 

Diagonal lines indicate significant trends at 5% level. The vertical purple lines refer to ESMs from Eta-INPE 

datasets. The nomenclature of the ETCCDI indices was adapted to Index-“S” for summer and Index-“W” for 

winter 
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Figure S2.9 Climatology for max 1-day precipitation – RX1day for 21 NEX-GDDP climate models (1-21), 4 Eta-

INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 

to 2005. (b) Climatology bias for 1980-2005  
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Figure S2.10 Climatology for max 5-day precipitation – RX5day for 21 NEX-GDDP climate models (1-21), 4 

Eta-INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 

1980 to 2005. (b) Climatology bias for 1980-2005  
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Figure S2.11 Climatology for very wet days – R95p for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE models 

(22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 2005. (b) 

Climatology bias for 1980-2005  
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Figure S2.12 Climatology for simple daily intensity index – SDII for 21 NEX-GDDP climate models (1-21), 4 

Eta-INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 

1980 to 2005. (b) Climatology bias for 1980-2005  
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Figure S2.13 Climatology for number of very heavy precipitation days – R20mm for 21 NEX-GDDP climate 

models (1-21), 4 Eta-INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray 

rectangle) from 1980 to 2005. (b) Climatology bias for 1980-2005   
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Figure S2.14 Climatology for consecutive wet days – CWD for 21 NEX-GDDP climate models (1-21), 4 Eta-

INPE models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 

to 2005. (b) Climatology bias for 1980-2005 
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Figure S2.15 Climatology for consecutive dry days – CDD for 21 NEX-GDDP climate models (1-21), 4 Eta-INPE 

models (22-25), MME-Sta (26), MME-Dyn (27), GMFD (28) and OBS-BR (29; gray rectangle) from 1980 to 

2005. (b) Climatology bias for 1980-2005 
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Figure S2.16 Trends per decade from 1980 to 2005 for precipitation indices at the seasonal scale (a-h) for 21 

NEX-GDDP models, 4 Eta-INPE models, MME-Sta, and MME-Dyn over eight hydrological basins in Brazil (Fig. 

2.1). Diagonal lines indicate significant trends at 5% level. The vertical purple lines refer to ESMs from Eta-INPE 

datasets. The nomenclature of the ETCCDI indices was adapted to Index-“S” for summer and Index-“W” for 

winter. 
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CHAPTER 3 

 
3. Assessing Current and Future Trends of Climate Extremes Across Brazil Using 

Reanalyses and Earth System Model Projections 

Alvaro Avila; Victor Benezoli; Flavio Justino; Roger Torres; Aaron Wilson.  

Climate Dynamics. Manuscript number: CLDY-D-19-00921. 

 
Abstract: 

Brazil experiences extreme weather and climate events that cause numerous economic and social losses. 

Several extreme events have impacted the country in recent decades, and according to climate change projections, 

these events will increase in frequency by the end of this century. To understand the magnitude of these changes, 

this study analyzes the historical patterns and projected changes of temperature and precipitation extremes across 

Brazil through the World Climate Research Program’s Expert Team on Climate Change Detection and Indices 

framework. Climate extreme events over the past four decades (1980-2016) are evaluated using multiple observed 

and reanalysis datasets. Future changes in climate extremes are analyzed from 20 downscaled Earth System 

Models at high horizontal resolution (0.25° of latitude/longitude), under two representative concentration pathway 

scenarios (RCP4.5 and RCP8.5). Projected changes in the extreme indices are analyzed over mid-21st century 

(2046-2065) and end-of-21st century (2081–2100) relative to the reference period 1986–2005. Results show 

consistent warming patterns with increasing trends in warm extremes and decreasing trends in cold extremes in 

the historical datasets. Furthermore, the frequency of warm days/nights have increased and cold days/nights have 

diminished, and an increase in the duration of heat waves over the 21st century is expected. A similar warm pattern 

is projected in the mid and end of the twenty-first century. For precipitation indices, observations show an increase 

in consecutive dry days and a reduction of consecutive wet days over almost all Brazil. The frequency and intensity 

of extremely wet days over Brazil are expected to increase according to future scenarios. 

 

Key Words: Climate trends; CMIP5 models; Downscaling; ETCCDI; Hydrological basins; Performance  

 

3.1. Introduction 

Global temperatures have warmed, leading to changes in atmospheric patterns that intensify and increase 

the frequency of extreme precipitation and heat waves (Zhang et al. 2007; IPCC 2018; Giorgi et al. 2019). Earth 

System Models (ESMs) project a continued upward trend in extreme temperature and precipitation events over the 

majority of land regions throughout the twenty-first century (Sillmann et al. 2013b; Donat et al. 2016; Bador et al. 

2018; Marelle et al. 2018; Mora et al. 2018). 

Natural hazards such as floods, landslides, and droughts caused damage on the order of the R$182.7 billion 

(about US $ 56.0 billion) in Brazil between 1995 and 2014 (CEPED-UFSC 2016). Climate projections reveal 

increasing mean temperatures and decreasing precipitation that suggest more frequent/intense episodes of droughts 
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over northern and northeastern Brazil, with a large increase in the length of the most prolonged period of 

consecutive dry days (Sillmann et al. 2013b; Marengo et al. 2017; Betts et al. 2018). In addition, Debortoli et al. 

(2017) indicate that Brazil has many regions that are highly vulnerable to natural disasters including flash flooding 

and landslides. Moreover, Almagro et al. (2017) reveals future projections show an increase in rainfall-induced 

erosion potential across the southern regions, which can affect agricultural production in this area.  

In Brazil, studies of climate extremes developed over the last few decades (e.g., the 1990s and 2000s) have 

encountered some limitations in their evaluations and model validations, mainly due to the lack of access to 

meteorological data (e.g., Marengo et al. 2009; Rusticucci et al. 2010). Presently, many researchers have used 

weather stations in specific areas to investigate climate extremes in present climate (Dufek and Ambrizzi 2008; 

Skansi et al. 2013; Silva Dias et al. 2013; Carvalho et al. 2014; Oliveira et al. 2014, 2017; Rosso et al. 2015; Avila 

et al. 2016; Zilli et al. 2017; Murara et al. 2018; Bezerra et al. 2019). Those studies found an increase of extreme 

temperature and precipitation events in the recent past, and climate models project additional increases in future 

climate extremes over South America, although ESMs with coarser resolutions (100 – 300 km) are not appropriate 

for climate change studies at local/regional scales (Marengo et al. 2009; Dereczynski et al. 2013; Sillmann et al. 

2013b; Silva et al. 2014; Valverde and Marengo 2014; Nguyen et al. 2017). In addition, Lyra et al. (2017) used 

the highest resolution (5 km) climate projection and found that temperature extremes are projected to increase up 

to 9 °C in three metropolitan regions of southeast Brazil, where the annual precipitation could decrease by 

approximately 40-50 percent by the end of the century in the RCP8.5 scenario.  

A more detailed study about historical and future climate extreme variability on a more local/regional scale 

using the recent high resolution climate datasets over Brazil has not yet been carried out. Hence, the following is 

a comprehensive evaluation using new sources (e.g., reanalysis and downscaled climate projections) that provide 

relevant information for climate processes and natural hazards monitoring. In order to expand previous work and 

improve our understanding of climate extremes events in Brazil, historical (1980-2016) and projected (2046-2100) 

changes in temperature and precipitation extremes indices are analyzed using the guidance defined by the Expert 

Team on Climate Change Detection and Indices (ETCCDI). To characterize the historical climate, datasets 

comprising observations, reanalysis, and other merged products, arranged in a regular grid of 0.25° 

latitude/longitude (~25 km x 25 km) from 1980 to 2016 are used. Observational uncertainty is also analyzed. 

Furthermore, the National Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled 

Projections (NEX-GDDP) were utilized for the period 2006-2100. The NEX-GDDP dataset is based on statistical 

downscaling of 20 ESMs from the Coupled Model Intercomparison Project Phase 5 (Taylor et al. 2012) under 

RCP4.5 and RCP8.5 scenarios. Section 2 describes the climate indices, data, and methods used in this 

investigation. Section 3 depicts observations and performance evaluations, historical trends, and future changes 

based on RCP4.5 and 8.5 Finally, Section 4 provides a summary of the main results and discussion concerning 

how these extreme climate impacts various aspects of the Brazilian population.  

