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“A ciência é, portanto, uma perversão de si mesma,

a menos que tenha como fim último melhorar a humanidade.”

(Nikola Tesla)
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Abstract

SILVEIRA, Ulisses Eduardo Ferreira da, M.Sc., Universidade Federal de Viçosa, March, 
2017. Heuristic Approaches to the Double Vehicle Routing Problem with Mul-

tiple Stacks. Adviser: André Gustavo dos Santos

In a world, that in a fast pace, has become increasingly needed in consumable and non-

consumable goods, the logistics in the transportation of these products has been put to the 
test, being one of the most important stages in the relationship between the pro-duction 
process and the end user. It is said that at least 30% of the costs between the industry and 
the end user are solely determined by the cost of transportation. A novel problem arose 
followed by a question that was encountered in a real-life scenario. The Double Routing 
Vehicle Problem with Multiple Stacks (DVRPMS) consists in a Dou-ble Traveling 
Salesman Problem with Multiple Stacks (DTSPMS) with multiple vehicles. Both problems 
appeared for the urgent need of optimizing intermodal transportation in the european 
context. It consists in gathering costumer inquires from a pickup region and loading them 
in a set of stacks inside a container that must not be rearranged for security reasons. The 
container moves to a delivery region and the items gathered must be delivered according 
the last-in-first-out policy of the stacks. In this work, four heuristics were proposed based 
on the Iterated Local Search (ILS), Variable Neighborhood Descent and Simulated 
Annealing (SA) metaheuristics. The DVRPMS was extended to a modi-fied version where 
the items offered are bigger than the vehicle fleet capacities. An exact model approach is 
proposed and three other heuristics, based on the ILS, SA and Tabu Search are proposed 
and tested. The approaches presented in this work were tested by computational 
experiments and a statistical analysis was made to chose the best com-bination of 
parameters. Good results were found, providing a better average than the current 
literature.
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Resumo

SILVEIRA, Ulisses Eduardo Ferreira da, M.Sc., Universidade Federal de Viçosa, março 
de 2017. Abordagens Heurísticas para o Problema do Roteamento Duplo com 
Múltiplas Pilhas. Orientador: André Gustavo dos Santos

Em um mundo que, em tempo acelerado, tem-se tornado cada vez mais necessitado em 
bens consumíveis e não consumíveis, a logística no transporte destes produtos tem 
sido colocada à prova, sendo uma das etapas mais importantes da relação entre o pro-

cesso de produção e o usuário final. Cerca de um terço dos custos logísticos desta relação 
(produção-usuário) são determinados pelo custo de transporte dos bens, tornando essa 
operação muito importante. Um novo problem surgiu a partir de um entrave encontrado 
numa situação prática. O Problema do Roteamento de Veículos Duplo com Múltiplas 
Pilhas (DVRPMS) consiste em um Problema do Caixeiro Viajante com Múltiplas Pilhas 
(DTSPMS) com múltiplos veículos. Os dois problemas apareceram pela necessidade ur-

gente em otimizar o transporte intermodal em um contexto europeu. Consiste em coletar 
pedidos em uma região de coleta e carregá-los num conjunto de pilhas dentro de um con-

tainer, que não deve ser rearranjado por razões de segurança. O container então é levado 
a região de entrega e os itens são entregues seguindo a política das pilhas, em que os itens 
do topo, coletados por último, devem ser entregues primeiro. Nesta dissertação, quatro 
heurísticas baseadas na busca local iterativa (ILS), na descida em vizinhança variável 
(VND) e no recozimento simulado (SA) são propostas. O problema foi estendido para 
uma versão onde há uma oferta de itens maior do que a capacidade da frota de veícu-

los. Um método exato é proposto juntamente com outras três heurísticas baseadas no 
ILS, SA e na busca tabu (TS). Os algoritmos propostos foram testados em experimentos 
computacionais e análises estatísticas foram feitas com intenção de encontrar a melhor 
combinação de parâmetros para estas heurísticas. Os resultados encontrados foram bons, 
tendo encontrado melhores médias que a literatura atual.
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Chapter 1

Introduction

In a fast-paced world that has become increasingly in need of consumable and non-

consumable goods, logistics in the transportation of these products has been put to the

test, being one of the most important stages in the relationship between the produc-

tion process and the end user. About one-third of the logistics costs of this relationship

(production-user) are determined by the cost of the transportation of these goods, thus

this operation is considered of high importance, as shown by Yung-yu Tseng and Taylor

[2010]

The large share that transportation has in the distribution costs makes its use in-

creasingly exploited by producers of different sizes and sectors. The expansion of the

logistics sector has stood out every year. The UK Department of Transport considers

that the logistics business market is heavily contested and is operated, in the majority

of cases, by small businesses operating at very low profit margins (1-3%), therefore any

research that contributes for an increase in the profits of this sector will have as conse-

quence the "reduction of the costs of production and transportations of goods and therefore

reduced prices for the consumer" (UK Department for Transport [2011]).

According to Frazzon [2009], the logistics industry, when considered all over the

world, handled approximately 5.5 trillion Euros or about 13.8% of the Global Gross

Domestic Product, which shows that transportation logistics are not only an important

part of the distribution of goods in local trades, but also an extremely important field in

our increasingly globalized world economy.

Europe, as a continent of consolidated economy and densely populated, plays an

important part in these logistic studies. The 2011 annual report from the European road

freight transport industry shows that half of the goods is carried by land on highways

of less than 50 km, and three-quarters, or 75%, of all goods are carried on highways of

less than 150 km (European Commission for Mobility and Transport [2010]). Part of this

1



1. Introduction 2

traffic is carried out via intermodal transport, the one in which a container is loaded and

the products travel by different road modes (railroad, sea and truck-container). The main

objective of this transport is the reduction of the gases that cause the greenhouse effect

and has been subject of intense research.

After finding a situation where the container should have not be changed when

moving between two regions, a software development team called for research on a novel

problem. Published in Petersen and Madsen [2009], the DTSPMS was then proposed, with

an exact model and four heuristics based on the Iterated Local Search (ILS), Simulated

Annealing (SA), Tabu Search (TS) and a Large Neighboorhood Search (LNS). The LNS

heuristic performed the best, averaging 3% away from optimality for instances with 66

orders. The DTSPMS was extended in a more complex form and this is the problem that

will be treated in this dissertation.

1.1 The problem and its importance

The Double Vehicle Routing Problem with Multiple Stacks (DVRPMS) arose in its sim-

plest form, with the Double Traveling Saleman Problem with Multiple Stacks (DTSPMS),

proposed by Petersen and Madsen [2009] when a software company that set up routes in

its intermodal traffic encountered this problem with one of its customers.

The problem basically consists in the collection and delivery of products that are

carried out between different regions, without the loading being interfered with. This is

due to the fact that the regions are separated (by different road routes) and the necessity

of not changing the content of the containers, which is a characteristic of the intermodal

traffic. The interior of these containers are filled with standard 3 x 11 euro pallets that

fill the area of a 40-foot container.

Figure 1.1: DTSPMS example



1. Introduction 3

Figure 1.1 shows an example of a DTSPMS solution. There are two regions, the

pickup and delivery regions. In the depot, which is indicated as 0, a 2 x 8 capacity

container is located. The vehicle has its loading stack shown in the center of the figure.

The truck should then leave the warehouse in the pickup region and go through all the

cities, numbered from 1 to 16, collecting the products, respective to each city. Each city

in the pickup region has a corresponding city in the delivery region. The vehicle must

deliver the loading by following an optimal route within the two regions, without changing

the order of the stacks, where the LIFO (Last-in, First-out) policy must be respected. In

this policy, the last item placed on the stack must be the first one to be withdrawn.

Optimizing the pickup and delivery routes were necessary because they would re-

duce the transport costs. This follows the increansing tendency for the intermodality of

the transport of goods, especially in Europe. According to Petersen and Madsen [2009],

the problem may seem too theoretical, but it has been found in this particular real-life

situation, which makes it important. The degree of difficulty of the problem is mainly

due to the conditions of precedence given by the stack loading constraints. Following

the tradition in the Operational Research researches, the problem was extended to the

DVRPMS by Iori and Riera-Ledesma [2015]. The extension basically consists of deter-

mining the routes having now a fleet of vehicles available, unlike a single vehicle of the

DTSPMS.

We decided to work on the DVRPMS because of its importance for the industry and

for the intermodality trend. The use of metaheuristics in solving the problem allows the

determination of optimal or near-optimal solutions in less time than the exact algorithm.

This is of the utmost importance since the urgency is recurrent in these specific transport

cases.

1.2 Objectives

The general objective of the work is to propose heuristics for the DVRPMS with the

purpose of generating optimal or near optimal routes that minimize the distance traveled

by the vehicles, that does not violate the LIFO policy of the stacks of collected items and

that does not exceed an appropriate time of analysis.

1.2.1 Specific Objectives

Specifically, we aim to:
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• Perform a bibliographic review of the current scenario of collection and delivery

problems, specifically those with some dependency between the two regions.

• Propose heuristics based on metaheuristics capable of generating approximate solu-

tions to the already known optimal instances in a smaller computational time when

compared to those generated by the exact algorithm in the literature.

• Compare and corroborate the solutions determined by the heuristics with the op-

timal solutions already existent in the literature so that it is possible to determine

the best approaches to the problem.

1.3 Chapters

This dissertation is divided into five chapters. The first chapter was an introduction to

the chosen problem, its importance and the objectives of possible findings. The second

chapter presents a broad view on the current state of the art of pickup and delivery

problems, specially the double traveling salesman with multiple stacks and the double

vehicle routing with multiple stacks. The third chapter shows the methods proposed to

solve the DVRPMS and a proposed DVRPMS with Surplus Demand, such as solution

representation, evaluation function and neighboorhood structures. In the fourth chapter,

tests results are shown. Good results were obtained for the DVRPMS which led to further

investigations on the proposed modified version of this problem. Future works suggestions

can be seen in the fifth and last chapter, as well as a conclusion on the findings presented

in this dissertation.



Chapter 2

Pickup and Delivery problems

This chapter aims to present the class of problems in which the DVRPMS is inserted. In

each section, the formalization and mathematical formulation of DTSPMS, DVRPMS and

DVRPMS with a modification in the supply of items is also presented. It was interesting

to modify the problem because the proposed algorithms were satisfactory in resolving the

instances of the basic version known in the literature.

In recent years, a number of different formulations related to pickup and delivery

(PDP) problems have been raised. Pickup and delivery problems raised a lot of interest

in the past few years because they are considered to be difficult to solve (belonging to

the class of NP-hard problems). When taken in conjunction with other classic packing,

routing or time-constrained problems they become even more complex and they attract

greater research interest. Some of these problems are not only seen in the theoretical

field, but, to a great extent, they are seen in real-life situations. The practicity of these

problems can be verified in scheduling of sea ports and other routes of distribution. It

can also be seen in production scheduling.

