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A B S T R A C T

We compared different Bayesian models to handle censored data for genetic parameters estimation of age at first
calving (AFC) in Brazilian Brahman cattle. Data from females with AFC above 1825 days of age were assumed to
have failed to calve and were considered as censored records. Data including information of 53,703 cows were
analyzed through the following methods: conventional linear model method (LM), which consider only un-
censored records; simulation method (SM), in which the data were augmented by drawing random samples from
positive truncated normal distributions; penalty method (PM), in which a constant of 21 days was added to
censored records; and the bivariate threshold-linear method (TLcens). The LM was the most suited for genetic
evaluation of AFC in Brazilian Brahman cattle based on the predictive ability evaluation through cross-validation
analysis. The similar results for LM and PM regarding Spearman correlations, and the higher percentages of
selected animals in common, indicated that there was not relevant reranking of animals when censored records
were used. In summary, the heritability estimates for AFC ranged from 0.09 (TLcens) to 0.20 (LM). Given its poor
predictive performance, the SM is not recommended for handling censored records for genetic evaluation of
AFC.

1. Introduction

One of the most relevant selection criteria for genetic improvement
of female reproductive efficiency in beef cattle is the age at first calving
(AFC). Despite easiness of AFC data recording, it might assume missing
values due to non-occurrence and/or delay in the recording of calving
information. Thus, this trait is widely referred as censored (Tarrés et al.,
2006).

The simplest option to handle with this problem is omitting these
observations (assuming as missing values). According to
Guo et al. (2001) and Dias et al. (2004), this approach would lead to
loss of information for genetic evaluation, and may affect the real
variability of the trait by masking the true genetic differences between
animals.

Another option is using suitable statistical methods to treat censored
records in genetic evaluations. Different methods have been proposed.
One approach is based on simulation of censored records from positive

truncated normal distributions taking into account the estimated effects
(Donoghue et al., 2004a; Korsgaard et al., 2003). Another one is the
penalty method (Johnston and Bunter, 1996), which consists in records
imputation by adding a constant (number of days) to real data. For AFC,
21 days are often included as a constant based on the assumption that
the heifer should be fertile in the subsequent estrous cycle. The bi-
variate linear-threshold approach considers the censoring status
(threshold binary trait) as an additional trait aiming to improve the
selection accuracy of the censored continuous traits. In this last method,
it is assumed that the correlation between fertility traits (e.g., AFC) and
the censoring status improves the prediction accuracy (Urioste et al.,
2007a).

Studies on censored AFC data in Brahman cattle are scarce, and the
comparisons involving the mentioned methods have been not exploited
in literature. In this context, we aimed to compare these different
methods by accessing predictive performance via cross-validation
under a Bayesian framework; as well as to estimate genetic parameters
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for AFC in Brazilian Brahman cattle.

2. Materials and methods

Brahman fertility data were provided by Brazilian Association of
Zebu Cattle Breeders (ABCZ). Age at first calving (AFC) was defined as
the time interval (in days) between birth and first calving. The AFC
records were obtained during the period of 1960 and 2014. Before data
editing, there were 59,929 trait records available in the database.

The contemporary groups (CG) consisted of the combination of
herd, year and birth season. Data editing was performed by removing:
1) animals with incomplete records (missing observations); 2) CG with
less than seven records; 3) animals belonging to CG consisting of only
non-calving heifers; 4) outliers based on three standard deviation
within CG. After editing the data, there were 50,630 uncensored and
3,073 censored records available. Thus, a total of 53,703 AFC records
were used in the analysis, with mean of 1,221.70 ± 267.54 days,
ranging from 731 and 1825 days. Cows with AFC longer than 1825 days
were excluded since heifers that did not become pregnant after the
breeding season were excluded too. Thus, this practice was adopted to
prevent possible recording errors. The pedigree file included a total of
64,322 animals.

AFC data were analyzed using four different Bayesian methods to
deal with censored phenotypic records.