3.2. Data and Methodology 

3.2.1. Extreme Climate Indices 

Sixteen extreme climate indices defined by ETCCDI (Zhang and Yang 2004; Zhang et al. 2011; 

http://etccdi.pacificclimate.org/list_27_indices.shtml) were selected for this study, eight each related to air 

http://etccdi.pacificclimate.org/list_27_indices.shtml
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temperature and rainfall (Table 3.1). These indices were calculated using daily maximum temperature (TX), 

minimum temperature (TN), and precipitation (PR).  

 

Table 3.1 Extreme climate indices employed in this study as recommended by ETCCDI. The full list of indices 

and precise definitions are provided at http://etccdi.pacificclimate.org/list_27_indices.shtml. Abbreviations are as 

follows: TX (TN), daily maximum (maximum) temperature. A wet (dry) day is defined when precipitation ≥ 1 

mm (PR<1mm). 

Index – Indicator name Description Unit 

1. TXx – Hottest day Annual maximum value of daily maximum temperature ºC 

2. TNn – Coldest night  Annual minimum value of daily minimum temperature ºC 

3. DTR – Diurnal temperature range Annual mean difference between daily max and min temperature ºC 

4. TN10p – Cool nights Percentage of days when TN<10th percentile % 

5. TN90p – Warm nights Percentage of days when TN>90th percentile % 

6. TX10p – Cool days Percentage of days when TX<10th percentile % 

7. TX90p – Warm days Percentage of days when TX>90th percentile % 

8. WSDI – Warm spell duration indicator 
Annual count of days with at least 6 consecutive days when TX>90th 

percentile 
days 

9. PRCPTOTa – Annual total wet-day 

precipitation 
Annual total precipitation (PR) in wet days (PR>=1mm) mm 

10. RX1day – Max 1-day precipitation amount Annual maximum 1-day precipitation mm 

11. RX5day – Max 5-day precipitation amount Annual maximum consecutive 5-day precipitation mm 

12. R95p – Very wet days Annual total precipitation from days > 95th percentile mm 

13. SDII – Simple daily intensity index The ratio of annual total precipitation to the number of wet days (≥ 1 mm) mm/day 

14. R20mm – Number of very heavy 

precipitation days 
Annual count of days when PR>=20mm days 

15. CWD – Consecutive wet days Maximum number of consecutive days with daily PR>=1mm days 

16. CDD – Consecutive dry days Maximum number of consecutive days with daily PR<1mm days 

Selected extreme temperature indices comprise absolute (associated with the maximum or minimum 

magnitudes within a year) and percentile-based indices (related to the frequency of hot or cold extreme events). 

Absolute indices include hottest day (TXx), coldest night (TNn), and diurnal temperature range (DTR); percentile-

based indices include cold nights (TN10p), warm nights (TN90p), cold days (TX10p), and warm days (TX90p) 

indices. Additionally, warm spell duration index (WSDI) describing the annual count of days with at least 6 

consecutive days when the maximum temperature is above the 90th percentile was calculated.  

The eight precipitation-related extreme indices characterize intensity, frequency, and duration of rainfall 

events. The total wet-day precipitation (PRCPTOT), maximum 1-day precipitation (RX1day), maximum 5-day 

precipitation (RX5day), very wet days (R95p), and simple daily intensity (SDII) are used to characterize the 

intensity of rainfall events. The number of very heavy precipitation days (R20mm) expresses the frequency of 

extreme precipitation. Finally, consecutive dry days (CDD) and consecutive wet days (CWD) describe persistent 

drier and wetter conditions, respectively. 

The selected climate indices have been calculated on an annual scale to improve knowledge and 

understanding of inter-annual extreme temperature and precipitation variability in Brazil. Furthermore, choices 

were based on their relevance to the study area and are comparable with others studies carried out in different parts 

http://etccdi.pacificclimate.org/list_27_indices.shtml
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of the world (Sillmann et al. 2013b; Skansi et al. 2013; Alexander 2016; Alexander and Arblaster 2017; Giorgi et 

al. 2019). Several studies have used ETCCDI indices to evaluate the capabilities of reanalyses and ESMs in 

simulating the characteristics of the observed climate extremes (Dufek and Ambrizzi 2008; Zhou et al. 2014; 

Nguyen et al. 2017; Ongoma et al. 2018a; de Lima and Alcântara 2019; Dosio et al. 2019). Similar to Aerenson et 

al. (2018), we do not include a seasonal evaluation of ETCCDI extreme climate indices here as many of the indices 

are more meaningful on an annual scale.  

3.2.2. Observation and reanalysis datasets 

We selected four datasets to study the complexity of climate extremes at a high horizontal spatial resolution 

(Table 3.2) over the 1980-2016 period. We chose reanalyses and merged products that combine satellite 

precipitation, reanalysis estimates with in-situ records that offer prolonged periods of daily records of 

meteorological variables (e.g., TX, TN, and PR). Also, reanalyses and merged products have improved since the 

early 1980s as more climate datasets have become available, the understanding of the climate system has advanced, 

and numerical weather prediction techniques have improved (Sheffield et al. 2006; Dee et al. 2014; Beck et al. 

2019b). The daily outputs were obtained from the following data projects:   

 

Table 3.2 Characteristics of (a) gridded observations, (b) reanalyses, and (c) merged datasets. Variables are 

precipitation (PR), maximum temperature (TX) and minimum temperature (TN) 

 Variables Period 
Resolution; 

Spatial Coverage 

(a) Gridded observation 

OBS-BR  

https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA. 

TX, TN, 

PR 
1980-2016 

0.25° (~28 km); 

Brazil 

(b) Reanalysis product 

ECMWF ERA5 Reanalysis (ERA5) 

https://cds.climate.copernicus.eu/ 

TX, TN, 

PR 
1979- 2018 

0.25° (~28 km); 

Global 

Global Meteorological Forcing Dataset for Land Surface 

Modeling (GMFD) 

http://hydrology.princeton.edu/data.pgf.php 

TX, TN, 

PR 
1948- 2016 

0.25° (~28 km) 

Global 

(c) Merging of different data sources (gauge, satellite, and reanalysis) 

Multi-Source Weighted-Ensemble Precipitation (MSWEP) 

Version 2.2 http://www.gloh2o.org/ 
PR 1979- 2017 

0.1° (~10 km); 

Global 

I. As a reference, we chose a gridded observational dataset (OBS-BR) produced by Xavier et al. (2015; 

2017) available for Brazil with a horizontal resolution of 0.25° latitude/longitude (~25 km x 25 km) over the period 

1980-2016. The temperature and precipitation fields are based on an interpolation of 735 and 9259 observations 

sites, respectively.  

II. The fifth European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis – ERA5 (Dee 

et al. 2011; Hersbach et al. 2018). ERA5 is a global high-resolution (0.25°) reanalysis, available for the period 

between 1979 and the near-present.  

https://utexas.app.box.com/v/Xavier-etal-IJOC-DATA
https://cds.climate.copernicus.eu/
http://hydrology.princeton.edu/data.pgf.php
http://www.gloh2o.org/
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III. The Global Meteorological Forcing Dataset with a horizontal resolution of 0.25° covering the period 

from 1948 to 2016 was also used (GMFD; Sheffield et al. 2006). The GMFD dataset merges satellite, reanalysis 

data and surface observations.  

IV. The Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version 2, another merged product 

consisting of satellite data, reanalysis and rain gauges provides reliable precipitation estimates on a daily world 

scale (Beck et al. 2017b, 2019b), which is available on a horizontal resolution of 0.1° for the period from 1979 to 

2017.  

It is noteworthy to mention that OBS-BR, ERA5, GMFD, and MSWEP datasets have not been assessed 

regarding the temporal-spatial patterns of climate extremes. Dufek et al. (2008) evaluated the performance of the 

National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis - 

NCEP/NCAR in capturing the extreme temperature and precipitation indices over Brazil from 28 weather stations 

during the period 1961–1990. They found that NCEP/NCAR reanalyses have good agreement with observed 

climate extremes. We do not compare our results with Dufek et al. (2008) as their period and station network differ 

from the present study (1980-2016).  

For intercomparison purposes, all datasets were regridded to a common 0.25° horizontal resolution grid 

using a bilinear interpolation algorithm, following analogous studies (Chaney et al. 2014; Zhou et al. 2014; Fotso-

Nguemo et al. 2018; Beck et al. 2019b). 