In the context of these problems, some authors denote specific vehicle routing prob-

lems where the pickup and delivery operations are carried out at different points among

each other as Vehicle Routing Problem with Pickup and Delivery (VRPPD).

Parragh et al. [2008] divided the problems of this class into two subclasses. Those

in which the sites (or points) are non-paired, that is, when one pickup point satisfies any

other delivery point, and another class with paired locations, when there are dependencies

between the locations of these two regions. The DVRPMS is inserted in the last case.

Some problems are predecessors to the ones treated in this dissertation. The Multi-

vehicle Pickup and Delivery Problem mentioned above (VRPPD), the general Pickup

and Delivery Problem (PDP), the Dial-A-Ride-Problem (DARP) and the Vehicle Routing

Problem with Time Windows (VRPTW). The latter, proposed by Cordeau et al. [2001]

5



2. Pickup and Delivery problems 6

presents the formulation of three indices that has this common objective function:

min
∑

k∈K

∑

(i,j)∈A

ckijx
k
ij

where K represents the set of vehicles and A the set of city arcs. c defines the cost

of crossing a given arc, and x is the binary variable that defines whether the vehicle k

traverses a given arc (i, j).

Most pickup and delivery problems are based on the formulation of three indices,

also seen in Petersen and Madsen [2009] and Iori and Riera-Ledesma [2015]. In the next

section, the formulations of these problems that are the object of study of this dissertation

are presented.

2.1 Double Traveling Salesman Problem with

Multiple Stacks

Presented in Petersen and Madsen [2009], this problem was verified in a practical situation

of European industry context. Goods produced in a given region, called a pickup region,

should be delivered to another region, called the delivery region.

Items should be placed in containers and arranged in multiple queues with stacks

of a given height. These containers are attached to a carrier vehicle that collects the

items in these cities. Containers are usually moved to another region by sea or rail. The

vehicles then depart from the delivery depot to distribute the items to their respective

cities in the delivery region. The loading of these vehicle must comply with a LIFO policy

of the stacks located in the container, and, throughout the path, the loading can not be

modified, in any of the steps.

Although it arose from a necessity, some studies on this subject had already been

proposed. Hernández-Pérez and Salazar-González [2004] proposes an exact model to the

classic problem of the traveling salesman in which the regions of pickup and delivery are

different from each other.

Cordeau et al. [2010] proposes a model based on the Branch & Cut technique for

the traveling salesman problem with LIFO loading in pickup and delivery regions. By

following Cordeau et al. [2010], the non-movement of the container’s cargo became of

great interest, because the subject on transportation might be corrosive, fragile or of

heavy weight. Not handling these products makes the work simpler and reduce costs

during transportation.
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2.1.1 Mathematical formulation

The formulation below is given by Petersen and Madsen [2009]. This model was named

DTSPMS, and from it, the exact algorithm was generated.

Formally, let G be the graph that contains the set of vertex V G and the set of edges

(or arcs) EG. G ∈ {P,D} with P related to the pickup region and D to the delivery region.

Each region has a depot vertex vG0 ∈ {P,D} and a set of customer inquiries vG1 , . . . , v
G
n .

Each arc i, j has a correspondent and synmetric cost cGij.A set of items 1, . . . , n is defined

and the item related to a given vertex (vPi ∈ V P ) must be delivered to a given vertex at

vDi ∈ V D. Let V G
C represent the set that contains all customer nodes in graph G as in

V G
C = V G\{vG0 }. The model uses the following decision variables:

• xG
ij : binary variable for each arc (i, j), set to 1 if the arc (i, j) is used in graph

G∀i,j∈V G and 0 otherwise.

• yGij : binary variable set to 1 if vertex vGi is visited before vertex vGj , ∀i, j ∈ V G
C

• zGir : binary variable set to 1 if item i is placed in row r, ∀i ∈ V G
C and r = 1, . . . , R.

in which G ∈ P,D.

Objective function:

min
∑

i,j∈V G

G∈{P,D}

cGijx
G
ij (2.1)

subject to:

∑

i

xG
ij = 1, ∀j ∈ V G (2.2)

∑

j

xG
ij = 1, ∀i ∈ V G (2.3)

yGij + yGji = 1, ∀i, j, G, i 6= j ∈ V G (2.4)

yGik + yGkj ≤ yGij + 1 ∀i, j, k, G, (2.5)

xG
ij ≤ yGij ∀i, j, G, (2.6)

yPij + zir + zjr ≤ 3− yDij ∀i, j, r = 1, . . . , R, (2.7)
∑

r

zir = 1, ∀i, (2.8)

∑

i

zir = L, ∀r = 1, . . . , R, (2.9)

x, y, z ∈ B (2.10)
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The objective function (2.1) minimizes the sum of weights of the used edges (i, j).

Constraints (2.2) and (2.3) state that the vehicle must enter and leave each node

exactly once. Constraint (2.4) ensures a precedence between a pair of nodes. The prece-

dence is determined by the binary variable y, either if i is visited before j or j before i.

Constraint (2.5) enforces a transitive property where: if i comes before k and k before j,

then i is also visited before j. Constraint (2.6) defines the precedence variable according

the way in which the items are gathered. Constraint (2.7) states that if two items are

placed in the same row, the first item picked must be the last one delivered. This contraint

ensures that the problem follows the LIFO policy. Constraint (2.8) ensure that each item

is assigned to only one row, and constraint (2.9) enforces the stack capacity, given by

lenght L. Constraint (2.10) enforces that variables x, y and z are binary variables.

In addition to the above cited exact model proposed in Petersen and Madsen [2009],

other authors worked in the DTSPMS. New neighboorhoods and a heuristic based on a

Hybrid Variable Neighboorhood Search were proposed by Felipe et al. [2009a] and Felipe

et al. [2009b]. Better results were found when compared to the Large Neighboorhood

Search proposed by Petersen and Madsen [2009].

A few years later, an exact algorithm based on the branch-and-bound algorithm

was proposed by Martínez et al. [2013] outperforming the first exact model proposed by

Petersen and Madsen [2009]. Efficient algorithms were proposed in Casazza et al. [2012]

and a competitive heuristic based on a dynamic programming local search was proposed

by Urrutia et al. [2015]. The exact model proposed by Barbato et al. [2016] that solves

instances previously unsolved in the literature is the last report on the subject.

2.2 Double Vehicle Routing Problem with Multiple

Stacks

In the same way TSP problems were extended to VRP problems, the DTSPMS was

extended to the DVRPMS in Iori and Riera-Ledesma [2015]. While the DTSPMS involves

a single vehicle, in the DVRPMS a fleet of vehicles is available.

Figure 2.1 shows an example of solution for the DVRPMS. The depots are indicated

by the large central dot on both pickup and delivery regions. The orders are numbered

from 1 to 16, and for each order there is a specific pickup location and a respectively

associated location in the delivery region. For each depot, there is a fleet of four vehicles

(containers), each one with two stacks of height two. The stacks are shown in the center

of the figure. Their items can not be rearranged. Each vehicle must leave the depot in
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Figure 2.1: DVRPMS example

the pickup region and return to the same depot when its loading is completely filled. The

containers are then shipped to the delivery depot. Then the vehicles deliver the items

on the respective cities of each order according to its loading. The cost of all routes

performed by the fleet on both regions must be optimum, having the minimum possible

value.

2.2.1 Mathematical formulation

The problem was formally described in Iori and Riera-Ledesma [2015] and it is shown

in this subsection. Let I = {1, 2, . . . , n} be the set of customer inquiries carried by the

vehicles in the pickup and delivery regions. Let also V P
0 = {1P , 2P , . . . , nP} be the set of

customers related to the pickup regions. Following the region dependences, each request

i ∈ I corresponds to its iT ∈ V T
0 vertex, given that T refers to any of the two regions.

It is possible to represent the DVRPMS as a directed graph G = (V,A), where V is

the vertex set given by V = V P ∪ V D, where V P = {0P} ∪ V P
0 and V D = {0P} ∪ V D

0 .

The members 0P and 0D are the depots for the pickup and delivery regions and members

V P
0 and V D

0 are, respectively, the sets of vertices excluding the depots for the pickup and

delivery regions. Likewise, the arc set is given by A = AP ∪ AD, where AP = {(iP , jP ) ∈

V P × V P |iP 6= jP} and AD = {(iD, jD) ∈ V D × V D|iD 6= jD}. For each arc (i, j) ∈ AP

and (i, j) ∈ AD there is an associated routing cost of cPij and cDij , respectively.

To avoid confusion in the index representation, T ∈ {P,D} was used to refer to

properties applied to both pickup and delivery regions. The respective indexes P and

D were used to highlight a property that is exclusive for the pickup and delivery region,

respectively.

The set of vehicles that are strictly allocated in the pickup depot is defined by K.

Each vehicle k ∈ K will receive the goods in rk stacks of height lk. For a proper designation



2. Pickup and Delivery problems 10

of the vertices and arcs traveled by the k ∈ K vehicles, Qk = {p1, p2, . . . , pq} ⊆ V P

was defined to represent the vertex set covered by the vehicle k ∈ K in the pickup

region and A(Qk) = {(p1, p2), (p2, p3), . . . , (pq−1, pq)} was defined to represent the arc

set, where each vehicle k ∈ K travels in the pickup region. Likewise, for the delivery

region, Fk = {d1, d2, . . . , df} ⊆ V D represents the set of visited vertices and A(Fk) =

{(d1, d2), (d2, d3), . . . , (df−1, df )} the set of covered arcs.

Due to the premisse that each vehicle k is able to carry an amount of rklk products

and to the obligation of precedence on an arc (i, j) in view of the LIFO policy, the pair

(Qk, Fk), is called load-infeasible if there is no load that meets the above mentioned

specifications. Rk is denoted as an unfeasible set of pairs for each vehicle k ∈ K. The

definition of these nonviable paths were important to handle the mathematical constraints

added to the relaxed model. This constraints are not presented in this dissertation and

can be seen in Iori and Riera-Ledesma [2015].

Furthermore, it was defined as CP
k a cycle of one vehicle k ∈ K that leaves the

pickup depot and travels through the cities of this region, and I(CP
k ) as the set of inquiries

collected in the pickup process. Likewise, CD
k and I(CD

k ) are, respectively, the cycles in

the delivery region and the set of products distributed in the delivery region.

With all vehicles k ∈ K there is a set of |K| routes Ck that, to be considered as a

feasible solution, must satisfy four conditions. The first one is the paring constraint. Each

product from the pickup region must be delivered to its respective pair in the delivery

region, i.e., I(CP
k ) = I(CD

k ). Secondly, at most rklk customers must be served, i.e.,

|I(CT
k )| ≤ rklk. Thirdly, each route must support the loading of its respective container

or Ck /∈ Rk. Finally, each customer must be served by only one route, i.e.,
⋃

k∈K I(CT
k ) = I

and I(CT
j ) ∪ I(CT

k ) = ∅ for j, k ∈ K, j 6= k and T ∈ {P,D}.

