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Abstract
We explore quantum properties of a which-way detector using three versions of an idealized two
slit arrangement. First, we derive complementarity relations for the detector; second, we show
how the ‘experiment’ may be altered in such a way that using a single-position measurement on
the screen, we can obtain quantum erasure. Finally, we show how to construct a superposition of
‘wave’ and ‘particle’ components.
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1. Introduction

Wave-particle duality is one of the most counterintuitive
features of quantum theory. In double-slit experiments, this
problematic feature becomes explicit by the fact that if, in an
experimental apparatus, the information about which slit the
quanton (in the sense of [1, 2]) has crossed (which-way
information) is available, there are no interference fringes on
the screen (particle behavior); however, if the which-way
information is not available one can see an interference pat-
tern (wave behavior). In a famous debate between Bohr and
Einstein, at the Solvay conference (1927) [3], they introduced
a gedanken experiment that consists of double slit experiment
with a movable slit placed before the double slit, the recoiling
slit experiment. A quanton is first sent through the movable
slit, after it crosses the double slit and then it is recorded on
the screen. Therefore, observations of the movable slit posi-
tion, after the interaction with the quanton, can give us
information about which slit (of the double-slit apparatus) the
quanton has crossed. The apparent difficulty imposed by this
apparatus is that one could have both particle and wave
behavior in the same experiment in contradiction with the
wave-particle duality. However, this apparent difficulty was
solved by Bohr, who pointed out that a careful analysis of the
movable slit would require the inclusion of uncertainty rela-
tions of its position and momentum, which would add random
phases in the quantons path, and consequentially it would
make the interference pattern vanish. Bohrʼs arguments in
favor of the wave-particle duality were based on the uncer-
tainty principle.

During the 1980s, entanglement began to play an
important role in the analysis of interferometric systems. In
references [4–6], the authors show that the entanglement
between an interferometric quanton and a meter (included in
the quantum description) can destroy the interference pattern.
The interaction with a probe system makes the which-way
information available, and it is sufficient to wash out the
interference pattern. According to the authors, entanglement
is determinant in this phenomena and it is not necessary to
call upon Heisenbergʼs uncertainty principle, as it was in the
early discussions between Einstein and Bohr. A debate about
the role of entanglement and uncertainty relations had begun
[7–11]. It was also shown that the which-way information
available in the entangled state can be erased, and conse-
quently the interference pattern recovered. Experimental
observations of the quantum eraser have been reported in
several quantum systems [12–17].

The inclusion of the meter in quantum description of
another famous experiment, known as the Wheelerʼs delayed
choice experiment [18], which also provided new investiga-
tions on the wave-particle duality. Recently, several quantum
delayed-choice experiments were proposed [19] and per-
formed [20–23]. Such experiments are based on the sub-
stitution of a ‘classical beam splitter’ by a quantum system
that can be prepared in a superposition state of being present
or absent. A Mach–Zender interferometer is considered;
therefore, the wave or particle behavior observed depends on
the presence or absence of the second beam splitter. In
Wheelerʼs delayed choice experiment, a classical apparatus
controls the presence or absence of the second beam splitter
after the insertion of the quanton in the apparatus. In the
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recent version, the quantum delayed-choice experiment, a
quantum system plays the role of the second beam splitter,
and it allows for the construction a superposition of wave and
particle behavior’.

In this paper, we explore the complementarity relations
of the measuring apparatus in the context of quantum erasure
and quantum delayed choice. In the first section, we study a
two-slit experiment already proposed in [24]. Now, con-
sidering the complementarity relations of the detection sys-
tem, two cavities, one before each slit, where the crossing
atom leaves a photon that taggs the atom path. These two
possibilities are then viewed as the two interferometric
alternatives of the apparatus. In this context, the atomic center
of the mass degree of freedom will store which-way infor-
mation of the cavities. Furthermore, we show that a single
measurement of the atomic position on the screen may gen-
erate a perfectly balanced superposition of the cavities state.
Moreover, we propose a gedanken experiment where the final
cavities state may be interpreted as superposition of ‘wave-
like’ and ‘particle-like’ states.