3.2.3. Climate change projections 

The climate change projections used in this study were produced by the National Aeronautics Space 

Administration (NASA) Earth Exchange Global Daily Downscale Projection - NEX-GDDP (Thrasher et al. 2012). 

This product was derived from ESM experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). 

We used 20 CMIP5 ESMs statistically downscaled to a horizontal resolution of 0.25º of latitude/longitude under 

two future emission scenarios, RCP 4.5 and RCP 8.5 (Table 3.S1). The NEX-GDDP dataset is prepared by the 

Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by 

the NASA Center for Climate Simulation (NCCS), which is at available at https://cds.nccs.nasa.gov/nex-gddp/. 

The NEX-GDDP produces three daily variables, TX, TN, and PR, over the periods 1950-2005 (historical) and 

2006–2100 (projections under RCP 4.5 and RCP 8.5 scenarios). The Bias-Correction Spatial Disaggregation 

(BCSD) method was used to downscale each CMIP5 ESM output (Thrasher et al. 2012).  

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (IPCC AR5) based their 

conclusions on projected changes in climate extreme events using the CMIP5 models for the time-slices 2046–

2065 (mid-21st century) and 2081–2100 (end-21st century), relative to the reference period 1986–2005 (Collins et 

al. 2013; Hoegh-Guldberg et al. 2018). In this sense, we used the same intervals to facilitate a comparative analysis 

with other studies in other locations throughout the world (Fischer et al. 2013; Sillmann et al. 2013b; Alexander 

and Arblaster 2017; Ongoma et al. 2018b; Santos et al. 2018; Liao et al. 2019). 

We used the methodology adapted from Tebaldi et al. (2011) to evaluate changes in the climate extremes 

index that applies the multi-model ensemble approach to ensure robust results (Parker 2013; Gulizia and Camilloni 

2014). This methodology has been widely adopted in climate change and extreme weather events studies to address 

https://cds.nccs.nasa.gov/nex-gddp/
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the significance of the change between two periods and the signal agreement among the model (Sillmann et al. 

2013b; Alexander and Arblaster 2017; Almazroui et al. 2017; Zhou et al. 2018; Dosio et al. 2019). For this purpose, 

we filled all grid cells with the mean multi-model relative change through a color pattern. To assess the significance 

of projected changes in annual climate extremes, we performed a Student's t-test between the historical (reference) 

and future (RCP4.5 and RCP8.5) scenarios. We stippled all grid cells where more than 66 percent of the models 

agreed on the change signal and more the 50 percent of the models showed a significant change (t-test, p-value < 

0.05). 

The relative change between the future and the historical periods in each climate extreme index (CEI) was 

calculated using equation (1) (adapted from Bador et al. 2018): In Eq. 1, 𝐶𝐸𝐼̅̅ ̅̅ �̅�𝑢𝑡𝑢𝑟𝑒 and 𝐶𝐸𝐼̅̅ ̅̅ ̅ℎ𝑖𝑠 are 20-yr averages 

in a given CEI over the future (2046–2065 or 2081–2100) and historical (1986-2005) periods, respectively. 

Relative Change in CEI =  CEI̅̅ ̅̅̅future − CEI̅̅ ̅̅̅hisCEI̅̅ ̅̅̅his  (1) 
3.2.4. Performance and trend analysis  

This study employed four metrics to evaluate the performance of different datasets in reproducing the 

observed climate indices from 1980–2016 over the eight largest Brazilian hydrological basins (Fig. 3.1).  The 

performance metrics include Percent Bias (PBIAS), RMSE-observations standard deviation ratio (RSR), refined 

index of agreement (dr), and Pearson correlation coefficient (CORR). PBIAS indicates whether a given dataset 

overestimates or underestimates the observational information. The closer PBIAS and RSR are to 0, the better the 

model performs. Furthermore, the dr varies between -1 and 1, 1 being the perfect agreement (Willmott et al. 2012). 

Finally, the value of CORR 1 (-1) indicates a stronger positive (negative) relationship between the two variables; 

meanwhile, 0 value indicates the absence of a relationship. 

To detect trends in extreme climate indices, we used the Theil-Sen’s slope estimator (Sen 1968). The 

significance of trends is calculated at the confidence level of 95 percent (α = 0.05) using a Mann-Kendall test 

(Mann 1945; Kendall 1975). More details can be found in (Yue et al. 2002). These non-parametric tests are often 

used to detect trends in extreme climate indices, but also because this approach is less sensitive to outliers than 

parametric methods such as the ordinary least squares regression method (Cornes and Jones 2013; Donat et al. 

2013b, 2016; Skansi et al. 2013). 

 



74 
 

 

 

Figure 3.1 Hydrological basins in Brazil according to the Brazilian National Water Authority (ANA) 

 

3.3. Results and analysis 

To reduce the quantity of similar results (climatologies and spatial trends) for different extreme climate 

indices in each dataset, we present selected indices (two temperature and two precipitation) for each subsection. 

Additional figures can be found in the Supplementary Material. 

3.3.1. Metrics analysis of datasets performance  

3.3.1.1. Temperature indices  

Climatologies of temperature indices from two climate datasets (ERA5 and GMFD) were compared to 

gridded observations (OBS-BR) over Brazil for 1980 to 2016 using different performance metrics (Figs. 2, 3). 

Observations and ERA5 climatologies are quite similar (Fig. 3.2). ERA5 presents better performance than GMFD 

in almost all indices, except for the diurnal temperature range (DTR; Figs. 2b, 2c). For the DTR index, GMFD has 

similar magnitudes as the gridded observational dataset with values of PBIAS close to zero (Fig. 3.2).  

PBIAS in the warmest daily temperature index (TXx; Figs. 2, 3a-b) indicates cooler (warmer) than observed 

conditions in ERA5 (GMFD) for all hydrological basins. Overall, poorer performance is noted over the Amazon, 

Tocantins, and Parana basins, with PBIAS overestimated by up to 14 percent (3ºC) compared to observations. 
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ERA5 overestimates the coldest daily minimum temperature (TNn; Figs. 2, 3c-d) for all basins, except for Uruguay 

and South Atlantic basins. GMFD reflects the worst PBIAS of TNn (-13 percent) over the Uruguay River.  

 

 

Figure 3.2 Evaluation metrics for temperature indices for ERA5 and GMFD with respect to the observational 

dataset (OBS-BR) from 1980 to 2016 over the eight hydrological basins in Brazil. (a) Bias in percentage (PBIAS) 

(b) RMSE-observations standard deviation ratio (RSR); (c) refined index of model performance (dr); (d) Pearson 

correlation coefficients (CORR); diagonal black lines indicate correlation values statistically significant 

correlations at 95% confidence level. 

a)

b)

c)

d)
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The best performance for percentile indices (TN10p, TN90p, TX10p, TX90p, and WSDI) are indicated by 

ERA5 results (Fig. 3.2). GMFD underestimates the warm spell duration index (WSDI) for all hydrological basins. 

The highest values of PBIAS (>80 percent) are found across north (Amazon basin) and northeast (Tocantins, North 

Atlantic, and São Francisco basins).  

It is important to note that our analysis shows that the poorest performance in both ERA5 and GMFD occurs 

over the Amazon basin. Betts et al. (2009) indicate that cloud cover parameterization is a challenge in reanalysis 

models (ERA-40 and ERA-Interim), which implies a substantial underestimation of temperature indices (e.g., 

TXx, DTR, and TN90p) over the Amazon basin (Fig 3.1a). 

3.3.1.2. Precipitation indices  

Figs. 3.4 and 3.5 show the precipitation results for all datasets and hydrological basins. All datasets are 

consistent with observations for total precipitation of wet days index (PRCPTOT). PBIAS and RSR are low, and 

dr and CORRs are close to 1. Intensity indices vary, however, with PBIAS quite large across all basins for RX1day, 

RX5day, and R95p, especially over the Amazon River basin (Fig. 3.4). RSR and dr are generally lower for GMFD 

and MSWEP compared to ERA5 (Figs. 3.4 and 3.5). 

The ERA5 and GMFD show good capabilities to estimate the number of consecutive dry days (CDD; Figs. 