The model below is given by Iori and Riera-Ledesma [2015]. This relaxed model

was named DVRPMS0, and from it, all of the exact algorithms were generated. Let:

• xTk
i,j : binary variable for each arc (i, j) ∈ AT , T ∈ {P,D} set to 1 if the vehicle k

crosses the arc (i, j) and 0 otherwise.

• yTk
i : binary variable set to 1 if the vehicle k visits the customer in i of region T

and 0 otherwise.

Objective function:

min
∑

T∈{P,D}

∑

(i,j)∈AT

cTij
∑

k∈K

xTk
ij (2.11)
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subject to:

∑

j∈V T

xTk
ij − yTk

i = 0, i ∈ I, T ∈ {P,D}, k ∈ K (2.12)

∑

j∈V T

xTk
ij −

∑

j∈V T

xTk
ji = 0, i ∈ I, T ∈ {P,D}, k ∈ K (2.13)

∑

j∈V T
0

xTk
0j = 1, T ∈ {P,D}, k ∈ K (2.14)

∑

i∈S

∑

j∈V T \S

xTk
ij ≥ yTk

δ ,
δ ∈ S, T ∈ {P,D},

S ⊆ V T
0 , k ∈ K

(2.15)

∑

i∈I

yTk
i ≤ lkrk, T ∈ {P,D}, k ∈ K (2.16)

yPk
i − yDk

i = 0, i ∈ I, k ∈ K (2.17)
∑

k∈K

yTk
i = 1, i ∈ I, T ∈ {P,D} (2.18)

xTk
ij ∈ {0, 1}

(i, j)T ∈ AT ,

T ∈ {P,D}, k ∈ K
(2.19)

yTk
i ∈ {0, 1} i ∈ I, T ∈ {P,D}, k ∈ K (2.20)

The objective function (2.11) minimizes the cost of all arcs (i, j) traversed by the

vehicles k ∈ K in both regions P and D. The constraint (2.12) and the bound (2.20)

defines the variable y and forces only one arc to enter a customer city i. The constraint

(2.13) establishes the conservation flow of each vertex. The constraint (2.14) forces each

vehicle to leave and arrive a depot only once. The connectivity constraint in equation

(2.15) ensures that each customer is connected to the depot by a path. The constraint in

equation (2.16) guarantees that the vehicle is filled according to its capacity. A pairing

constraint in (2.17) forces each container to deliver the goods gathered in the pickup

region to its respective customer in the delivery region. The constraint (2.18) ensures

that each customer is served only by one vehicle. Equations (2.19) and (2.20) assures

that the variables xTk
i,j and yTk

i are binary. Albeit having one constraint that controls how

many items will be assign on each route (Equation 2.16), the relaxed model does not take

account of the infeasible paths caused as a result of negleting the LIFO policy.
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2.2.2 Modification in the orders offering

With the works produced by Petersen and Madsen [2009], Felipe et al. [2009a] and

Martínez et al. [2013], the DTSPMS generated satisfactory results (up to 4% distant

from the global optimum solution) for instances with 33 requests. Iori then generated

new instances of the problem, now with a fleet of vehicles available. The exact math-

ematical model of DVRPMS solves small instances easily, but for large instances with

24 requests, the model does not resolve within one hour of execution. The heuristics

proposed in this dissertation generated satisfactory results.

Therefore, one way forward is to extend the DVRPMS considering now that there

is a spare supply. For example, let us consider that the set of items that compose the

regions has 24 units (1 warehouse and 24 cities). A surplus demand is then added. There

will be 29 items (rounded to the nearest integer) to be collected and delivered. The fleet is

not modified, thus still containing 24 positions to be allocated, which requires that items

be collected and delivered based on a priority index defined as score.

A real-life situation of this problem can be seen in a context where the number of

orders are greater than the capacity of the fleet. The logistics manager must choose the

items based on their priority, which can be designed based on urgency or other factors.

2.2.3 Mathematical model based on a score value

The score-based model is a mixture between the DTSPMS and the DVRPMS and can be

formalized using the DVRPMS variables. With the given routing costs of the edges (i, j),

called cij and the scores associated to the customers i, named si, this formalization was

proposed:

• xkT
i,j : binary variable set to 1 if the vehicle k crosses the arc (i, j) and 0 otherwise.

T indicates that the properties of the variable that takes this index are valid for

both regions P and D.

• y T
ij : binary variable set to 1 if the vertex i is visited before vertex j in region T

and 0 otherwise.

• z k
ir : binary variable set to 1 if the item i is placed in row r of the vehicle k and 0

otherwise.

• wkT
i : binary variable set to 1 if the vehicle k visits the customer i of region T and

0 otherwise.
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max
∑

k∈K

∑

i∈Vc

siw
kP
i −

∑

k∈K

∑

T∈{P,D}

∑

i∈V

∑

j∈V \{i}

c T
ij x

kT
ij (2.21)

∑

j∈Vc

xkT
0j = 1 ∀k ∈ K, ∀ T ∈ {P,D} (2.22)

∑

i∈Vc

xkT
i0 = 1 ∀k ∈ K, ∀ T ∈ {P,D} (2.23)

∑

i∈V \{j}

xkT
ij = wkT

j ∀k ∈ K, ∀ T ∈ {P,D}, ∀j ∈ Vc (2.24)

∑

j∈V \{i}

xkT
ij =

∑

j∈V \{i}

xkT
ji ∀k ∈ K, ∀ T ∈ {P,D}, ∀i ∈ Vc (2.25)

∑

k∈K

wkT
i ≤ 1 ∀ T ∈ {P,D}, ∀i ∈ Vc (2.26)

Rk∑

r=1

z k
ir = wkP

i ∀k ∈ K, ∀i ∈ Vc (2.27)

∑

i∈Vc

z k
ir = Lk ∀k ∈ K, ∀r = 1..Rk (2.28)

wkP
i = wkD

i ∀k ∈ K, ∀i ∈ Vc (2.29)

y T
ij + y T

ji = 1 ∀ T ∈ {P,D}, ∀i ∈ Vc, ∀j ∈ Vc \ {i} (2.30)

y T
il + y T

lj ≤ y T
ij + 1 ∀ T ∈ {P,D}, ∀l ∈ Vc, ∀i ∈ Vc, ∀j ∈ Vc \ {i} (2.31)

xkT
ij ≤ y T

ij ∀k ∈ K, ∀ T ∈ {P,D}, ∀i ∈ V, ∀j ∈ V \ {i} (2.32)

y P
ij + z k

ir + z k
jr ≤ 3− y D

ij ∀k ∈ K, ∀i ∈ Vc, ∀j ∈ Vc \ {i}, ∀r = 1..Rk (2.33)

xkT
ij ∈ {0, 1} ∀k ∈ K, ∀ T ∈ {P,D}, ∀i ∈ V, ∀j ∈ V \ {i} (2.34)

y T
ij ∈ {0, 1} ∀ T ∈ {P,D}, ∀i ∈ V, ∀j ∈ V \ {i} (2.35)

z k
ir ∈ {0, 1} ∀k ∈ K, ∀i ∈ Vc, ∀r = 1..Rk (2.36)

wkT
i ∈ {0, 1} ∀k ∈ K, ∀ T ∈ {P,D}, ∀i ∈ Vc (2.37)

The objective function (2.21) maximizes the difference between the scores of served

cities and the cost to travel through the selected cities. Constraint (2.22) and (2.23)

ensures that one vehicle must leave or arrive on the depot. Constraint (2.24) defines

variable wkT
j if a vehicle arrives at city j. Flow constraint (2.25) ensures that a vehicle

arrives and leaves a city only once (this is also covered by (2.26)). Constraint (2.27)

enforces that a item is allocated in only one row of a vehicle, and constraint (2.28) ensures

that the rows do not exceed the vehicle capacity. Constraint (2.29) is a pairing constraint

and ensures that a given pickup item have a correspondent delivery item. Constraint
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(2.30) estabilishes a precedence relation between arc i, j. Constraint (2.31) ensures that

if i is visited before l and l before j, then i is visited before j, set by the precedence

constraint (2.32). Finally, constraint (2.33) ensures that if i is placed in the same row of

item j, and i is picked before j, than i must be delivered after j. Bounds (2.34), (2.35),

(2.36) and (2.37) define the binary variables.

This a new model proposed by Chagas and it combines the DTSPMS and DVRPMS

models and introduces a new variable to check if the items of the same row are visited

by a vehicle k, thus constraints, 2.26 and 2.29 does not appear in either DTSPMS or

DVRPMS models. This model was not published yet and it was implemented through

personal communications.



Chapter 3

Methods

Before detailing the heuristics in this chapter, the initial solution generation and the

neighborhood structures are introduced and the algorithms applied to the known instances

are showed. With an exception to the algorithms that use a special local search procedure

(LS), all others share the same randomly initial solution generation.

3.1 Solution representation

A solution is represented by the distribution of |I| items over the |K| vehicle fleet. Each

vehicle of this fleet has one container with a loading plan in accordance with its inherent

configuration. For the DVRPMS, the routes are obtained selecting the nearest neighboor

when a vehicle k leaves the depot. Regarding data structures, a struct named vehicle was

defined, and all records were defined as follows: the size of its stacks (r and l), the routes

(pickup and delivery), and the stack itself were declared as bidimensional vectors.

Figure 3.1 shows an example of a solution representation for three containers of size

2 × 4, 1 × 4 and 2 × 2. For the DVRPMS with Surplus Demand, the pickup and delivery

routes for each vehicle are obtained by the evaluation function described on section 3.2.

Essentially, data structures are the same for the DVRPMS with Surplus Demand, except

for a new “ghost” vehicle, created to receive the unused items of a current solution and

the fact that routes are not stored on the current solutions.

15
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Figure 3.1: Example of a DVRPMS with Surplus Demand solution representation

3.2 Evaluation function for the DVRPMS with

Surplus Demand

The evaluation function role is to generate pickup and delivery routes given a stack con-

figuration. The function uses a greedy approach or an optimum approach depending on

the stack configuration. These approaches are described below:

• Greedy : On each run, among the items at the top (or bottom) of each stack, the

item that has the least impact on the delivery (or pickup) route costs is chosen.

Generating the pickup and delivery routes by this strategy is O(r2l), because one

needs to decide r × l times which of the r locations of the items on the top of the

stack has the shortest distance to the next point.

• Optimum: Among all possible routes, the routes of pickup and delivery that have the

smallest distance are chosen, i.e., the optimal pickup and delivery routes is selected,

given a loading plan. Casazza et al. [2012] demonstrate this for the DTSPMS using

the approach once for each vehicle. The complexity of this algorithm is O((rl)r).