2. Which-way detector

2.1. Non-selective position measurements

Let us consider the double-slit experiment with high-Q cav-
ities that work as which-way ‘detectors’ proposed by Scully
et al [24]. Two-level atoms prepared in the excited state cross,
one at the time, a double-slit apparatus with a high-Q
micromaser cavity placed on the entrance of each slit. The
atom interacts with the cavity mode M+ (M−) before crossing
the slit + (−). The interaction time with the mode corresponds
to a π pulse, so that the atom leaves the excitation in the
corresponding mode. The state vector of the global system
after the double-slit is

ψ λ ψ λ ψ= + ϕ
+ + + − − − + −( ) g1 , 0 e 0 , 1 , (1)i

where ψ ψ ψ ψ〈 ∣ 〉 = 〈 ∣ 〉 =+ + − − 1, ψ ψ ψ ψ〈 ∣ 〉 = 〈 ∣ 〉 =+ − − +
−e

d

b

2

4 2 ,

λ λ+ =+ − 12 2 , ψ∣ 〉+ ( ψ∣ 〉− ) are state vectors in the center-of-
mass coordinate subsystem corresponding to the atom
crossing slit + (−), d is the distance between the center of the
slits, and b is the initial wave-packet width. If the atom
crosses the double-slit through cavity + (−), it leaves one
excitation on mode M+ (M-), and the which-way information
of the atom is completely available in the cavity modes
subsystem. Therefore, the modes + (−) play the role of a
which-way detector. The quality of this detector is char-
acterized by its complementarity relations, as shown in what
follows.

In [25] Mohrhoff studied the same system and started a
debate in the context of quantum erasers. He argued that when
the atoms touch the screen, the measurement of a photon in
the resonator no longer corresponds to a which-way mea-
surement of the atomic trajectory. However, in [26], the
authors show the contrary and in [27], Mohrhoff agreed and
completed the analysis given in [26]. In this paper, we also

studied the state of the system after the atomic position
measurement on the screen, but for a different purpose. We
explore the possibility of performing quantum eraser mea-
surements in the cavities subsystem.

In this analysis, both the particle and the which-way
‘detector’ are included in the quantum description. The
which-way information available in the detectors reduces the
visibility of the interference pattern on the screen. The duality
between which-way information and visibility is quantified by
complementarity relations. In the present section, we reverse
the analysis and consider the interferometric properties of the
‘detector’, i.e., we consider the cavity modes as a two-way
interferometer. In this interpretation, the two interferometric
alternatives are ∣ 〉+ −1 , 0 and ∣ 〉+ −0 , 1 . The which-way infor-
mation about these interferometric alternatives is available in
the center-of-mass coordinate system of the two-level atom.

To make the analysis concrete, we consider the center-of-
mass coordinate state of the quanton described by Gaussian
wave packets

∫ψ ψ=+ + x t x x( , ) d (2)

∫ψ ψ=− − x t x x( , ) d , (3)

where

ψ
π

τ
τ τ

=

× −
∓ −

− − +
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2 ( )
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i i

2
i ,

2 2

2
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1
2

k is the transverse wave number, d is the distance between the
center of the slits, b is the initial wave-packet width,

= +
τ

B t b( ) 1 t2

2
, and the scale that characterizes the varia-

tion of B t( ) is given by τ = 
mb2

, where m is the quantonʼs
mass. We consider a one-dimensional wave packet that cor-
responds to the assumption that the spread of the wave packet
is in the transverse direction to the beam propagation con-
sidered classical. This is justified provided the spread in this
direction is sufficiently small, what can be achieved by a high
enough longitudinal velocity.

If we ignore the atomic position measurements on the
screen and trace over the continuous variable degree of
freedom, we have the reduced state:

ρ λ λ

λ λ

= +

+ +ϕ

+ + − + − − + − + −

+ −
−

+ − + − ⎟⎞⎠

(
c c g g

1 , 0 1 , 0 0 , 1 0 , 1

e 0 , 1 1 , 0 . . , (4)

S
2 2

i d

b

2

4 2

where ρ λ λ= + =+ −Tr ( ) 1S
2 2 .
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Using the definitions for visibility (V) and predictability
(P) for a two-level system [28] we have:

λ λ= −+ −P , (5)2 2

λ λ= + −
−V 2 e . (6)

d

b

2

4 2

A well-known result is that the visibility and predict-
ability are related by the inequality + <V P 12 2 when the
interferometric system is not in a pure state. In reference [28]
the authors show that the missing quantity that turns the
inequality into an equality is the entanglement. Here, we
calculate the linear entropy, which quantifies the entangle-
ment between the center of mass and cavity degrees of free-
dom, and obtain

λ λ= −+ −
−⎜ ⎟⎛

⎝
⎞
⎠S 2 1 e , (7)2 2 d

b

2

2 2

and show that + + =P V S2 12 2 .
The linear entropy S quantifies the which-way informa-

tion available in the detector. Note that the vality of the model
requires that the overlap between the two center of mass

Gaussian states is small enough, i.e., ≪−e 1d b(4 )2 2
, yielding a

neglible visibility. In this case, it is ensured that the particle
that goes through the slit + (−) only interacted with mode
M+ (M-).

We can define the distinguishability of the detector
(associated with its quality) as [29]

= + = − ≈D P S V2 1 1. (8)2 2

This can be illustrated by two extreme situations. Let us
assume that S = 0. In this case, we can be sure that the
quanton crossed slit + (−), recorded by the detector final state
∣ 〉+ −1 , 0 ∣ 〉+ −( 0 , 1 ). When P = 0, i.e., S is maximum, the
detector will be found in a statistical mixture, which means
that the quanton crossed the slits in a maximally coherent
superposition of states ψ∣ 〉+ and ψ∣ 〉− and are therefore com-
pletely entangled with the detector.

2.2. Selective position measurement (quantum eraser)

In this subsection, we consider selective measurements of the
center-of-mass position on a (distant) screen and show that
some of these measurements correspond to a quantum erasure
process for the detector subsystem, in the sense that it will be
left in a coherent superposition. Therefore, it will necessarilly
have a nonvanishing visibility. The common suport of the
wave packets, which increases in time, decreases the ‘quality’
of the which-way information encoded in the center-of-mass
system. In the region where the two Gaussian states are
superimposed, a measurement of the atomic position on the
screen gives ambiguous information about the interferometric
alternatives (∣ 〉+ −1 , 0 and ∣ 〉+ −0 , 1 ). Therefore, this super-
position allows us to perform measurements (on the obser-
vable X) that increase the visibility of the interferometric
subsystem. These measurements can be interpreted as quan-
tum eraser measurements because they erase the which-way

information and increase the visibility in the modes of the
subsystem.

Let us consider that a measurement of the atomic position
on the screen is performed and the eigenvalue x is obtained.
After the measurement, the cavity modes state vector is given
by:

ψ λ ψ

λ ψ

=

+ ϕ

+ + + −

− − + −

x t x t

x t

( , ) ( , ) 1 , 0

e ( , ) 0 , 1 , (9)i

with ψ ψ ψ ψ〈 ∣ 〉 = 〈 ∣ 〉 =+ + − − 1.
To study the consequences of the atomic position mea-

surements on the interferometric system, let us consider the
quantitative complementarity relation introduced in [28]

+ ⩽V K 1. (10)x x
2 2

To introduce such the inequality the authors consider a
bipartite system composed by the interferometric system, with
∣+〉 and ∣−〉 as interferometric alternatives, and a which-way
detector. X is an observable in the which-way detector sub-
system and x is one eigenvalue of X. The inequality (10) is a
quantitative complementarity relation for the interferometric
system after the measurement of X with the result x. Vx is the
‘conditioned visibility’ that depends on the choice of the
measured observable (X) and on the obtained eigenvalue x.
The ‘conditioned visibility’ is calculated as the visibility in
the state vector after the measurement. The ‘conditioned
which-way knowledge’ Kx reflects the a posteriori which-way
knowledge (after the measurement) and is given by

= ∣ + ∣ − −∣ ∣K p x p x( ) ( )x , where + ∣p x( ) ( −∣p x( )) is the
conditioned probability that the interferometric system took
the alternative ∣+〉 (∣−〉), conditioned that the eigenvalue x has
been obtained.