4a-b, 5c-d). However, the GMFD dataset exhibits the lowest performance for all intensity precipitation indices 

(e.g. RX1day and RX5day). It should be noted that the GMFD dataset is based on Climatic Research Unit (CRU) 

Time-Series (TS) Version 3.1 - CRU TS3.1 (monthly precipitation and temperature observations in a horizontal 

resolution of 0.5°×0.5°), Global Precipitation Climatology Project - GPCC (daily precipitation in a 1°×1° 

resolution) and NCEP/NCAR reanalysis (3 hourly meteorological data in a ~2°×2° resolution). In this way, the 

low performance in GMFD dataset over most of the indices can be explained, because CRU and GPCC products 

use a low density stations to reproduce the patterns of climate variability (Liebmann and Allured 2006; Rozante et 

al. 2010; Xavier et al. 2015), especially over the Amazon basin.  

The analysis suggests that ERA5 can be useful as an alternative dataset to study daily temperature and 

precipitation indices over Brazil. In general, ERA5 outperforms GMFD for temperature-based extreme indices 

and ERA5 and MSWEP (only for precipitation-based extreme indices) capture spatial patterns of extreme climate 

indices when compared to observational values.  

Noteworthy, MSWEP (a merged product) is dependent on the precipitation field of the ERA-Interim 

reanalysis. Donat et al. (2014) and Beck et al. (2017a) point out that the ECMWF reanalyses (ERA-40 and ERA-

Interim) tend to show the best agreement with the observations. ERA5 has demonstrated many enhancements 

compared to its predecessor ERA-Interim, most notably increased horizontal and vertical resolution (∼79 km/60 

levels to ∼31 km/137 levels; Hoffmann et al. 2019). As suggested by Beck et al. (2019b) and supported by our 

results, MSWEP can use ERA5 outputs to improve the accuracy of daily precipitation estimations. Therefore, 

caution is recommended when using reanalyses or merged products as reference datasets to evaluate changes or 

patterns for daily precipitation indices, especially in regions where station data are sparse (Rozante et al. 2010; 

Zhang et al. 2011).  
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Figure 3.3 The 1980-2016 climatology and bias for TXx (a-b) and TNn (c-d) for OBS-BR (black rectangle; 

gridded observations), ERA5, and GMFD. Figures for additional temperature indices are in Supplementary 

Material 

 

c) Climatology for Coldest night — TNn (ºC)

a) Climatology for hottest day  — TXx (ºC)

b) Climatology  bias for  TXx (ºC)

d) Climatology  bias for  TNn (ºC)
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Figure 3.4 Evaluation metrics for precipitation indices for ERA5 and GMFD with respect to the observational 

dataset (OBS-BR) from 1980 to 2016 over the eight hydrological basins in Brazil. (a) Bias in percentage (PBIAS) 

(b) RMSE-observations standard deviation ratio (RSR); (c) refined index of model performance (dr); (d) Pearson 

correlation coefficients (CORR); diagonal black lines indicate correlation values statistically significant 

correlations at the 95% confidence level. 

a)

b)

c)

d)
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Figure 3.5 The 1980-2016 climatology and bias for PRCPTOT (a-b) and CDD (c-d) for OBS-BR (black rectangle; 

gridded observations), ERA5, and GMFD. Figures for additional precipitation indices are in Supplementary 

Material. 

3.3.2. Historical changes in climate extremes 

3.3.2.1. Observed trends in temperature indices  

Table 3.3 and Fig. 3.6 depict the spatial trends and regional patterns in all three data sets across hydrological 

basins, respectively. Nearly all datasets show warming trends for cold (TNn, TN10p, TX10p) and warm climate 

extreme indices (TXx, TN90, TX90, and WSDI) across almost all of Brazil from 1980 to 2016. Note that 

a)  Climatology for annual total wet-day precipitation — PRCPTOT (mm)

c) Climatology for consecutive dry days — CDD (days)

b)  Climatology bias for PRCPTOT (mm)

d)  Climatology bias for CDD (days)
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supplementary material displays more features of trends for all the set of climate indices mentioned in subsection 

2.1 and Table 3.1. 

 

Table 3.3 Decadal trends in temperature indices over the period 1980-2016. Values in bold indicate trends are 

significant at the 95% level. Colors signify cooling (blue), warming (red), or no trend (white) 

Basin Dataset 
TXx TNn DTR TN10p TN90p TX10p TX90p WSDI 

ºC/decade % / decade days/decade 

Amazon River 

OBS-BR 0.54 0.53 -0.04 -5.61 6.20 -2.09 4.63 2.57 
ERA5 0.62 0.34 0.10 -2.23 2.94 -1.08 3.41 1.41 
GMFD 0.40 0.41 0.01 -3.39 5.01 -3.99 2.30 0.51 

Tocantins River 

OBS-BR 0.59 0.26 0.13 -3.22 4.62 -2.50 3.63 1.55 
ERA5 0.51 0.21 0.12 -3.32 2.79 -2.52 2.79 1.39 
GMFD -0.21 0.54 0.00 -3.17 4.12 -3.41 1.93 0.53 

North Atlantic 

OBS-BR 0.64 0.21 0.13 -3.94 4.97 -3.23 4.31 1.89 
ERA5 0.34 0.11 0.04 -2.69 2.67 -1.69 2.60 1.07 
GMFD 0.07 0.14 0.00 -2.75 3.54 -2.20 1.77 0.87 

São Francisco 

OBS-BR 0.56 0.11 0.16 -2.27 3.47 -2.62 2.70 1.46 
ERA5 0.43 0.10 0.11 -2.33 2.60 -2.09 2.32 2.01 
GMFD -0.04 0.17 0.00 -2.12 2.56 -1.68 1.02 0.42 

Central Atlantic 

OBS-BR 0.32 0.19 -0.12 -1.24 2.12 -0.58 -0.17 -0.20 

ERA5 0.59 0.06 0.18 -1.13 1.83 -1.87 2.56 1.37 
GMFD 0.12 0.21 0.00 -1.38 1.54 -1.15 0.52 0.03 

Parana River 

OBS-BR 0.64 0.07 0.15 -0.39 2.74 -0.79 3.25 2.89 
ERA5 0.59 0.39 0.13 -1.51 2.31 -1.60 2.87 3.13 
GMFD -0.08 0.53 -0.01 -1.79 3.55 -2.16 1.90 0.74 

Uruguay River 

OBS-BR 0.53 -0.74 0.00 0.88 1.13 0.22 0.38 0.05 

ERA5 0.18 0.10 0.01 -0.70 0.58 -0.81 0.17 0.07 

GMFD -0.12 0.10 -0.09 -0.96 1.97 -0.62 0.51 -0.03 

South Atlantic 

OBS-BR 0.26 -0.46 -0.10 1.02 -0.06 0.96 -0.55 -0.27 

ERA5 0.14 -0.02 0.00 -0.52 0.67 -0.82 0.32 0.26 

GMFD 0.03 0.08 -0.04 -1.34 1.77 -1.07 1.01 0.00 

To illustrate, the annual maximum temperature (TXx) shows significantly increasing trends at rates of 0.07 

to 0.64 °C/decade across much of the country (Table 3.3 and Fig. 3.6a). ERA5 and GMFD show weaker regional 

cooling in southern parts of the Uruguay River and South Atlantic basins; however, the trend signal is not statically 

significant. The frequency of the warm nights (TN90p; 0.58–6.2 percent of days/decade) has increased greater 

than the frequency of warm days (TX90p; 0.17–4.63 percent of days/decade) in almost all basins, except in the 

South Atlantic basin for OBS-BR (Table 3.3). The warm spell duration indicator index (WSDI) has increased 

consistently across the country, with regional increases between 0.03 and 3.13 days/decade. The largest positive 

trends are found throughout many areas of northwest Amazon and Parana River basins (Fig. 3.S3). Central Atlantic 

and South Atlantic basins show insignificant decreasing trends for WSDI. Our results are consistent with previous 

studies, with increasing trends across northern Brazil and smaller increases across southern portions of the country 

(Gloor et al. 2015; Geirinhas et al. 2018; Feron et al. 2019).  