The exponential complexity of the algorithm makes it computationally infeasible to

be performed in all solution evaluations. Therefore, obtaining the optimal routes is

used only in specific cases.

3.3 Initial solution generation procedure

The problem considers that, for each instance, the number of items is equal to the capacity

of the fleet, hence no truck is overloaded or underloaded. For the construction of a first

feasible solution, a random array of size n is generated with the items given by I. The

stacks are then filled from bottom up by removing the items of this random array, which

generates random stacks for each vehicle k ∈ K.

For each vehicle k ∈ K the pickup route is constructed based on the minimum

distance between the items on top of the stack and the vertices that can be potentially
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visited in the region (according the precedence in the current stack), starting from the

pickup depot. The delivery routes were generated by a nearest neighbor approach that

not violated the LIFO policy.

In the DVRPMS with Surplus Demand an initial solution is created as follows. For

each vehicle, r × l items of I are randomly selected. The container’s stacks are loaded

from bottom-up, similarly as it works on the DVRPMS. It should be noted that there is

a “ghost” vehicle that receives the items that are unused in a given solution.

3.4 DVRPMS neighboorhood structures

The four neighborhood structures used in the DVRPMS algorithms are shown in this sec-

tion. These structures were used in the local search procedures of the proposed algorithms

in Section 3.6. The first two presented, route-swap and complete-swap, were based in the

structures of Petersen and Madsen [2009] for the DTSPMS. The instack-swap structure

was based on a structure defined in Felipe et al. [2009a]. The structure route-exchange

was created for this problem and is based on a basic VRP neighborhood structure from

Toth and Vigo [2001].

3.4.1 route-swap

The structure route-swap moves through the search space changing all pairs of consecutive

items A and B, similarly to the classic 2-opt structure seen in Croes [1958]. The swap

reorder the routes considering that two items cross each other. On account of this change

in a pickup route, it is often necessary a swap in the delivery region to preserve the stack

feasibility.

For example, if the shifted items A and B are located in the same stack, the position

that these items A and B occupy in the delivery route must be changed as well, to preserve

feasibility. On the other hand, if the shifted items A and B are located in different stacks,

it is not necessary to change the position of the items in the delivery route, because it is

still possible to travel through A and B maintaining the precedence.

It is noteworthy that the route-swap operations are performed in one vehicle at a

time. Since all the items of a pickup route are examined as well as the viability of the

same items in the delivery route, the size of this structure is O(|I|) where |I| is the number

of items in the problem. An example can be seen in Figure 3.2.
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Figure 3.2: Route-swap example. The algorithm starts changing all consecutive items
in the pickup route. Depending on the stack configuration, a change will be necessary on
the delivery route.

3.4.2 complete-swap

The structure complete-swap moves through the search space changing all pairs of items

A and B that are located in different stacks. Here, when a swap is performed between

two items A and B in the pickup route, the corresponding items in the delivery route are

swapped, to maintain feasibility.

Since all complete-swap operations are performed in one vehicle at a time and

all pairs of items in different stacks are considered, the size of this structure is

O(
∑K

k
|I|k(|I|k−l)

2
) ≈ O(|I|2k), since for each set of items I on vehicle k, one has to check

all pairs of items that are on a different stack, hence |I|k − l. An example can be seen in

Figure 3.3:

Figure 3.3: Complete-swap example. After changing a pair A,B on the stack, the
algorithm fixes feasibility by swaping the items in the pickup route (left) and in delivery
route(right)
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3.4.3 instack-swap

The structure instack-swap moves through the search space changing all pairs A and B

that are allocated in the same stack. On account of this change, in the pickup and delivery

routes, it is necessary to swap both A and B to maintain the stack feasibility.

It is noteworthy that the instack-swap operations are performed in one vehicle at

a time. One has to check for all items on the same stack, hence a number of items r

are excluded from the search, that is, one that represents the items that are currently

checking. Since all the items on the same stack are examined (O(|I| − r)) as well as the

viability of the same items in the routes (O(1)), the size of this structure is O(|I|). An

example can be seen in Figure 3.4:

Figure 3.4: Instack-swap example. After the swap on the pair A, B, the algorithm
fixes feasiblity by swaping the items on the pickup route (top) and in the delivery route
(bottom)

3.4.4 r-stack-permutation

The structure r-stack-permutation moves through the search space randomly selecting

a stack and the first r items from top-down allocated at this stack are selected to be

permuted. r, not to be confused with the number of rows of a given stack, is a variable

set to the permutation size in a given column of the stack. Since the maximum size of

a column (l) according to the instances in the literature is 4 (see Table 4.1), the values

accepted for r are 1, 2, 3 and 4. On account of this change, in the pickup and delivery

routes, it is necessary to move the items according to its precedence sequence to maintain

the stack feasibility.
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It is noteworthy that the r-stack-permutation operations are performed in one vehicle

at a time. Since all permutations of the selected r items are examined, the size of this

structure is O(r!). An example can be seen in Figure 3.5:

Figure 3.5: r-Stack-Permutation example. The algorithm randomly chooses a stack
(the middle stack) and selects all r items from top-down (r = 3). All permutations are
evaluated. One of the permutations is seen in the figure

3.4.5 route-exchange

The structure route-exchange covers the search space doing a swap in a random k set of

items (one for each vehicle k ∈ K). For example, consider that there are three vehicles,

each one with a pickup route. An item from the pickup route of vehicle 1 is randomly

chosen and exchanged with an item from the pickup route of vehicle 2, an item from the

pickup route of vehicle 2 is randomly chosen and inserted with an item from the pickup

route of vehicle 3, until a cycle is completed. The same items are swapped in the stack

and in the delivery route to preserve the solution’s feasibility. The effects of this swap for

the DVRPMS with Surplus Demand can be seen in Figure 3.6. Note that the DVRPMS

with Surplus Demand uses a “ghost” vehicle that receives the orders that are not served

by the current solution. Consequently, route-exchange is the only neighboorhood that

verifies unused orders.

3.5 DVRPMS with Surplus Demand neighboorhood

structures

The two neighborhood structures used specifically in the DVRPMS with Surplus Demand

algorithms are shown in this section. These structures were used in the local search

procedures of the ILS and SA.
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Figure 3.6: Route-exchange example. The algorithms chooses randomly one item of
each vehicle and swaps it with the next vehicle following a cycle. At the top right there
are the pickup and delivery routes. The routes after the changes are shown at the bottom
right

3.5.1 swap

The neighbourhood structure set to explore the solution space for the DVRPMS with

Surplus Demand is a simple switch of two items positions (swap). The products to be re-

located may belong to the same container or to different containers, so the neighbourhood

size is O(|I|2). Figure 3.7 shows a solution s using three heterogeneous vehicles (2 × 4,

1× 4 and 2× 2), and one of its neighbours s′. The set of all neighbors of a given solution

s is represented by N(s).
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Figure 3.7: Simple swap example. A solution s and a neighbor s′. A simple swap is
performed on a pair of items. The resulting solution is then passed to the the evaluation
function and the routes are built

3.5.2 ILS perturbation

This perturbation was set to explore a wider portion of the solution space. A set of n

items is randomly selected and the solution is rebuilt swaping all set items with a shuffle.

In this algorithm, n becomes bigger when the number of iterations with no improvement

grows. Figure 3.8 shows an example of this perturbation. In this case, n = 5, so 5 items

are randomly chosen and the positions are changed after a shuffle

Figure 3.8: Perturbation example. A solution s and a solution s′ after a perturbation.
A randomly selected set of 5 items is shuffled and reinserted in the stacks.

3.6 Metaheuristics applied to the DVRPMS

Following Talbi [2009], metaheuristics are used to deal with large-scale and often difficult

problems (commonly NP-complete) generating solutions in fairly small times without

guaranteeing that the solution is optimal or close to it. In the last 30 years a great range

of metaheuristics has been proposed.

For some large instances of this problem, none of the exact methods could solve

the problem within one hour. To work around this problem, heuristics approaches that

could rapidly give a solution close to the optimum were proposed for both the DVRPMS

and DVRPMS with Surplus Demand. These heuristics were based on the Iterated Lo-

cal Search (ILS), Simulated Annealing (SA) and Variable Neighborhood Descent (VND)

meta-heuristics .

The ILS metaheuristic has been widely used in vehicle routing problems with fa-

vorable results, especially in highly restrictive problems. The VND metaheuristic is com-
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monly used for vehicle routing problems to show how easily the solution converges to a

local optimum when the local search is performed. The SA metaheuristic is often used

when one wants to avoid choosing bad perturbations, and proved to be a great heuristic

for this problem.

3.6.1 ILS approach

In their work, Lourenço et al. [2010] summarizes the iterative local search. The essence of

the method lies in the iterativity that constructs the sequence of solutions generated by

a initial heuristic inside the method. The organization of this iterativity provides better

solutions in comparison if the changes were random.

The basic version of ILS was used for the normal DVRPMS. The algorithm starts

with a local search procedure in the initial solution. When the current solution can not be

improved by the neighborhood operators, the algorithm restarts with a perturbation. This

is done to avoid being locked in a local optimum. The local search in the ILS algorithm

was carried out by the structures route-swap and complete-swap. The current solution

was chosen in a best improvement basis. When none of these operators provide a better

solution, a perturbation was applied by the route-exchange structure. The perturbation

seen in the previous section is only applied in the modified version of the DVRPMS. The

ILS algorithm has a fixed running time of 10 seconds, which was set according tests seen

in the Appendix. The algorithm is described by the Algorithm 1.

Algorithm 1 Iterated Local Search

1: Initialize with init_sol.
2: best_sol ← init_sol
3: current_sol ← init_sol
4: while time < max_time do

5: route_swap(current_sol)
6: complete_swap(current_sol)
7: route_exhange(current_sol)
8: if current_sol < best_sol then

9: best_sol ← current_sol
10: end if

11: end while

12: return best_sol
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3.6.2 VND approach

The VND is the simplest form of the VNS based heuristics, first shown in Mladenović

et al. [2000]. The name comes from the fact that various neighboorhood structures per-

form the local search inside the algorithm. For the VND, for example, the changes are

made in a deterministic way, and the final solution is the local optimum of all neighboor-

hoods structures. These neighborhood structures are normally arranged hierarchically

according to its perturbation strength. In each iteration, if a better solution is found

after a local search structure operator, the algorithm returns to the first perturbation

until no improvement can be found. VND heuristics quickly converge to a local optimum

and might not provide good solutions in VRP problems, but was still used in the prob-

lem to verify the behaviour of this algorithm in particular to the problem. The VND

implementation is described in Algorithm 2.

3.6.3 SA approach

Inspired by a technique from metallurgy, this probabilistic metaheuristic tries to locate

a good approximation to the optimum solution of the problem. For the DVRPMS, the

SA algorithm begins with an initial solution that is perturbed with either route-swap or

route-exchange neighborhoods. The probability of choosing a particular neighborhood is a

parameter of the algorithm. Instead of picking the best neighbor, a random one is chosen.