In the present system, the observable measured in the
which-way detector subsystem is the atomic center-of-mass
coordinated on the screen (X) with eigenvalues represented by
x. We calculate the conditioned visibility (Vx) and knowledge
(Kx)

λ λ

λ δ δ λ δ δ
=

+ + −
+ −

− +
V

2

(cosh sinh ) (cosh sinh )
(11)x 2 2

λ δ δ λ δ δ

λ δ δ λ δ δ
=

+ − −

+ + −

− +

− +
K

(cosh sinh ) (cosh sinh )

(cosh sinh ) (cosh sinh )
(12)x

2 2

2 2

where δ =
τ τ

τ

−

+
( )d b kt x

b t( )

2

2 2 2 .

The quantitative complementarity relation is then

+ =V K 1, (13)x x
2 2

which corresponds to the inequality (10). The quantities Vx

and Kx depends on the measured eigenvalue x, but it also
depends on τt . Let us consider that λ λ= =+ − 1 2 . In this
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case, the expression for the conditioned visibility becomes

τ τ

τ
=

−

+

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

( )
( )

V
d b kt x

b t
sech (14)x

2

2 2 2

Equation (14) shows that the values of x associated with
the quantum eraser are given by τ=x b kt2 ; notice that the
complete quantum erasure occurs where the conditional vis-
ibility is maximum. For k = 0 the complete quantum erasure
occurs for the measurement on the screen x = 0, indepen-
dently of b and time τt . However, if ≠k 0 and τ ≠t 0, the
system is no more symmetric and the values of x for a
complete quantum erasure depend on the time.

First, let us analyze the position x dependence. In
figure 1, it is shown as a curve of the conditioned visibility
(Vx) and the knowledge (Kx) as a function of x b for a fixed
time of propagation t/τ = 1. We can see that if the atom is
measured away from the center of the screen Vx is approxi-
mately zero and the Kx is approximately maximum. In these
regions of the screen, there is no superposition between the
Gaussian wave packets, so there is a high probability to make
a right guess about which slit the atom has crossed. On the
other hand, if the atom is measured in the center of the screen,
the interferometric system is projected onto a state with
maximum conditioned visibility; therefore, such measure-
ments work as a quantum eraser. It washes out the condi-
tioned knowledge about the interferometric alternatives. It is
interesting to notice that one can observe the continuous
variation of Vx, from the maximum to the minimum value,
just with measurements of one observable X. Measurements
of the same observable X either provide information about
which path the atom crossed ≫x b( 0) or works as
quantum erasure ≈x b( 0) [28].

In figure 2, we show the conditioned visibility (Vx) and
the knowledge (Kx) as a function of the propagation time τt
for a fixed position on the screen x/b = 1. Notice that for small
propagation time, the conditional visibility is close to zero
and it increases over time. Therefore, for small propagation
times (up to τ ≈t 1), if the quanton is detected on the screen
at position x/b = 1, the probability that it has crossed slit + is
very high. However, over time, the which-way information of

the quanton measured in x/b = 1 becomes ambiguous and the
conditional visibility increases. In the present system, the
same measurement result x works initially as a which-way
sorting (up to τ ≈t 1) and later as a quantum eraser sorting.

In figure 3, we use the three-dimensional plot when it is
clearly seen that there exists a straight line τ=x b kt2 where
the quantum-conditioned visibility is maximum for fixed
t/τ = 1.

3. Wave and particle superposition

We now turn our attention to the construction of an entangled
state. The coefficient that is composed by another degree of
freedom of one of them is a superposition state (‘wave’). On the
other hand, the ‘particle behavior’ is associated with a product
state. We propose the construction of this state in the cavity
system, but we slightly change the apparatus described in the
last section. We consider now a double-slit experiment with
only one high-Q cavity, that is placed on the entrance of slit +.

Figure 1. Conditional visibility as a function of the position on the
screen, with λ λ= =+ − 1 2 , k = 0, d/b = 4, t/τ = 1.

Figure 2. Conditional visibility as a function of the time, with
λ λ= =+ − 1 2 , k = 0, d/b = 4, x/b = 1.

Figure 3. Conditional visibility as a function of position (x) and the
transverse wave number (k), with λ λ= =+ − 1 2 , d/b = 4 and
t/τ = 1.