Cold extremes also show increasing trends. All data sets agree that the coldest night of the year (TNn) is 

warming, with trends of 0.07 to 0.54 °C/decade over the recent past in several parts the country (Fig. 3.5b). On the 

other hand, gridded observations for Uruguay and South Atlantic basins show statically significant cooling trends 

by -0.74 and -0.46 °C/decade, respectively. Finally, cold nights (TN10p; Fig. 3.5b) and cold days (TX90 Fig. 3.5d) 

display warming trends over Brazil, but decreasing trends are found over Uruguay and South Atlantic basins. 
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Figure 3.6 Decadal trends in TXx (a), TNn (b), TN10p (c), and TX90p (d) during the period 1980–2016 for OBS-

BR (black rectangle; gridded observations), ERA5, and GMFD. Hatching indicates where trends are significant at 

the 95% level. Trends for additional temperature indices are in Supplementary Material. 

Results of extreme temperature indices reveal significant warming trends and are broadly similar across all 

datasets, which are consistent with other global and regional studies (Donat et al. 2013a, b; Skansi et al. 2013; 

Rosso et al. 2015; Almeida et al. 2017; Soares et al. 2017; Marengo et al. 2018b; Silva et al. 2018). However, there 

are some differences in the Uruguay and South Atlantic basin. In these regions, ERA5 and GMFD displayed a 

a) Hottest day  — TXx (ºC/decade)

c) Cool nights — TN10p (%/decade)

d) Warm days — TX90p (%/decade)

b) Coldest night — TNn (ºC/decade)
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warming trend, and OBS-BR indicates a cooling trend. Also, over the same hydrological basins, the OBS-BR 

disagrees with GMFD for the diurnal temperature range (DTR; Fig. 3.S3). The interaction between complex 

topography and regional climate systems play an essential role in the regulation of inter-annual variability over 

the Uruguay River and South Atlantic basins (Fig. 3.1), which are not well represented by ERA5 and GMFD. In 

this sense, Gao et al. (2012) and Cornes and Jones (2013) indicated that the high-elevation terrain still poses a 

challenge for reanalysis, principally because the model topography used by reanalysis does not have sufficient 

resolution to resolve the climate interaction in small scale. To help solve the topography-dependent problems is 

necessary to do a topographic correction of reanalysis data to reduce the bias between the estimated and 

observations values (Gao et al. 2012; Luo et al. 2019). 

3.3.2.2. Observed trends in precipitation indices  

Extreme precipitation indices show less agreement among the observational trends (OBS-BR) and those 

estimated by ERA5, GMFD, and MSWEP (Table 3.4 and Fig. 3.7).  

 

Table 3.4 Decadal trends in precipitation indices over the period 1980-2016. Values in bold indicate trends are 

significant at 95% level. Colors signify wetting (blue), drying (yellow), or no trend (white). 

Basin Dataset  
PRCPTOT RX1day RX5day R95p SDII R20mm CWD CDD 

mm/decade mm.day-1/10yr days/decade 

Amazon River 

OBS-BR 4.43 -0.05 0.64 2.38 -0.004 0.19 2.08 0.62 

ERA5 8.94 6.76 8.32 84.94 0.31 2.53 -5.17 3.67 
GMFD 14.55 0.08 -0.15 -3.18 0.15 -0.29 -0.16 1.26 

MSWEP 62.72 2.06 4.05 38.32 0.24 1.43 0.23 0.44 

Tocantins River 

OBS-BR -34.32 -0.11 -1.83 -11.94 -0.08 -0.72 -1.64 4.13 
ERA5 -90.88 -1.13 -4.90 -2.49 -0.07 -0.20 -5.11 7.97 
GMFD -4.99 2.25 2.88 16.02 0.18 0.50 -1.78 0.85 

MSWEP 17.63 2.03 0.98 25.01 0.35 0.74 -1.39 3.46 

North Atlantic 

OBS-BR -19.60 1.34 0.33 5.27 0.06 0.07 -1.67 1.80 

ERA5 -39.83 2.75 1.27 16.41 -0.08 0.12 -4.49 1.30 

GMFD 21.76 0.69 -0.08 5.78 0.26 0.21 -1.27 -5.11 
MSWEP -23.20 1.96 -1.37 3.83 0.13 -0.24 -1.21 2.98 

São Francisco 

OBS-BR -39.52 0.75 -1.32 -5.17 0.06 -0.48 -1.33 2.80 

ERA5 -73.49 -0.62 -2.35 -14.73 -0.16 -0.82 -2.06 4.93 

GMFD -24.90 1.28 -1.02 2.65 0.05 -0.06 -1.23 -2.91 

MSWEP -32.75 1.86 0.57 2.24 0.29 -0.25 -1.10 4.16 

Central Atlantic 

OBS-BR -35.26 1.73 3.14 7.07 0.14 -0.12 -1.19 1.22 

ERA5 -62.87 0.32 0.22 -12.69 -0.05 -0.71 -1.47 1.75 
GMFD -37.05 0.08 -1.50 -8.11 -0.03 -0.29 -0.45 0.86 

MSWEP -26.64 5.17 7.37 30.54 0.63 0.15 -0.82 4.67 

Parana River 

OBS-BR -5.32 0.54 0.60 1.13 -0.02 -0.14 0.03 2.14 

ERA5 -51.13 0.57 0.71 1.13 0.00 -0.28 -1.31 4.26 
GMFD 29.29 1.09 3.09 23.25 0.47 0.93 -1.13 1.28 

MSWEP 32.27 2.53 4.24 32.19 0.44 1.07 -0.63 1.78 

Uruguay River 

OBS-BR -7.05 0.45 3.50 15.96 -0.01 0.28 -0.13 0.48 

ERA5 -48.99 -0.15 -2.38 -6.90 -0.19 -1.10 -0.36 0.55 

GMFD -1.30 2.74 -0.14 24.41 0.41 1.23 -0.27 0.31 

MSWEP 30.77 4.54 6.20 43.09 0.57 0.92 -0.33 0.20 

South Atlantic 

OBS-BR 12.94 1.02 2.97 16.19 0.01 0.29 0.02 -0.01 

ERA5 -25.78 -0.96 -1.89 -12.09 -0.15 -0.55 -0.16 0.33 

GMFD 14.68 2.79 4.32 40.85 0.39 1.23 -0.42 0.58 

MSWEP 21.65 3.17 4.64 29.23 0.43 0.86 -0.38 0.26 
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The spatial and regional precipitation trends vary considerably compared to the temperature trends across 

the different datasets. The PRCPTOT increases range from 4.43 to 12.94 mm/decade for the Amazon South 

Atlantic regions (Table 3.4). However, negative trends are found over the northwestern and southeastern Amazon 

basin in OBS-BR, ERA5, and MSWEP (Fig. 3.7a). Tocantins, North Atlantic, São Francisco, and Central Atlantic 

basins show a decrease (not statistically significant) for all four datasets. The dry patterns, especially over the 

southeastern Amazon and Tocantins basins, are consistent with Gloor et al. (2015). 

Mixed trends are demonstrated in the intensity indices (Table 3.4). Similar to previous studies, RX1day, 

RX5day, and R95p indices show increased extreme rainfall events for the North Atlantic, Central Atlantic, Parana, 

Uruguay, and South Atlantic basins (Haylock et al. 2006; Skansi et al. 2013; Avila et al. 2016; Zilli et al. 2017; 

Murara et al. 2018). With regard to the frequency index R20mm, our results show a positive trend over parts of 

northern and southern Brazil (Amazon, Uruguay, and South Atlantics basins). However, the northeastern part of 

the county (São Francisco and Central Atlantic basins) exhibit dominantly drying trends.  

Changes in duration indices (CDD and CWD; Table 3.4 and Fig. 3.7d) demonstrate mostly non-significant 

drying trends, with good agreement among the reanalyses and merged datasets (Table 3.4). Our results of CDD 

agree well with Valverde and Marengo (2014) who used historical rainfall stations in their assessment. The 

regionally-specific decadal trends of CWD show increasing tendencies for all basins and only disagree with the 

OBS-BR product for the Amazon basin (statistically significant rate of 2.08 mm/decade) and Parana and South 

Atlantic basins (trends not significant in these regions). Differences between these datasets in terms of the signal 

may arise from the longer observed daily rainfall stations for Amazon basins are scarce in both spatial and temporal 

coverage (Xavier et al. 2015). 

In general, precipitation changes show statistically non-significant trends, although the ERA5, MSWEP 

and OBS-BR exhibit reasonable spatial coherency. Results show increasing trends in annual total wet-day 

precipitation in northern and southern basins and dry patterns in northern and central Basins. Northern and central 

hydrological regions such as the North Atlantic region, São Francisco, Central Atlantic, and Parana basins show 

increasing trends in the more extreme precipitation events (RX1day) during the last four decades. Southern basins 

(e.g., Parana, Uruguay, South Atlantic basins) reveal increasing trends in events related to intensity and frequency. 