This neighbor can then be accepted depending on its value and current temperature

according to the probability function seen in line 10 of Algorithm 3. The pseudocode in

Algorithm 3 describes the above cited process.

Note that the better the value and the higher the temperature, the higher is the

chance to chose the current solution.

3.7 Metaheuristics applied to the DVRPMS with

Surplus Demand

For the DVRPMS with Surplus Demand, the ILS proposed for Algorithm 1 was used

to compare how the solutions were related between these two different problems. Since

there is a higher number of items to be picked and delivered in the modified version of

the problem, a ghost vehicle set to the items that are not currently used in the solution

was implemented. This approach was used in all algorithms of this section.
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Algorithm 2 Variable Neighbourhood Descent

1: Initialize with current_sol ← init_sol.
2: best_sol ← init_sol, neigh← 1, n_max← 3
3: while time < max_time and neigh < n_max do

4: if neigh = 1 then

5: route_swap(current_sol)
6: if F (current_sol) < best_sol then

7: best_sol ← current_sol
8: neigh← 1
9: else

10: neigh++
11: end if

12: end if

13: if neigh = 2 then

14: complete_swap(current_sol)
15: if F (current_sol) < best_sol then

16: best_sol ← current_sol
17: neigh← 1
18: else

19: neigh++
20: end if

21: end if

22: if neigh = 3 then

23: route_exhange(current_sol)
24: if F (current_sol) < best_sol then

25: best_sol ← current_sol
26: neigh← 1
27: else

28: neigh++
29: end if

30: end if

31: end while

32: return best_sol
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Algorithm 3 Simulated Annealing

1: iter ← 0
2: best← initialSolution
3: temperature← initialTemp
4: do

5: pert← 0
6: nSuc← 0
7: do

8: candidate← perturb(best)
9: delta← candidate.value()− best.value()

10: if(delta <= 0 or exp(−delta/temperature) > random())
11: best← candidate
12: nSuc← nSuc+ 1
13: while(+ + pert < maxPert and nSuc < maxSuc)
14: temperature← updateTemperature()
15: while(+ + iter < maxIter)
16: return best

3.7.1 Local search

A solution found by an algorithm should be submitted to the local search procedure

described by Algorithm 4 either during the algorithm (ILS+LS) or at the end of the

procedure (SA+LS). In the local search procedure, for each container of a given solution,

the optimal pickup and delivery routes are obtained. The purpose of this procedure is to

improve the value of the solution, trying to achieve a local minimum that was not found

by the algorithms due to the possibility of not obtaining the best routes of each container.

Algorithm 4 Local Search (LS)

1: s← initial solution
2: repeat

3: N(s)← generate the neighbors of s
4: s′ ← first improvement neighbor s′ ∈ N(s)
5: if fLS(s

′) < fLS(s) then

6: s← s′

7: end if

8: until s is a local optimum
9: return s

3.7.2 SA+LS approach

This SA approach differs from the last SA (the one used in the DVRPMS) because it

now has a local search procedure that generates better solutions. It is used only for the
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DVRPMS with Surplus Demand. The initial solution for this SA is generated randomly

and is considered as the best solution so far. While the minimum temperature and the

maximum number of iterations are not achieved, the algorithm randomly selects a solution

nearby the current solution and accepts it according to a probability function given by the

method, selecting it as the best solution so far if it is better than the last best solution.

The algorithm is described in Algorithm 5. Then, the best solution proceeds to the Local

Search procedure described in Algorithm 4.

As it was previously said in this dissertation, the SA+LS heuristic managed to

achieve good results, and it was also applied to the Iori and Ledesma version of the

DVRPMS.

Algorithm 5 DVRPMS with Surplus Demand Simulated Annealing (SA+LS)

1: s← generate a random solution
2: best_solution← s
3: t← t0
4: while t > tmin do

5: it← 0
6: while it < num_it do

7: N(s)← generate the neighbors of s
8: s′ ← select a random solution s′ ∈ N(s)
9: ∆← fSA(s

′)− fSA(s)
10: if ∆ < 0 or random[0, 1] < e−∆/t then

11: s← s′

12: if fSA(s
′) < fSA(best_solution) then

13: best_solution← s′

14: end if

15: end if

16: it← it+ 1
17: end while

18: t← t× (1− α)
19: end while

20: return best_solution

3.7.3 ILS+LS approach

This ILS approach heavily differs from the last approach used on the DVRPMS because it

now has a better local search procedure that generates better solutions. It is used only for

the DVRPMS with Surplus Demand. In this ILS algorithm an initial solution is generated

randomly and is considered as the best solution so far. While the iterations do not meet

the stopping criteria, which is the maximum number of iterations with no improvement,
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the algorithm makes a perturbation, that depends on the current iteration and saves the

best solution so far. The best solution proceeds to the local search procedure and if a

better solution is found, the variable is updated. The algorithm is described in Algorithm

6.

Algorithm 6 DVRPMS with Surplus Demand Iterated Local Search (ILS+LS)

1: s← generate a random solution
2: best_solution← s
3: it← 0
4: while it < maxit do

5: pertsize ← 3
6: if it > 30 then

7: pertsize ← 0, 3 ∗ numitens

8: end if

9: if it > 50 then

10: pertsize ← 0, 5 ∗ numitens

11: end if

12: if it > 70 then

13: pertsize ← 0, 7 ∗ numitens

14: end if

15: if it > 90 then

16: pertsize ← 0, 9 ∗ numitens

17: end if

18: s′ ← perturbate s ∈ N(s) according pertsize
19: s′ ← LOCAL_SEARCH{s′}
20: if fSA(s

′) < fSA(best_solution) then

21: best_solution← s′

22: it← 0
23: else

24: it← it+ 1
25: end if

26: end while

27: best_solution← LOCAL_SEARCH{best_solution}
28: return best_solution

3.7.4 TS+LS approach

Following the work in Petersen and Madsen [2009], a tabu search was implemented to

compare the general acceptance of the swap neighboorhood. It is only implemented for

the DVRPMS with Surplus Demand.

The Tabu Search heuristic uses flexible memory structures to store data from spaces

already trespassed. Due to the fact the Tabu Search uses intensively adaptive memory te-



3. Methods 29

chiniques, the heuristic can usually generate good solutions, where good denotes solutions

that are close to the optimum solutions or the global optimum solution itself, obtained in

small computational time.

In the TS algorithm an initial solution is generated randomly and is considered as

the best solution so far. While the iterations does not meet the stopping criteria, which

is the maximum number of iterations with no improvement, a variable currentit gets the

current iteration. A function N that checks all neighboors (possible swaps) of a current

solution s is then called. If a better solution is found, the algorithm updates the current

solution, only if the particular swap that has better solution value was not performed in

the last tabusize iterations. This is checked by equation currentit − tabusize. The best

solution proceeds to the local search procedure and if a better solution is found, the

variable is updated and is marked as the best solution so far. This algorithm is described

in Algorithm 7

Algorithm 7 DVRPMS with Surplus Demand Tabu Search (TS+LS)

1: s← generate a random solution
2: best_solution← s
3: it← 0
4: currentit ← 0
5: tabutable← initialize with -INF
6: while it < maxit do

7: currentit ← it+ 1
8: N(s)← generate the neighbors of s
9: tabutable{s} ← currentit

10: s′ ← select the best solution s′ ∈ N(s)
11: while tabutable{s′} 6= currentit − tabusize do

12: s′ ← select the next best solution s′ ∈ N(s)
13: end while

14: if fSA(s
′) < fSA(best_solution) then

15: best_solution← s′

16: it← 0
17: else

18: it← it+ 1
19: end if

20: end while

21: best_solution← LOCAL_SEARCH{best_solution}
22: return best_solution
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Computational Experiments

The heuristic approaches were implemented in C++ and 10 repetition tests were per-

formed by an Intel i7 Desktop with 16Gb RAM and a 4.0 Ghz quad-core processor

running Ubuntu 16.04 LTS. The exact model for the DVRPMS with Surplus Demand

was implemented in C++ using CPLEX 12.5 libraries and was performed by an Intel i7

Desktop with 32Gb RAM and a 4.0 Ghz quad-core processor running Ubuntu 12.10. The

latter configuration is a personal computer allocated in the computer science department.

It has more RAM memory and was chosen to run the exact model.

A parameter calibration was made for Algorithms 1, 5, 6 and 7. The calibration

results are shown in Appendix A. The parameter calibration for the 3 was set in da Silveira

et al. [2015] and is shown in the Appendices for completeness.

4.1 Instances

The set of items in each test instance was randomly generated by Iori and Riera-Ledesma

based on TSPLIB’s concorde33. The items are arranged in an area of 100× 100 and the

depot is located at (50, 50). Euclidean distances were rounded to the smallest integer and

the created items sets were named R05 to R09. In some of these instances, not all items

are used. Therefore, the items coordinates were chosen in ascending order starting from

the first item in the list.

The configurations from Iori and Riera-Ledesma [2015] are shown in Table 4.1. Each

configuration was combined with each set of items, generating a total of 75 instances. The

first column in Table 4.1 indicates the index of the container’s configuration. The second

column shows the number of vertices in the instance. The third column shows the number

of items in the instance. The fourth column indicates the number of vehicles. Finally, the

last column presents the stack configuration of each vehicle.

30
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The first 65 instances of the DVRPMS have a known global optimum, found by the

exact methods proposed in Iori and Riera-Ledesma [2015]. The same regions and stack

configurations were used in the DVRPMS with surplus demand. To define the score for

the problem, an uniform distribution was used to generate random values for each item

in the DVRPMS original instances.

Table 4.1: Configuration of the containers for each type of instances

Type |V | |I| |K| (r × l)
(a) 26 12 2 (2× 3) (2× 3)
(b) 26 12 2 (2× 2) (2× 4)
(c) 26 12 3 (2× 2) (2× 2) (2× 2)
(d) 34 16 2 (2× 4) (2× 4)
(e) 34 16 3 (2× 2) (2× 3) (2× 3)
(f) 34 16 4 (2× 2) (2× 2) (2× 2) (2× 2)
(g) 38 18 2 (2× 3) (3× 4)
(h) 38 18 3 (2× 3) (2× 3) (2× 3)
(i) 38 18 4 (2× 2) (2× 2) (2× 2) (2× 3)
(j) 42 20 2 (2× 4) (3× 4)
(k) 42 20 3 (2× 3) (2× 3) (2× 4)
(l) 42 20 4 (2× 3) (2× 3) (2× 2) (2× 2)
(m) 50 24 2 (3× 4) (3× 4)
(n) 50 24 3 (2× 4) (2× 4) (2× 4)
(o) 50 24 4 (2× 3) (2× 3) (2× 3) (2× 3)

4.1.1 Calibration

The parameters selected for the simulated annealing approach for the DVRPMS was

chosen as follows: the initial temperature is 800; the number of iterations is 2000; the

number of perturbations is 200; the maximum number of successes is 180; the reduction

factor is 1% and the probability of the route-swap neighborhood being chosen is 60%. The

parameters were chosen so the algorithm would take at most 10 seconds for the instances

tested, which is the stop condition in the ILS algorithm.