The linear method (LM) was used to evaluate the scenario when
censored records were not used. For this, the following standard animal
model was fitted:

= + + +y X Wc Za eβ , (1)

where: y is the vector of AFC records; β is the vector of systematic
effects (mean, registration class - pure by origin or in open book, and
mating type - artificial insemination, embryo transfer, fertilization in
vitro and natural mating); c is the vector of CG (herd-year-season) ef-
fects; a is the vector of additive genetic effects; e is the vector of re-
sidual effects; and X, W and Z are the incidence matrices associated
with β, c and a, respectively. It was assumed that: ∼β N Iσ0( , )β

2 , being
σβ

2 a known variance with value 1e+ 10 (large variance) to represent
non-informative (vague) prior; ∼c N Iσ0( , )c

2 , ∼a N A σ0( , )a
2 and

∼e N I σ0( , )e
2 , being σc

2 the CG variance, σa
2 the additive genetic var-

iance and σe
2 the residual variance; A and I are, respectively, the nu-

merator relationship and the identity matrices.
The simulation method (SM) is based on the same model presented

in Eq. [1]; however, a dataset including censored and uncensored data
was used. The censored record was obtained through simulation. Thus,

′ = ′y y y[ ]ur cr is a vector in which yur is the vector of uncensored records
of AFC, and ycr is the vector of simulated values for censored records.
Using Gibbs sampling approach (Sorensen et al., 1998; Guo et al.,
2001), ycr values were sampled from their respective posterior pre-
dictive distribution. This distribution is the truncated Gaussian with
lower limit defined by the maximum values of AFC within the corre-
sponding CG. The predicted age at first calving for a censored record
was between the truncation point and positive infinity. Thus, an animal
with a censored record could not receive a simulated record that was
smaller than a uncensored record within its contemporary group, and
under this framework, the ycr values were updated within each Gibbs
sampler iteration (Donoghue et al., 2004a; Korsgaard et al., 2003) until
convergence was achieved.

The penalty method (PM) assigns penalties to each censored record
within contemporary group. It is similar to SM, however the censored
records were replaced by a set of augmented data, which is obtained by
adding a constant of 21 days over the highest AFC value within each CG
to provide imputed values for all censored records. The penalty suggests
that the heifers failing to calve would conceive if they have another
opportunity, as an extra estrous cycle (Donoghue et al., 2004b; Hou
et al., 2009; Malhado et al., 2013).

The threshold-linear censored (TLcens) method is based on the bi-
variate model where one trait is continuous (AFC values) and the other
one is a threshold binary trait (censored status). The binary records
were associated to liability values which is given by a latent continuous
variable (Sorensen and Gianola, 2002). At each MCMC (Markov Chain
Monte Carlo) iteration, the binary records generate a liability value
below or over a given threshold. This model considers ′ = ′y y y[ ]ur cr ,
where ycr are the censored records added to a constant of 21 days over
highest AFC value within each contemporary group. This model is given
by:
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where: y is the vector of AFC records; l is the vector of liability gen-
erated from censored status; X, β, W, Z, c, a and e are the same of
model (1). The following prior distributions were assumed:
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where: C0, G0 andR0 are the CG, additive genetic and residual (co)
variance matrices, respectively; and Σβis a diagonal known matrix with
values 1e+ 10 (large variances) to represent non-informative (vague)
prior for systematic effects.

Inferences about all unknown parameters were done from the
marginal posterior distributions through Gibbs sampling using the TM
software (Legarra et al., 2008). More specifically, a unique MCMC
process with 400,000 iterations was launched for each analysis, and the
first 100,000 iterations were discarded as burn-in, keeping every 10th
sample for inference of posterior features. The convergence of the
MCMC chains was verified by graphical inspection and by
Geweke (1992) criteria using the R package boa (Bayesian Output
Analysis, Smith, 2007).

The predictive ability was accessed by cross-validation. The training
dataset was composed by all censored records, and 70% of the un-
censored records were randomly obtained within each CG. The vali-
dation dataset was defined by the remaining individuals. These two
subsets (training and validation) were redefined 10 times, generating
different datasets. The average of the correlation coefficients (con-
sidering the total of 10 replicates) between the predicted and observed
phenotypes were calculated to measure the predictive ability of each
method. The predicted phenotypes vector was calculated as

= + +y X Wc Zaβ^ ^ ^ ^. Thus, the solutions for the animals in the valida-
tion population were obtained based on the solutions of the training
population. The mean square errors were also calculated and used in
the methods comparison.