Duration indices exhibit a reduction of CWD; meanwhile, the CDD index shows positive trends over the majority 

of Brazil.  
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Figure 3.7 Decadal trends in PRCPTOT (a), R95p (b), R20mm (c), and CDD (d) during the period 1980–

2016 for OBS-BR (black rectangle; gridded observations), ERA5, GMFD, and MSWEP. Stippling indicates where 

trends are significant at the 95% level. Trends for additional precipitation indices are in Supplementary Material. 

a) Annual total wet-day precipitation — PRCPTOT (mm/decade)

c) Number of very heavy precipitation – R20mm (days/decade)

d) Consecutive dry days — CDD (days/decade)

b) Very wet days– R95p (mm/decade)
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3.2.3. Future projections in climate extremes 

3.2.3.1. Changes in future temperature indices  

Fig. 3.8 shows the spatial changes patterns of temperature indices for period 2046–2065 relative to the 

baseline period (1986–2005), under the representative concentration pathway (RCP) scenarios 4.5 and 8.5. Note: 

Fig. 3.9 displays the same regional projected changes were summarized in box-and-whisker plots and presented 

per hydrological basins. Mean projected changes for 2081–2100 period (end-21st century) are in Supplementary 

Figs. S6 and S7. 

 

Figure 3.8 Projected changes in the hottest day–TXx (a-b), coldest night–TNn (c-d), cool nights – TN10p (e-f) 

and Warm days – TX90p (g-h) over the period 2046-2065 (white zone) and 2081-2100 (yellow zone) relative to 

the reference period (1986–2005) for RCP4.5 (black line) and RCP8.5 (red line). Regional mean changes are 

shown for each hydrological regions; the acronyms are defined in Fig. 3.1. The boxes indicate the variability of 

the ensemble of the downscaled models ̶ MME (Table S3.1), which include the interquartile range (25th–75th 

percentiles), median (horizontal line), mean (black dots), maximum and minimum values (black circles). 
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Figure 3.9 Future changes of multi-model ensemble in temperature extremes indices under the (a-h) RCP4.5 and 

(i-p) RCP8.5 scenarios for the period 2046-2065 relative to the reference period (1986–2005). Stippling indicates 

grid-points where more than 66 percent of the models agreed in change signal and in which more than 50 percent 

of the models show a significant change. 

 

The multi-model ensemble (MME) mean projects significant warming in annual maximum temperature 

(TXx; Fig. 3.8a-b) and annual minimum temperature (TNn; Fig. 3.8c-d). These indices increase across the different 

basins by mid-21st century and vary between 1.4 to 2.3 °C in RCP4.5 and 1.9 to 3.1°C in RCP8.5. By the end of 

the 21st century, these indices increase 1.6 to 3.0 °C in RCP4.5 and 3.7 to 5.9 °C in RCP8.5. Figs. 8 and 9 show 
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that the maximum warming is found over the Amazon, Tocantins, and Parana Rivers basins. Similar results for 

the end of the 21st century are noted by Sillmann et al. (2013b) and López-Franca et al. (2016). 

There are similar patterns of increasing frequency of warm extremes (TX90p and TN90p) and reduction of 

cold extremes (TN10p and TX10p) by the middle end of the 21st century over Brazil (Figs. 8, 9, S5). Projected 

changes in warm indices are more pronounced than those for cold indices. Under the scenario RCP4.5, increases 

in the occurrence of TX90p and TN90p vary between 20 and 63 percent in the mid-century projections and 28 to 

69 percent in RCP8.5. Also, end of the 21st century mean changes are 6 to 15 percent higher compared to the 

projected increases for mid-century under both scenarios.  

In addition to stronger warming, warm spell duration index (WSDI) increases significantly for 2046–2065 

and 2081–2100 under the RCPs scenarios (Figs. 9, S6). The significant increase in WSDI is projected in all basins 

with mean changes greater than 39 (56) days by the middle and end of the 21st century under RCP4.5 (8.5). 

Consistent with the warming patterns, decreases in cold nights (TN10p) and cold days (TX10p) are projected. The 

TN10p (TX10p) index decreases from about 6.2 percent (6.6 percent) in 2046-2065 to 6.4 percent (7.1 percent) 

under RCP4.5 and 8.5, with slightly negative trends by the end of the century. The regional changes in percentile 

indices by middle and end of the century are consistent with previous studies over South America (Marengo et al. 

2009; Sillmann et al. 2013b; López-Franca et al. 2016; Feron et al. 2019). These results are in agreement with 

other regions throughout the globe (Zhou et al. 2014; Lelieveld et al. 2016; Schoof and Robeson 2016; Alexander 

and Arblaster 2017). 

In summary, the most significant increases (decreases) in warm (cold) extremes occur in the Amazon, 

Tocantins, and North Atlantic basins. However, the smallest changes of ensemble mean temperature extremes are 

projected in the Uruguay River and South Atlantic basins. The findings are in agreement with the results by 

Sillmann et al. (2013b) who used CMIP5 models to project extreme climate indices over South America.  

3.2.3.2. Changes in future precipitation indices  

Changes in precipitation indices relative to the 1986–2005 reference period are presented in Figs. 10 and 

11. For comparison purposes with other studies (e.g., Sillmann et al. (2013)), relative changes (see equation 1) are 

expressed in percentage. Mean projected changes for 2081–2100 period (end-21st century) are in Supplementary 

Figs. S8 and S9. 

The ensemble mean of PRCPTOT reflects a reduction over Amazon, Tocantins, North Atlantic, São 

Francisco, and Central Atlantic basins (Figs. 10a-b, 11a, 11i). At the same time, the CDD projections indicate an 

increase across most regions of Brazil for RCP4.5 (8.5), ranging from 1 to 18 percent (3 to 27 percent) by the mid-

century and ranging from 1 to 22 percent (3 to 61 percent) by the end of 21st century (Fig. 3.10c-d). CWD shows 

a pattern opposite to that of CDD (Figs. 10h-g, 11g-h, o-p). Small trends in ensemble mean PRCPTOT, CDD, and 

CWD are projected over southern Brazil (URU and SAR). In general, future projections show a reduction in 

PRCPTOT and CWD and increases in CDD. This trend toward a drier future climate is consistent with previous 

authors (Amorim et al. 2014; Chou et al. 2014b; Marengo et al. 2017; Lyra et al. 2018) 
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Figure 3.10 As Fig. 3.7 but for the annual total wet-day precipitation - PRCPTOT (a-b), very wet days–R95p (c-

d), Number of heavy precipitation days–R20mm (e-f), and consecutive dry days–CDD (h-g) 

For rainfall intensity extremes (RX1day, RX5day, R95p, and SDII), increasing trends are projected over 

most of Brazil under both scenarios, more pronounced by the end of the century (Figs. 10, 11). The largest increases 

of R95p index, on the order of 4 to 18 percent (6 to 29 percent), are expected for the mid-century in the RCP4.5 

(8.5) scenario. By the end of the 21st century, the R95p mean increases most in the RCP8.5 scenario (16 to 45 

percent). In general, projections of intensity indices indicate the weakest trends over the Central Atlantic basin, 

whereas the most significant changes are generally found in the Tocantins, São Francisco, and South Atlantic 

basins (Fig. 3.11). The signal of change in intensity indices such as RX1day is consistent with those obtained by 
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Valverde and Marengo (2014) and Bador et al. (2018), and projected increases in R20mm index over southern 

Brazil are evident over Uruguay and South Atlantic basins. These results are in agreement with that of Sillmann 

et al. (2013b) and Lyra et al. (2017), who reported the reduction in the number of heavy precipitation days.  

 

 

Figure 3.11 Future changes of multi-model ensemble in precipitation extremes indices under the (a-h) 

RCP4.5 and (i-p) RCP8.5 scenarios for the period 2046-2065 relative to the reference period (1986–2005). 