Other calibrated combinations can be seen in Appendix A. Four were the param-

eters selected for the calibrated Simulated Annealing applied to the modified version of

the DVRPMS. The first one, num_it (the maximum number of iterations without im-

provement) was 300, the tmin (the final temperature or stopping criteria of the simulated

annealing cooling process) was 6, α (the drop in the temperature on each iteration) was

0.002, and t (the initial temperature of the procedure) was 20.

Only one parameter was set to the ILS applied to the modified version of the

DVRPMS. The maximum number of iterations without improvement allowed was set

as 100. The percentages were set according the size of the iterations with no improve-

ment. For each instance there is a different size of requests, making it hard to set a fixed
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size to produce a perturbation, hence only the maximum number of iterations without

improvement was calibrated.

Two were the parameters selected for the calibrated Tabu Search applied to the

modified version of the DVRPMS. The first one, maxit, i.e., the maximum number of

iterations without improvement, was 100, and tabusize, i.e, the value of the maximum

accepted iteration in the tabu table history in which a swap can be performed, was 7.

4.2 Results

In this section, results for the DVRPMS version seen in Iori and Riera-Ledesma [2015]

are shown, followed by all results for the modified version of the DVRPMS, where there

is a surplus demand of requests.

4.2.1 DVRPMS

From left to right, table 4.2 shows the best solution found in the exact method proposed

in Iori and Riera-Ledesma [2015]. The next colums shows the best found solution for the

VND algorithm, followed by the computational time of this method and also a column

BAO (Best Among Others) that receives ∗ if the best solution of the method is better or

equal to the best solution among all other methods. These three columns (Best solution,

computational time in seconds and BAO columns) are also shown for the ILS, SA and

SA+LS methods. Table 4.3 shows a summary of these findings.
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Table 4.2: All DVRPMS results

Instance Iori & Riera-Ledesma VND ILS SA SA+LS

ID Region Type Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

1 R05 (a) 738 2 * 927 <1s 739 10 741 3 738 13 *

2 R06 895 <1s * 1002 <1s 898 10 897 3 895 13 *

3 R07 761 5 * 903 <1s 771 10 771 3 761 13 *

4 R08 848 <1s * 992 <1s 860 10 857 3 851 13

5 R09 771 <1s * 909 <1s 778 10 791 3 776 14

6 R05 (b) 716 1 * 925 <1s 719 10 721 3 716 3 *

7 R06 859 2 * 1081 <1s 873 10 888 3 866 3

8 R07 733 3 * 927 <1s 737 10 737 3 733 3 *

9 R08 858 3 * 993 <1s 858 10 * 858 3 * 858 3 *

10 R09 738 1 * 975 <1s 760 10 775 3 741 3

11 R05 (c) 855 <1s * 973 <1s 860 10 858 3 855 5 *

12 R06 1011 <1s * 1166 <1s 1011 10 * 1011 3 * 1011 5 *

13 R07 894 1 * 966 <1s 896 10 894 3 * 894 5 *

14 R08 990 1 * 1131 <1s 998 10 990 3 * 990 5 *

15 R09 852 <1s * 992 <1s 855 10 852 3 * 852 5 *

16 R05 (d) 947 329 * 1281 <1s 990 10 976 3 948 1

17 R06 1036 43 * 1325 <1s 1098 10 1093 3 1036 1 *

18 R07 925 46 * 1205 <1s 988 10 971 3 925 1 *

19 R08 1006 52 * 1313 <1s 1089 10 1060 3 1020 1

20 R09 907 97 * 1156 <1s 951 10 974 3 925 1

21 R05 (e) 1050 21 * 1300 <1s 1142 10 1087 4 1050 21 *

22 R06 1102 6 * 1402 <1s 1240 10 1114 4 1114 20

23 R07 1063 29 * 1290 <1s 1168 10 1089 4 1063 20 *

24 R08 1117 10 * 1357 <1s 1215 10 1142 4 1126 21

25 R09 1021 9 * 1234 <1s 1092 10 1046 4 1021 21 *

26 R05 (f) 1217 37 * 1477 <1s 1264 10 1223 4 1217 10 *



4
.

C
o
m

p
u
t
a
t
io

n
a
l

E
x
p
e
r
im

e
n
t
s

34

Table 4.2: All DVRPMS results

Instance Iori & Riera-Ledesma VND ILS SA SA+LS

ID Region Type Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

27 R06 1290 10 * 1640 <1s 1378 10 1290 4 * 1290 10 *

28 R07 1230 44 * 1506 <1s 1306 10 1230 4 * 1230 10 *

29 R08 1261 18 * 1490 <1s 1340 10 1262 4 1261 10 *

30 R09 1127 7 * 1363 <1s 1214 10 1134 4 1134 10

31 R05 (g) 950 9 * 1439 <1s 1083 10 1099 3 950 19 *

32 R06 1012 27 * 1516 <1s 1168 10 1087 3 1024 19

33 R07 932 67 * 1350 <1s 1069 10 1054 3 932 21 *

34 R08 1011 50 * 1475 <1s 1153 10 1128 3 1031 20

35 R09 909 48 * 1257 <1s 1027 10 985 3 919 21

36 R05 (h) 1147 60 * 1544 <1s 1292 10 1198 4 1147 33 *

37 R06 1165 8 * 1578 <1s 1304 10 1190 4 1177 33

38 R07 1123 32 * 1549 <1s 1255 10 1136 4 1123 33 *

39 R08 1184 40 * 1483 <1s 1316 10 1214 4 1184 33 *

40 R09 1080 50 * 1424 <1s 1200 10 1111 4 1080 33 *

41 R05 (I) 1269 319 * 1666 <1s 1400 10 1292 4 1269 18 *

42 R06 1264 38 * 1710 <1s 1467 10 1282 4 1275 18

43 R07 1261 193 * 1612 <1s 1379 10 1284 4 1261 18 *

44 R08 1310 504 * 1689 <1s 1417 10 1338 4 1310 18 *

45 R09 1157 62 * 1493 <1s 1297 10 1196 4 1157 18 *

46 R05 (j) 1012 115 * 1466 <1s 1186 10 1126 3 1012 6 *

47 R06 1018 24 * 1569 <1s 1284 10 1177 3 1018 6 *

48 R07 1047 290 * 1465 <1s 1249 10 1162 3 1054 6

49 R08 1040 751 * 1527 <1s 1221 10 1237 3 1050 8

50 R09 959 55 * 1467 <1s 1165 10 1126 3 977 7

51 R05 (k) 1174 860 * 1536 <1s 1325 10 1234 4 1174 28 *

52 R06 1200 66 * 1778 <1s 1437 10 1289 4 1200 27 *

53 R07 1243 1471 * 1603 <1s 1449 10 1342 4 1243 28 *
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Table 4.2: All DVRPMS results

Instance Iori & Riera-Ledesma VND ILS SA SA+LS

ID Region Type Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

54 R08 1196 915 * 1667 <1s 1360 10 1272 4 1206 28

55 R09 1133 268 * 1502 <1s 1323 10 1206 4 1144 27

56 R05 (l) 1293 1306 * 1648 <1s 1511 10 1317 5 1293 30 *

57 R06 1340 202 * 1866 <1s 1587 10 1394 4 1340 29 *

58 R07 1373 2843 * 1846 <1s 1596 10 1406 4 1373 30 *

59 R08 1305 460 * 1683 <1s 1527 10 1362 5 1305 29 *

60 R09 1252 832 * 1689 <1s 1429 10 1294 4 1258 30

61 R05 (m) 1060 2326 * 1682 <1s 1367 10 1220 3 1073 14

62 R06 1093 70 * 1745 <1s 1444 10 1324 4 1093 14 *

63 R07 1096 263 * 1607 <1s 1446 10 1325 3 1103 13

64 R08 1120 1149 * 1772 <1s 1454 10 1300 3 1133 18

65 R09 1034 735 * 1600 <1s 1355 10 1266 3 1047 20

66 R05 (n) 1318 3600 1880 <1s 1547 10 1387 5 1262 3 *

67 R06 1289 3600 1843 <1s 1678 10 1438 5 1304 3

68 R07 1350 3600 1871 <1s 1682 10 1429 5 1333 3 *

69 R08 1297 3600 1888 <1s 1633 10 1426 5 1297 3 *

70 R09 1239 3600 1810 <1s 1564 10 1346 5 1243 3

71 R05 (o) 1518 3600 1978 <1s 1700 10 1412 5 1367 60 *

72 R06 1449 3600 2206 <1s 1834 10 1544 5 1448 60 *

73 R07 1677 3600 2078 <1s 1842 10 1553 5 1465 61 *

74 R08 1463 3600 2016 <1s 1779 10 1476 5 1444 61 *

75 R09 1570 3600 1817 <1s 1732 10 1425 5 1362 60 *
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Table 4.3: Summary of results table

Iori & Riera-Ledesma VND ILS SA SA+LS
Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

Average 1103,3 266 65 1467,9 <1s 0 1248,3 10 2 1156,5 4 7 1098,1 18 48

The VND algorithm quickly converges to a local optimum. Knowing that the op-

erator route-exchange did not perform well, it was inferred that this fast convergence is

due to the many local minima of the DVRPMS. The algorithm served more as a guide to

the quality of the initial solution than as a provider of a good final solution.

The algorithms performance depends on the number of items in each stack config-

uration. The instances were divided by size for comparison. The stacks can have 4, 6, 8

or 12 items per container. Each configuration type was divided according to the highest

number on all containers, as seen in Table 4.4. This dependence can be seen in Table 4.5.

All proposed algorithms had better results for small instances, and for the SA+LS, worse

efficiency is reached when instance size grows. For the exact method, what matters is the

number of total items, hence types m, n, o did not reach a global optimum.