The breeding value accuracy for each animal i (ri) was calculated as
showed in Eq. [3]:

= −r SD
σ

1 ( )
^

,i
i

a

2

2
(3)

where: SDi is the posterior standard deviation of the breeding value of
animal i, and σ̂a

2
is the estimated (posterior mean) additive genetic

variance.
Spearman's correlation coefficients between predicted breeding

values obtained from different methods were computed to infer dif-
ferences in the ranking of the animals. In addition, the percentage of
selected animals in common at different percentiles (TOP1% and
TOP10%) were also used to evaluate similarities between methods.
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3. Results and discussion

The predictive ability was performed through correlation coeffi-
cients between observed and predicted phenotypes through cross-vali-
dation analysis and mean square errors (Table 1). Higher correlation
and lower MSE were found for LM, indicating that this method is re-
commended for AFC genetic evaluation with censored records in Bra-
zilian Brahman cattle. Urioste et al. (2007a) using predictive ability on
fertility traits (days to calving and calving success) of Uruguayan
Aberdeen Angus cattle found similar correlations between training and
validation dataset for PM and SM, and for PM and TLcens. However,
Urioste et al. (2007b) commented that the main disadvantage of TLcens
is the difficulty of implementation for large data sets in comparison to
LM.

Spearman correlation coefficients, average accuracy of breeding
values and percentage of selected animals in common are shown in
Table 2. Concordance between the selected top 1% animals ranged from
32.70% (SM and TLcens) to 82.96% (LM and PM). For the top 10% of
animals, these percentages were slightly higher than for top 1%,

ranging from 59.48% (SM and TLcens) to 89.12% (LM and PM). Si-
milarly to the results reported by Donoghue et al. (2004a), we observed
that accuracies (Table 2) based on the uncensored data were slightly
higher than the censored data. The Spearman correlation between LM
and SM was lower than other methods (0.82) because the SM presented
higher variation due to the generation data process whereas the LM is
most consistent since only uncensored observation have been con-
sidered for the analysis. This result is similar to Donoghue et al. (2004b)
that studied days to calving in Australian Angus cattle (0.81). The
percentages of selected animals in common (Table 2) were higher be-
tween LM and PM, indicating no relevant reranking of animals when
censored records are used. These percentages were smaller when
TOP1% of the animals was considered. Similarly to the present study,
Garcia et al. (2016) studying Nellore cattle found higher coincidence in
sire ranking using linear models.

The inclusion of heifers that did not calve in the analysis of the data
did not change the correlations between the studied methods (Tables 1
and 2). Thus, if removing the heifers that did not conceive after the
breeding season from the analysis, there are no effective changes in the
genetic evaluation.

Posterior means with respective standard deviation and HPD95%
region for variance components and heritability from different methods
are presented in Table 3. Since LM presented the best predictive ability,
it was considered as reference in the latter comparisons. LM and PM
resulted in similar additive genetic and residual variance estimates
(Table 3), indicating some correspondence between these methods.
When using either LM or PM to handle censored AFC records, a small
impact on variance components estimation would be expected. Simi-
larly, Forni and Albuquerque (2003) reported that imputation of cen-
sored data did not improve the identification of genetic differences
between animals. These highest variance components values reported
for the SM (Table 3) suggests that the simulated records for all censored
records can result in overestimation of all variance components. The
estimates from TLcens method presented the lowest additive variance
estimated. Differently from our study, Urioste et al. (2007b) found si-
milar additive genetic and residual variance estimates for SM and PM
considering days to calving in Angus cattle. Probably, the correlation
generated by the multi-trait analysis (three calving intervals) performed
by these authors might have affected the variance components esti-
mates. Since the SM method was based on simulated random numbers,
it might insert some source of variation in the data as previously
mentioned.