Stippling indicates grid-points where more than 66 percent of the models agreed in change signal and in which 

more than 50 percent of the models show a significant change 
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Caution must be given when interpreting the results of these precipitation indices. Unlike temperature 

indices, most models disagree with the direction of change, with fewer than half of the models showing a 

significant change. For example, our results point out the model agreement increase in both RCP4.5 and RCP8.5 

scenarios compared to the historical (e.g., PRCPTOT, R95p, and CDD). This is in concert with previous studies 

showing similar lower confidence for precipitation indices over other parts of the world (e.g., Sillmann et al. 

(2013); Alexander and Arblaster (2017)). In this sense, Lin et al. (2018) indicated that the CMIP5 multimodel 

ensemble shows a significant sensitivity of precipitation extremes to aerosol forcing on the large-scale rainfall 

processes, which may be influencing the confidence in agreement of climate projections across most of Brazil. To 

resolve the low confidence in the long-term projections of MMEs, Guyennon et al. (2013) and Yhang et al. (2017) 

concluded that the combination of dynamical and statistical downscaling of ESMs produced a better representation 

of regional precipitation, which can be resulted in much improved in simulations and increased in the agreement 

of projection in the MMEs.  

3.4. Discussion and Concluding remarks  

We investigated the changes in temperature and precipitation extremes in historical observations from 

1980-2016 in Brazil comparing multiple gridded datasets (ERA5, GMFD, and MSWEP) that using various 

techniques and station networks to calculate daily gridded fields. We analyzed changes in climate extremes 

indicated by an ensemble of 20 downscaled ESMs under RCP4.5 and RCP 8.5 scenarios over the periods of 2046–

2065 and 2081–2100 relative to the reference period 1986–2005. 

ERA5 performs better than GMFD and MSWEP capturing the spatio-temporal patterns of historical climate 

extremes. In general, the performance over 1980-2016 shows that all datasets have a greater ability to capture 

extreme temperatures compared to extreme precipitation indices. However, almost all precipitation indices have 

large uncertainties over the Amazon basin.  

During the last four decades (1980-2016), observations, reanalysis and merged datasets show statistically 

significant warming patterns for both warm (TXx, TX90, TN90, and WSDI) and cold (TNn, TX10, and TN10) 

extreme indices over almost all areas in Brazil. Multi‑model climate projections reveal that the observed historical 

warming patterns may be intensified with the increase in the radiative forcing under the representative 

concentration pathways for (RCP4.5 to RCP8.5). Mid-century (End-of-century) maximum and minimum 

temperatures over hydrological basins exceeds 1.4 ºC (1.6 ºC) in RCP 4.5 and 1.9 ºC (3.2 ºC) in RCP8.5. 

Simultaneously, the frequency of warm days/nights has increased (TX90p/TN90p) more than cold days/nights 

(TX10p/TN10p), and heat wave duration (greater than 56 days) over the 21st century is expected in all basins.  

Historical gridded datasets indicate a reduction in consecutive wet days and an increase of dry consecutive 

drays days since the 1980s in almost all areas of the study domain. Analysis of annual total precipitation shows 

negative trends over the Tocantins, North Atlantic, São Francisco, and Central Atlantic basins. Trends in rainfall 

extremes indices are not statistically significant across the gridded precipitation products. Moreover, future 

changes show a reduction in the total amount precipitation, consecutive wet days, and the number of very heavy 

rainfall (R20mm) for most of the hydrological basins, except for Uruguay and South Atlantic basins. The extreme 

precipitation intensity indices (RX1day, RX5day, R95p, and SDII) are projected to increase for future scenarios 
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in the majority areas. These patterns could aggravate the impacts of flash floods and landslides, which are the most 

common hydrological hazards, principally over Sothern Brazil (CEPED-UFSC 2013; Debortoli et al. 2017), which 

is the highest densely populated of the country. Noteworthy, the intensification of temperature warm extreme 

events (e.g., WSDI) could increase the incidence of respiratory and cardiovascular diseases (Son et al. 2016). 

Brazilian Central-West region (parts of Paraguay and Tocantins basins), the most important agricultural 

region of Brazil, has experienced an increase in warm extremes, while the total annual precipitation has decreased 

since the 1980s. Future scenarios indicate that the maximum and minimum temperatures will become warmer, and 

the differences between the minimum and maximum temperatures increase. The amount of annual precipitation 

will also increase but will be concentrated in short and intense events. In other words, most of the observed and 

future trends could bring conflicts of water rights and irrigation for food production, negative impacts for water 

availability, greatly affecting the population that depends on hydroelectricity in northern and northeastern basins 

of Brazil (Marengo et al. 2017; Jong et al. 2018; Llopart et al. 2019).  

Northeastern Brazil (parts of Central Atlantic, São Francisco, and North Atlantic basins) are getting drier 

and the frequency of extreme precipitation events has been increasing since the 1980s. The frequency of hot days 

has been decreasing near the coast. Annual precipitation amounts have been reducing in this region overall, as well 

as the extreme rainfall events frequency. However, the northeastern region is the driest and poorest region of 

Brazil, and projections point to the largest reduction of total precipitation there, threatening the survival of millions 

of people due to water scarcity (Darela-Filho et al. 2016; Marengo et al. 2017). 

The southern part of Amazon and Tocantins basins have been experiencing a reduction in annual 

precipitation and an increase in consecutive dry days since the 1980s, and projections indicate that this trend will 

be continue throughout the 21st century. These drier conditions could fuel additional drought events, increasing 

the risk of forest fires (Aragão et al. 2007). 

These important climate-change connections improve our current lack of understanding with regard to 

temperature and precipitation extremes in Brazil. This increased knowledge plays an important role in designing 

effective adaptation and mitigation measures related to climate change impacts. Still, the future climate projections 

should be interpreted with caution as climate extremes tend to increase the variability of extreme values and 

uncertainty among the downscaled ESMs, especially for rainfall extremes. 
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3.6. Supplementary material 
 

Assessing Current and Future Trends of Climate Extremes Across Brazil Using 

Reanalyses and Earth System Model Projections. 

Alvaro Avila; Victor Benezoli; Flavio Justino; Roger Torres; Aaron Wilson.  

Climate Dynamics. Manuscript number: CLDY-D-19-00921. 

 

Table S3.1 The downscaled Earth System Models (ESMs) with a statistical downscaling 

No. Modeling center Model name  
Resolution (ºlon. 

× ºlat.) 
1a Beijing Climate Center, China Meteorological Administration (China) BCC-CSM1-1  2.8 × 2.8 

2 Beijing Normal University (China) BNU-ESM  2.8 × 2.8 

3 Canadian Centre for Climate Modeling and Analysis (Canada) CanESM2  2.8 × 2.8 

4 National Center for Atmospheric Research (NCAR-USA) CCSM4  1.25 × 0.94 

5 National Science Foundation, Department of Energy and NCAR (USA) CESM1-BGC  1.25 × 0.94 

6 
Centre National de Recherches Météorologiques and Centre Européen de 

Recherche et Formation Avancée en Calcul Scientifique (France) 
CNRM-CM5  1.4 × 1.4 

7 Commonwealth Scientific and Industrial Research Organization (Australia) CSIRO-MK3-6-0  1.875 × 1.875 

8c NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM3  2.5 × 2.0 

9 NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-ESM2G  2.5 × 2.0 

10 NOAA Geophysical Fluid Dynamics Laboratory (USA) GFDL-ESM2M  2.5 × 2.0 

11 Institute for Numerical Mathematics (Russia) INMCM4  2 × 1.5 

12 Institut Pierre-Simon Laplace (France) IPSL-CM5A-LR  3.75 × 1.895 

13 Institut Pierre-Simon Laplace (France) IPSL-CM5A-MR  2.5 × 1.27 

14c 

Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science 

and Technology (Japan) 

MIROC5  1.41 × 1.41 

15 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and 

Ocean Research Institute (The University of Tokyo), and National Institute for 

Environmental Studies 

MIROC-ESM  2.8 × 2.8 

16 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and 

Ocean Research Institute (The University of Tokyo), and National Institute for 

Environmental Studies 

MIROC-ESM-

CHEM 
 2.81 × 2.81 

17 Max Planck Institute for Meteorology (Germany) MPI-ESM-LR  1.875 × 1.875 

18 Max Planck Institute for Meteorology (Germany) MPI-ESM-MR  1.875 × 1.875 

29 Meteorological Research Institute (Japan) MRI-CGCM3  1.125 × 1.125 

20 Norwegian Climate Centre (Norway) NorESM1-M  2.5 × 1.9 

aAll two RCPs projections of temperature and precipitation data on BCC-CSM1-1 and MIROC5 were only 

available until year 2099. bThe RCP4.5 projections of precipitation data on GFDL-CM3 were available until year 