Table 4.4: Configuration of the containers for each type of instances

Type |V | |I| |K| (r × l) Size

(a) 26 12 2 (2× 3) (2× 3) Medium
(b) 26 12 2 (2× 2) (2× 4) Large
(c) 26 12 3 (2× 2) (2× 2) (2× 2) Small
(d) 34 16 2 (2× 4) (2× 4) Large
(e) 34 16 3 (2× 2) (2× 3) (2× 3) Medium
(f) 34 16 4 (2× 2) (2× 2) (2× 2) (2× 2) Small
(g) 38 18 2 (2× 3) (3× 4) Extra Large
(h) 38 18 3 (2× 3) (2× 3) (2× 3) Medium
(i) 38 18 4 (2× 2) (2× 2) (2× 2) (2× 3) Medium
(j) 42 20 2 (2× 4) (3× 4) Extra Large
(k) 42 20 3 (2× 3) (2× 3) (2× 4) Large
(l) 42 20 4 (2× 3) (2× 3) (2× 2) (2× 2) Medium
(m) 50 24 2 (3× 4) (3× 4) Extra Large
(n) 50 24 3 (2× 4) (2× 4) (2× 4) Large
(o) 50 24 4 (2× 3) (2× 3) (2× 3) (2× 3) Medium

Table 4.5: Performance comparison using instances size

Iori & Riera-Ledesma VND ILS SA SA+LS
BAO BAO BAO BAO BAO

Small 100,0% 0,0% 10,0% 60,0% 90,0%
Medium 80,0% 0,0% 0,0% 0,0% 92,0%
Large 66,7% 0,0% 6,7% 6,7% 73,3%

Extra Large 100,0% 0,0% 0,0% 0,0% 33,3%
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Both ILS and SA algorithm proved satisfactory for small instances. The ILS algo-

rithm managed to find the best solution for two instances R08(b) and R06(c) while the

SA algorithm found the best solution for seven instances, including R08(b) and R06(c).

However, the ILS performed poorly in larger instances, due to the high probability

of choosing a bad perturbation. Preliminary investigation had indeed showed that the

route-exchange structure worsened the solution in more than 80% of the ILS iterations

and that an heuristic based in the simulated annealing or tabu search would be a better

choice. Table 4.6 shows the average results for these preliminary experiments. They were

applied on container types a, c and e, for all 5 regions.

Table 4.6: Effects of the neighboorhood structures in the ILS.

Iterations Route swap improved Complete swap improved Route Exchange improved Route Exchange worsened
71951,5 97,00% 92,15% 17,31% 82,39%

Indeed, the SA algorithms were better for small instances. In three of these instances

(R05(o), R07(o) and R09(o)), the SA algorithm even managed to find better values than

the upper-bounds known in the literature. Thus, it can be inferred that the SA algorithm

tends to cover the poor choice of perturbation.

Finally, the SA+LS outperformed all algorithms. It managed to find 40 known global

optima, and for 8 of the 10 instances with unkown optimum, the SA+LS outperformed

the exact method. This heuristic approach had a better average solution when compared

to either the exact method or the other heuristic approaches.

Regarding computational time, ILS runs for a fixed 10 seconds, while SA averages

4 seconds, which means SA runs roughly for the half amount of the ILS time. The VND

is very fast, as already mentioned, reaching a local optimum in less than 1 second. The

exact model needs a few seconds for the smaller instances but hundreds or thousands for

the larger ones, not reaching the optimal solution within 1 hour for the larger set. The

SA+LS had again the most successful results, averaging 18 seconds on all 75 instances.

In average, the best solutions found by VND, ILS and SA are respectively 33,0%,

11,6%, and 4,8% worse than the best known solution, but is found in less computational

time. While the SA+LS is roughly 0,5% better than the exact method, also running in less

computational time. Since specially the SA heuristics performed great for the DVRPMS,

a generalization to the original problem is proposed. The DVRPMS with Surplus Demand

was proposed to verify the quality of these approaches in situations where the amount of

orders for the day exceeds the vehicles capacity.
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4.2.2 DVRPMS with Surplus Demand

Table 4.8 shows in the first column the optimal solutions for the 15 instancesfound by

the exact method and 65 instances with their upper bound and respective gaps. The

second column provides the computational time of the exact model and the BAO column

shows if the best solution of a method is better or equal to the best solution among all

methods. The same columns are shown for the calibrated ILS+LS, SA+LS, TS+LS and

the previously proposed ILS. In the latter, the neighboorhood structures instack-swap

and r-stack-permutation were used. Table 4.7 shows a summary of these findings.

The exact model managed to find the global optimum in a feasible time for 15 of the

75 problem instances. For these 15 known global optima solutions, the only instance where

the ILS+LS and SA+LS heuristics did not find the global optimum value was instance

R06(b). For 12 instances, the upper bound in the exact method was coincidentally also

the best known solution of all methods. It might be the global optimum, but the model

was not able to verify those 12 solutions in less than a hour. Among all proposed heuritic

approaches, the ILS+LS proved to be the best, finding 70 best solutions when compared

to all other solutions.

Even after including the neighboorhoods instack-swap and r-stack-permutation, the

first proposed ILS was not able to find any of the optima solutions, which may again be

due to bad perturbations and unoptimized structures inherited from the DTSPMS. The

LS procedure plays a huge role in finding a good route for these vehicles.

In average, the ILS+LS, SA+LS and TS+LS are respectively 4,71%, 4,68% and

2,7% better on finding the best solution to the instances when compared to the exact

model, while the ILS is 5,5% worse. Regarding computation time, when compared to the

exact model, the fastest heuristic approach (ILS+LS) is 311 times faster than the exact

model, finding 70 better or equal to the best solutions among all other methods in an

average of 9,4 seconds.

Table 4.7: Summary of the DVRPMS with Surplus Demand findings

Model ILS+LS Calibrated SA+LS Calibrated TS+LS Calibrated
Best t(s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

2091,5 2892,5 27 2190,1 9,3 70 2189,4 9,9 62 2148,7 169,1 13
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Table 4.8: All DVRPMS with Surplus Demand results

Instance Model ILS+LS Calibrated SA+LS Calibrated TS+LS Calibrated ILS

ID Region Type Obj Gap t(s) Opt Best Time (s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

1 R05 (a) 1401 0,00% 65 * 1401 4 * 1401 6 * 1394 2 1400 10

2 R06 1436 0,00% 71 * 1436 3 * 1436 6 * 1432 2 1428 10

3 R07 1462 0,00% 44 * 1462 3 * 1462 6 * 1462 2 * 1450 10

4 R08 1304 0,00% 33 * 1304 4 * 1304 6 * 1300 2 1280 10

5 R09 1436 0,00% 24 * 1436 4 * 1436 6 * 1431 2 1422 10

6 R05 (b) 1424 0,00% 54 * 1424 1 * 1424 1 * 1424 3 * 1374 10

7 R06 1417 0,00% 37 * 1412 1 1412 1 1417 3 * 1412 10

8 R07 1482 0,00% 54 * 1482 1 * 1482 1 * 1482 3 * 1457 10

9 R08 1314 0,00% 45 * 1314 1 * 1314 1 * 1296 3 1309 10

10 R09 1480 0,00% 15 * 1480 1 * 1480 1 * 1456 3 1431 10

11 R05 (c) 1317 0,00% 73 * 1317 1 * 1317 2 * 1317 1 * 1285 10

12 R06 1288 0,00% 132 * 1288 1 * 1288 2 * 1274 1 1253 10

13 R07 1337 0,00% 119 * 1337 1 * 1337 2 * 1337 1 * 1334 10

14 R08 1208 0,00% 48 * 1208 1 * 1208 2 * 1208 1 * 1171 10

15 R09 1337 0,00% 126 * 1337 1 * 1337 2 * 1337 1 * 1314 10

16 R05 (d) 1925 6,00% 3600 1954 <1s * 1954 1 * 1926 9 1845 10

17 R06 2032 2,20% 3600 * 2032 <1s * 2032 1 * 1982 9 1892 10

18 R07 1995 2,60% 3600 2006 <1s * 1995 1 1981 8 1844 10

19 R08 1882 3,90% 3600 1896 <1s * 1896 1 * 1862 8 1789 10

20 R09 2044 1,60% 3600 2036 <1s 2049 1 * 2007 9 1901 10

21 R05 (e) 1857 5,30% 3600 * 1857 8 * 1857 5 * 1816 3 1692 10

22 R06 1913 4,10% 3600 * 1913 9 * 1913 5 * 1897 3 1757 10
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Table 4.8: All DVRPMS with Surplus Demand results

Instance Model ILS+LS Calibrated SA+LS Calibrated TS+LS Calibrated ILS

ID Region Type Obj Gap t(s) Opt Best Time (s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

23 R07 1854 4,80% 3600 1888 8 * 1888 5 * 1861 3 1707 10

24 R08 1781 5,10% 3600 1792 8 * 1792 5 * 1761 3 1672 10

25 R09 1915 4,40% 3600 * 1915 8 * 1915 5 * 1890 3 1771 10

26 R05 (f) 1718 10,80% 3600 * 1718 3 * 1718 2 * 1697 1 1583 10

27 R06 1795 9,70% 3600 * 1795 3 * 1795 2 * 1756 1 1641 10

28 R07 1720 7,90% 3600 * 1720 3 * 1720 2 * 1720 1 * 1584 10

29 R08 1660 9,90% 3600 * 1660 3 * 1660 3 * 1654 1 1540 10

30 R09 1790 9,50% 3600 * 1790 3 * 1790 2 * 1790 1 * 1707 10

31 R05 (g) 2221 4,40% 3600 2240 10 * 2240 6 * 2185 462 2083 10

32 R06 2340 2,40% 3600 2349 11 * 2349 7 * 2271 463 2115 10

33 R07 2298 2,80% 3600 2318 11 * 2318 7 * 2236 409 2092 10

34 R08 2227 1,60% 3600 * 2227 11 * 2224 6 2192 494 2077 10

35 R09 2319 3,00% 3600 * 2319 12 * 2319 5 * 2266 553 2127 10

36 R05 (h) 2086 9,20% 3600 2104 13 * 2104 6 * 2083 4 1895 10

37 R06 2155 9,50% 3600 2175 14 * 2175 6 * 2174 4 1945 10

38 R07 2076 11,20% 3600 2119 13 * 2119 6 * 2062 4 1892 10

39 R08 2011 10,10% 3600 2071 15 * 2071 6 * 2043 4 1882 10

40 R09 2107 12,00% 3600 2148 15 * 2148 6 * 2148 5 * 1943 10

41 R05 (i) 2001 11,10% 3600 * 2001 8 * 2001 3 * 1965 3 1782 10

42 R06 2054 12,50% 3600 2070 7 * 2062 3 2070 3 * 1788 10

43 R07 1920 15,10% 3600 1986 9 * 1975 3 1969 3 1735 10

44 R08 1895 13,70% 3600 1963 6 * 1963 3 * 1920 3 1786 10

45 R09 2017 13,60% 3600 2043 9 * 2043 3 * 2008 3 1830 10
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Table 4.8: All DVRPMS with Surplus Demand results

Instance Model ILS+LS Calibrated SA+LS Calibrated TS+LS Calibrated ILS

ID Region Type Obj Gap t(s) Opt Best Time (s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