4
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We also include a Ramsey zone that can rotate the internal
atomic state next to the high-Q cavity. Therefore, the two-level
atoms that cross the slit + interact with mode M+ inside the
high-Q cavity and after interaction with a classical electro-
magnetic field inside the Ramsey zone. The atom that crosses
the slit does not interact with any electromagnetic field.

The mode M+ is an interferometric system with the two
ortogonal ‘paths’ ∣ 〉+0 and ∣ 〉+1 . When a state vector of M+ is
in a maximum superposition state of the alternatives ∣ 〉+0 and
∣ 〉+1 , we can consider that it exhibits wave properties. On the
other hand, if M+ is in a well-defined ‘path’ state ∣ 〉+0 or ∣ 〉+1 ,
it exhibits particle properties. In the present section, we pre-
sent a scheme to prepare a global state where each Gaussian
wave packet is associated to a specific character (wave or
particle) of M+. More specifically, the scheme associates ψ∣ 〉+
to the wave character and ψ∣ 〉− to the particle character.

We consider that the interaction time between the atom
and M+ corresponds to a π 2 pulse. The atom that crosses a
slit + interacts first with mode M+ and evolves as

ψ ψ→ ++ + + + + + + +( )e e g0
1

2
0 1 . (15)

In the Ramsey zone, the atom in ground state evolves as
∣ 〉 → ∣ 〉 − ∣ 〉g g e( )1

2
and the excited state as

∣ 〉 → ∣ 〉 + ∣ 〉e g e(1

2
).

The state vector of the global system after the double-slit
is given by

ψ ψ

ψ

= +

+ −

+

+ + + + +

+ + + +

− + +

⎡
⎣⎢

⎤
⎦⎥

( )

( )

e g

g e

e

1

2 2
0 0

1

2 2
1 1

1

2
0 . (16)

Suppose that it is possible to measure the atomic energy
and the atomic position on the screen. To simplify the

imaginary apparatus, let us consider three atomic ionization
detectors, as shown in figure 4. If we consider only the
detections of the excited state ∣ 〉e , we obtain only in the fol-
lowing part of the state 16

ψ ψ− ++ + + − +( )1

2
0 1 0 . (17)

The Gaussian wave packet ψ∣ 〉+ is associated with a
maximum visibility state (‘wave’ state) and the Gaussian
wave packet ψ∣ 〉− is associated with a maximum predicability
state (‘particle’ state). Consider that the screen is positioned at
a fixed distance. Therefore, the clicks on the detectors shown
in figure 4 will be responsible for the preparation of sub-
system M+ on a ‘wave’ state, ‘particle’ state or superposition
of ‘wave’ and ‘particle’ state. If D1 clicks, the state on the
mode M+ can be written as ∣ 〉 − ∣ 〉 = ∣ 〉+ +( ) w0 11

2
, because

in this region of the space there is no common support
between ψ∣ 〉+ and ψ∣ 〉− , and we can consider that the detected
atom had crossed slit +. If D1 or D3 clicks, the state of mode
M+ can now be written as ∣ 〉 = ∣ 〉+ p0 , because the detected
atom had crossed slit −. However, if the atomic ionization
detector is placed in a region of the space with a significant
common support, we can not guarantee that the detected atom
had crossed slit + or −. When detector D2 (in the center of the
screen) clicks, the state on the mode M+ can be written as

∣ 〉 − ∣ 〉 + ∣ 〉 = ∣ 〉 + ∣ 〉+ + +( ) w p0 1 01

2
, which corresponds to

a superposition of ‘wave’ and ‘particle’ state.
In conclusion, we have explored the quantum interfero-

metric properties of subsystems that work as auxiliary (two
cavity modes) in the quantum-eraser scheme. We wrote the
quantitative complementarity relation for the two-cavity-
modes subsystem, and also show that a single-position mea-
surement of the quanton on the screen can work as a quantum
eraser and restore the visibility on the two-modes-cavity
subsystem. We emphasize that the same measurement result
of the quantonʼs position on the screen can work as a quan-
tum-eraser measurement or a which-way measurement,
depending on the relations between the position measured and
the propagation time of the particle. Finally, we show a
scheme to construct a ‘wave’ and ‘particle’ superposition in a
cavity-mode subsystem using the measurement of the position
on the screen of a two-level atom.
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