2095.  
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Figure S3.1 The 1980-2016 climatology and bias of the DTR (a-b), TN10p (c-d), TN90p (e-f), TX10p (g-h), 

TX90p (i-j) and WSDI (k-l) for OBS-BR (black rectangle; gridded observations), ERA5 and GMFD 
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Figure S3.2 The 1980-2016 climatology and bias of the RX1day (a-b), RX5day (c-d), R95p (e-f), SDII (g-h), 

R20mm (i-j) and CWD (k-l) for OBS-BR (black rectangle; gridded observations), ERA5, GMFD and MSWEP 
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Figure S3.3 Decadal trends in DTR (c), TN90p (d), TX10p (a), and WSDI (b) during the period 1980–2016 for 

OBS-BR (black rectangle; gridded observations), ERA5 and GMFD. Hatching indicates where trends are 

significant at the 95% level 

c) Cool days — TX10p (%/decade)

d) Warm spell duration range — WSDI (days/decade)

a) Diurnal temperature range — DTR (ºC/decade)

b) Warm nights — TN90p (%/decade)
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Figure S3.4 Decadal trends in RX1day (a), RX5day (b), R95p (c), and SDII (d) during the period 1980–2016 for 

OBS-BR (black rectangle; gridded observations), ERA5 and GMFD. Hatching indicates where trends are 

significant at the 95% level 

 
  

a) Maximum 1 day precipitation amount – RX1day (mm/decade)

b) Maximum 5 day precipitation amount – RX5day (mm/decade)

c) Daily intensity index – SDII (mm day-1/decade)

d) Consecutive wet days – CWD (days/decade)
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Figure S3.5 Projected changes in temperature indices (a-f) over the period 2046-2065 (white zone) and 2081-2100 

(yellow zone) relative to the reference period (1986–2005) for RCP4.5 (black line) and RCP8.5 (red line). Regional 

mean changes are shown for each hydrological regions (Fig 1)  
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Figure S3.6 Future changes of multi-model ensemble in temperature extremes indices under the (a-h) RCP4.5 and 

(i-p) RCP8.5 scenarios for the period 2081-2100 relative to the reference period (1986–2005). Stippling indicates 

grid-points where more than 66 percent of the models agreed in change signal and in which more than 50 percent 

of the models show a significant change 
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Figure S3.7 Projected changes in precipitation indices (a-f) over the period 2046-2065 (white zone) and 2081-

2100 (yellow zone) relative to the reference period (1986–2005) for RCP4.5 (black line) and RCP8.5 (red line). 

Regional mean changes are shown for each hydrological regions (Fig. 3.1) 
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Figure S3.8 Future changes of multi-model ensemble in precipitation extremes indices under the (a-h) RCP4.5 

and (i-p) RCP8.5 scenarios for the period 2081-2100 relative to the reference period (1986–2005). Stippling 

indicates grid-points where more than 66 percent of the models agreed in change signal and in which more than 

50 percent of the models show a significant change  
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4. GENERAL CONCLUSIONS  
 

This thesis has identified, on regional/local scale, the current and future changes on daily 

extremes events of temperature and precipitation across Brazil in gridded datasets at the high 

horizontal resolution (0.25° latitude/longitude~25 km x 25 km). Specifically, it was employed 

fourth different periods: I) 1986-2005, to evaluate the performance of the downscaled models; 

II) 1980-2016, to study the changes over the last fourth decades, and test the utility of the 

observations, reanalysis, and other merged products; III) to characterize the future changes in 

extreme climate indices are analyzed over mid-21st century (2046-2065 ); and IV) end-of-21st 

century (2081-2100 ). The latest two periods, relative to the reference period 1986–2005 

through MME (multi-model ensemble) from 20 statistically downscaled Earth System Models 

(ESMs).  

For the study described in Chapter 2, we developed a methodology to rank 25 downscaled 

ESMS and their MMEs (MMEs-Dyn(amical) and MMEs-Sta(tistically)) using fourth metrics 

for evaluating the simulated observed extreme climate indices during 1980-2005. The 

comprehensive ranked include, namely, Percent Bias (PBIAS), RMSE- observations standard 

deviation ratio (RSR), refined index of agreement (dr), and the Pearson correlation coefficient 

(CORR). Our results demonstrate that the multi-model ensembles of downscaled ESMs, 

showing the best skill in most hydrological basins at the annual and seasonal scale than 

individual models. In addition, the best options in representing the observed patterns of extreme 

climate events are, in order, MMEs-Sta, CNRM-CM5, CCSM4, and MRI-CGCM3. However, 

the majority of downscaled ESMs have poor representation of climate extremes over the 

Amazon basin for annual and seasonal indices. Also, almost all downscaled ESMs have some 

difficulty in simulating the warm spell duration index (WSDI), diurnal temperature range 

(DTR) over the majority of hydrological basins.  
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Chapter 3 considers the limitations of the gridded observational and downscaled products, 

we assess the historical and projected changed on daily extremes of temperature and 

precipitation. Based on the sequence of findings presented in Chapter 2, we selected the MME-

Sta from 20 statistically downscaled Earth System Models (ESMs). In most of the hydrological 

basins, the new generation of reanalysis ERA5 exhibits good agreement with the observed 

climate extremes at the annual during the last four decades (1980-2016). The performance 

metrics show a better correspondence of the larger events in ERA5 compared to GMFD that is 

based on merged from several products (e.g., observation, reanalysis, and satellite). For 

precipitation indices the best option to capture spatial patterns (climate variability and trends) 

is ERA5 follow by MSWEP. Our findings reduce the uncertainties relative to accurate climate 

information in the tropical regions as Brazil, also, could be useful to meteorology, climatology, 

hydrological and climate-based studies (e.g., impacts from climate change). 

The extreme temperature indices (e.g., TXx, TNn, TN10p, TX90p and WSDI) reveal 

significant warming trends across all datasets (e.g., OBS-BR, ERA5 and GMFD) over Brazil 

during 1980-2016. For precipitation indices, results show positive trends in annual total wet-

day precipitation (PRCPTOT) in northern and southern basins and dry patterns in duration 

indices (e.g., CDD and CWD) over northern and central basins. Climate projections based on a 

multi-model ensemble of downscaled indicate that the more extreme temperature/precipitation 

events will intensify. For example, by the end of the 21st century, the maximum and minimum 

temperature may increase over Brazil by a wide range up to ~ 1.6 to 3.0 °C (RCP4.5), and from 

~ 3.7 to 5.9 °C (RCP8.5), with consequent changes in reduction of cold night (TN10p) and cold 

days (TX10p) and increasing frequency of warm days (TX90p) and warm nights (TN90p) by 

the middle and end of the 21st century. In terms of precipitation indices, intensity indices such 

as RX5day and R95p, and SDII are projected to increase for future scenarios in the majority 
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areas; on the other hand, total precipitation and consecutive dry days reveals a dry pattern, 

especially over Amazon, Tocantins, North Atlantic, São Francisco, and Central Atlantic basins 

The results of this work will be a breakthrough in understanding and diminishing the 

uncertainty about the possible impacts of climate extremes events, because an increase in 

extreme climatic events directly affects people who live in areas vulnerable to 

hydrometeorological hazards.  

In preparing this thesis it became apparent that future research efforts should focus: 

 It is necessary for a comprehensive global literature review (e.g., meta-analysis), to 

establish the current changes of climate extremes to focus in South America, including 

the robust presence indices to study fires and droughts events.  

 Beyond the multi-model ensemble modeling, are there other robust methodologies to 

reduce the uncertainty of future climate projections? 

 Based on the uncertainty of observations, reanalysis, satellite, merged products and Earth 

System models it is necessary evaluation of the consistency of extremes in gridded 

temperature/precipitation datasets, with a focus on products with high horizontal 

resolution.  

 Add new projects for future climate projections from regional climate models (RCMs) 

from the Coordinated Regional Climate Downscaling Experiment (CORDEX), and also 

include the outputs of Coupled Model Intercomparison Project Phase 6 (CMIP6).  

  Establish a composite climate index for quantifying observed/future changes in climate 

for Brazil, such as the Climate Extremes Index (CEI) developed to study the 

multidimensional climate changes in the United States 
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