The heritability estimates ranged from 0.09 (TLcens) to 0.20 (LM).
The LM, SM and PM provided similar estimates, which were higher
than TLcens (Table 3). All methods showed moderate heritabilities
(Table 3) for AFC (0.18 to 0.20); with the exception of the TLcens
(0.09). In general, heritability estimates for AFC reported in the lit-
erature oscillated such as in the present study, ranging from 0.10 to
0.37 in Brazilian Zebu cattle (Boligon and Albuquerque, 2011; Barrozo
et al., 2012; Moreira et al., 2015; Oliveira et al., 2017). Variation in

Table 1
Average mean square error (MSE) and correlations between observed and
predicted phenotypes from 10 fold cross-validation with respective standard
deviation.

Method1 MSE Correlation

LM 52,541.85 (643.26) 0.30 (0.006)
SM 81,104.72 (8,137.71) 0.19 (0.078)
PM 55,267.17 (1,320.13) 0.25 (0.008)
TLcens 56,660.74 (541.39) 0.22 (0.005)

1 LM, SM, PM, TLcens: linear, simulation, penalty and threshold-linear cen-
sored methods, respectively.

Table 2
Spearman correlation between all animals (above diagonal), average accuracy
of predicted breeding values for age at first calving (below diagonal); and
percentage of animals in common between methods at 1% (above diagonal) and
10% (below diagonal) of selected individuals.

Method1 LM SM PM TLcens

Spearman correlations and accuracy
LM _ 0.82 0.97 0.95
SM 0.95 _ 0.88 0.83
PM 0.98 0.96 _ 0.95
TLcens 0.87 0.88 0.89 _
Percentage of animals in common
LM _ 46.96 82.96 55.65
SM 61.23 _ 52.17 32.70
PM 89.12 66.48 _ 51.48
TLcens 81.70 59.48 78.33 _

1 LM, SM, PM, TLcens: linear, simulation, penalty, threshold-linear censored
methods, respectively.

Table 3
Posterior means, standard deviation and highest posterior density region (95%) for heritability and variance components for age at first calving in Brahman cattle
provided by different censored Bayesian models.

Method1 h2 σ2a σ2c σ2e

LM 0.20 (0.01)
[0.18; 0.21]

11,887.01 (598.41)
[10,765.13; 13,070.92]

5,780.80 (766.84)
[4,331.42; 7,309.51]

43,205.65 (516.72)
[42,198.82; 44,205.45]

SM 0.19 (0.01)
[0.17; 0.21]

31,481.96 (1,378.36)
[28,748.36; 34,210.96]

54,378.23 (6,188.77)
[42,632.60; 66,547.76]

80,271.21 (1,110.02)
[78,032.36; 82,409.43]

PM 0.18 (0.01)
[0.16; 0.20]

14,354.36 (712.52)
[13,014.01; 15,783.45]

17,560.54 (2,063.04)
[13,715.58; 21,650.96]

46,658.04 (598.47)
[45,494.81; 47,833.18]

TLcens 0.09 (0.006)
[0.08; 0.10]

8,221.12 (518.38)
[7,281.80; 9,261.24]

20,960.41 (2,476.74)
[16,191.94; 25,910.80]

64,038.80 (503.09)
[63,064.86; 64,972.09]

h2: heritability; σ2a, σ2c and σ2: additive genetic, contemporary group and residual variances, respectively; 1LM, SM, PM, TLcens: linear, simulation, penalty, threshold-
linear censored methods, respectively.
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heritability estimates from literature may reflect differences in popu-
lations, trait definition and data structure (Oliveira et al., 2017).

Donoghue et al. (2004a) and Donoghue et al. (2004b) using simu-
lated and real data of days to calving, reported heritability estimates
similar to our study when using penalty (PM) and simulation (SM)
methods. On the other hand, the heritability estimates for TLcens di-
verged from some authors (Johnston and Bunter, 1996; Morris et al.,
2000; Phocas and Sapa, 2004) that reported high heritability estimates
using TLcens when compared to the present study.

4. Conclusion

The LM using only uncensored data was the most indicated for ge-
netic evaluation of AFC in Brazilian Brahman cattle based on predictive
ability via cross-validation analysis.

The similar results of LM and PM regarding Spearman correlations
and the higher percentages of selected animals in common, indicated
that there was not relevant reranking of animals when censored records
were used. Therefore, the LM model could be recommended to perform
genetic evaluation of age at first calving in this Brahman population.
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