46 R05 (j) 2621 6,40% 3600 2626 6 * 2608 4 2517 538 2356 10

47 R06 2593 8,00% 3600 2645 6 * 2641 4 2565 615 2376 10

48 R07 2491 12,80% 3600 2646 5 * 2646 3 * 2573 508 2345 10

49 R08 2510 7,30% 3600 2578 6 * 2575 5 2511 554 2284 10

50 R09 2557 9,30% 3600 2626 7 2629 5 * 2590 529 2352 10

51 R05 (k) 2339 18,90% 3600 2494 15 * 2488 4 2416 9 2218 10

52 R06 2381 15,50% 3600 2525 18 * 2517 4 2497 10 2171 10

53 R07 2424 12,50% 3600 2484 16 * 2477 4 2446 9 2167 10

54 R08 2351 14,40% 3600 2433 18 * 2433 4 * 2366 9 2186 10

55 R09 2357 16,10% 3600 2484 16 * 2484 4 * 2432 9 2221 10

56 R05 (l) 2288 17,40% 3600 2385 14 * 2374 4 2320 4 2071 10

57 R06 2293 18,70% 3600 2381 14 * 2370 4 2379 4 2054 10

58 R07 2238 18,70% 3600 2366 16 * 2366 4 * 2277 4 2046 10

59 R08 2257 16,70% 3600 2315 16 * 2315 4 * 2251 4 2018 10

60 R09 2285 17,40% 3600 2362 18 * 2362 4 * 2337 4 2075 10

*

61 R05 (m) 3091 14,00% 3600 3269 10 * 3250 8 3214 1576 2890 10

62 R06 2439 43,10% 3600 3250 14 * 3242 12 3164 1612 2847 10

63 R07 3008 16,40% 3600 3259 12 * 3259 6 * 3157 1085 2818 10

64 R08 3076 11,10% 3600 3199 14 * 3199 9 * 3096 1555 2869 10

65 R09 2584 33,50% 3600 3252 17 * 3184 12 3111 1395 2853 10

66 R05 (n) 2680 29,90% 3600 3095 1 3100 1 * 3007 20 2729 10

67 R06 2751 24,00% 3600 3090 1 * 3087 1 3042 20 2663 10
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Table 4.8: All DVRPMS with Surplus Demand results

Instance Model ILS+LS Calibrated SA+LS Calibrated TS+LS Calibrated ILS

ID Region Type Obj Gap t(s) Opt Best Time (s) BAO Best t(s) BAO Best t(s) BAO Best t(s) BAO

68 R07 2663 30,70% 3600 3037 1 * 3012 1 2976 18 2620 10

69 R08 2775 22,00% 3600 3010 1 * 2978 1 2944 20 2666 10

70 R09 2533 34,70% 3600 3027 1 3037 1 * 2955 20 2651 10

71 R05 (o) 2700 26,10% 3600 2990 37 * 2990 6 * 2886 8 2614 10

72 R06 2422 38,80% 3600 2956 34 * 2942 6 2904 8 2516 10

73 R07 2708 25,60% 3600 2905 39 * 2905 6 * 2788 8 2396 10

74 R08 2552 30,80% 3600 2891 39 * 2891 6 * 2806 8 2490 10

75 R09 2645 26,30% 3600 2933 42 * 2933 6 * 2869 8 2454 10



Chapter 5

Conclusions

The DVRPMS was a novel problem published in 2015 and based on previous problems,

specially the DTSPMS, published in 2009. It all started with a real-life problem, regarding

the logistics of using a vehicle that travels through different regions usually separated by

sea. The container should not be rearranged for security reasons, so the vehicle should

also have an optimum delivery route.

The heuristic approaches used in this dissertation proved to be a great alternative

to the exact models for both DVRPMS and DVRPMS with Surplus Demand. For the

DVRPMS, the SA+LS heuristic could find the best solution among all methods for 48

out of 75 instances. In average, it provided better results when compared to the exact

model, outperforming the latter by roughly 0,5%.

The DVRPMS with Surplus Demand is a novel extension to the DVRPMS that was

proposed in this dissertation. In regard of this problem, the ILS+LS heuristic approach

found the best solution among all methods for 70 out of the 75 instances, averaging 9,4

seconds of computational time. Also, even with 100 iterations, the ILS+LS averaged only

9,4 seconds of computational time, which is desirable for a practical situation.

Additionally, even though the chosen ILS+LS combination obtained better results,

some SA+LS combinations had better averages. Indeed, the ILS+LS combination and

the better SA+LS combinations are in a group that does not statistically differ at 95%

of confiability, according to the statistical tests made on Appendix A.

5.1 Publications

The papers generated by the work present on this dissertation were published and pre-

sented on:

43
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• U. E. F. Silveira, M. P. L. Benedito, A. G. Santos, Heuristic approaches to double

vehicle routing problem with multiple stacks, 2015, 15th International Conference

on Intelligent Systems Design and Applications (ISDA), pp. 231-236.

• J. B. C. Chagas, U. E. F. Silveira, M. P. L. Benedito and A. G. Santos, Simu-

lated annealing metaheuristic for the Double Vehicle Routing Problem with Multi-

ple Stacks, 2016, IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), Rio de Janeiro, 2016, pp. 1311-1316.

5.2 Further works

The problem is still in its infancy and does not work for real-life size instances (containers

of 11x3 feet). Therefore, the DVRPMS is open for further investigation of bigger instances

and additional constraints, such as time dependable constraints or variable demands.

Even for the first problem explored (DTSPMS) there is no model or heuristic ap-

proach that could solve the problem for bigger instances of 132 requests. Since the local

search procedure does not apply for the DTSPMS, a further modification on this proce-

dure could be made to verify its quality when used to solve DTSPMS instances, because

it performed reasonably well to the DVRPMS.
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Appendix A

Parameter Calibration

The results for the calibration of the proposed methods are shown in this appendix. Such

results indicate the best parameters for each algorithm. Each algorithm (ILS+LS, SA+LS,

TS+LS, ILS) had several combinations of parameters that needed to be analised. These

combinations were defined in the hope that the computational time would not exceed

one minute. The complete calibration process was the same for each algorithm that used

the local search procedure (ILS+LS, SA+LS and TS+LS) while the ILS without a local

search procedure was calibrated visualizing a simple plot graph of the average solutions

through time.

In order to properly define the best parameters, a set of experiments was conducted

and best results were chosen. A portion of the known instances was randomnly selected

for each algorithm and different combinations of parameters were set for each one of these

methods.

Because heuristic approaches based on the ILS, SA and TS are different in nature,

each one received a different set of parameters, chosen according to preliminary tests

that compared execution time of several combinations of parameters. For a more reliable

result, each treatment was executed with 10 repetition tests.

The value that was given to the statistical analysis tools was the RPD. RPD is

a metric commonly used to evaluate the quality of the solutions obtained by heuristic

algorithms. Equation (A.1) describes how this metric was calculated, where fmethod is

the objective function value obtained by a given solution and fbest is the value of the

best objective function value found among all solutions. The lower the RPD the better,

because this means that compared solution is closer to the best known solution. All tests

were conducted in the RStudio software on an Intel i7 Desktop and Ubuntu 16.04 LTS.

RPDmethod = [(fmethod − fbest)/fbest]× 100% (A.1)

48
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A performance evaluation of these treatments was performed using the Additive

Indicator metric. Using a reference set composed by non-dominated points each execution

is compared to the reference set to be properly evaluated. To proceed to the statistical

analysis, the average value obtained in all instances is defined as a dependent variable

related to the pair treatment/repetition.

Table A.1 shows all combinations for all algorithms that use the local search proce-

dure and their respective treatment names (varying from T001 to T134). In this table,

itn represents the number of iterations without improvement (same on both ILS and SA).

It should be noted that for the SA, this repetitions are applied on the same temperature,

while the ILS does not have temperature parameters. Ti is the initial temperature of the

SA heuristic, α, the drop in the temperature on each iteration, Tf is the final temperature

of the SA heuristic, nrep is the maximum value of repetitions the tabu search algorithm

will perform without any improvement and tabus is the size of the tabu table.

Table A.1: Treatments and their respective parameters

Treatment Alg. itn Ti α itn Tf nrep tabus

T001 ILS1 10 - - - - - -

T002 ILS2 25 - - - - - -

T003 ILS3 50 - - - - - -

T004 ILS4 75 - - - - - -

T005 ILS5 100 - - - - - -

T006 SA1 - 10 0,002 100 6 - -

T007 SA2 - 10 0,002 100 8 - -

T008 SA3 - 10 0,002 100 10 - -

T009 SA4 - 10 0,002 200 6 - -

T010 SA5 - 10 0,002 200 8 - -

T011 SA6 - 10 0,002 200 10 - -

T012 SA7 - 10 0,002 300 6 - -

T013 SA8 - 10 0,002 300 8 - -

T014 SA9 - 10 0,002 300 10 - -

T015 SA10 - 10 0,01 100 6 - -

T016 SA11 - 10 0,01 100 8 - -

T017 SA12 - 10 0,01 100 10 - -

T018 SA13 - 10 0,01 200 6 - -

T019 SA14 - 10 0,01 200 8 - -

T020 SA15 - 10 0,01 200 10 - -

T021 SA16 - 10 0,01 300 6 - -
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Table A.1: Treatments and their respective parameters

Treatment Alg. itn Ti α itn Tf nrep tabus

T022 SA17 - 10 0,01 300 8 - -

T023 SA18 - 10 0,01 300 10 - -

T024 SA19 - 10 0,05 100 6 - -

T025 SA20 - 10 0,05 100 8 - -

T026 SA21 - 10 0,05 100 10 - -

T027 SA22 - 10 0,05 200 6 - -

T028 SA23 - 10 0,05 200 8 - -

T029 SA24 - 10 0,05 200 10 - -

T030 SA25 - 10 0,05 300 6 - -

T031 SA26 - 10 0,05 300 8 - -

T032 SA27 - 10 0,05 300 10 - -

T033 SA28 - 12 0,002 100 6 - -

T034 SA29 - 12 0,002 100 8 - -

T035 SA30 - 12 0,002 100 10 - -

T036 SA31 - 12 0,002 200 6 - -

T037 SA32 - 12 0,002 200 8 - -

T038 SA33 - 12 0,002 200 10 - -

T039 SA34 - 12 0,002 300 6 - -

T040 SA35 - 12 0,002 300 8 - -

T041 SA36 - 12 0,002 300 10 - -

T042 SA37 - 12 0,01 100 6 - -

T043 SA38 - 12 0,01 100 8 - -

T044 SA39 - 12 0,01 100 10 - -

T045 SA40 - 12 0,01 200 6 - -

T046 SA41 - 12 0,01 200 8 - -

T047 SA42 - 12 0,01 200 10 - -

T048 SA43 - 12 0,01 300 6 - -

T049 SA44 - 12 0,01 300 8 - -

T050 SA45 - 12 0,01 300 10 - -

T051 SA46 - 12 0,05 100 6 - -

T052 SA47 - 12 0,05 100 8 - -

T053 SA48 - 12 0,05 100 10 - -

T054 SA49 - 12 0,05 200 6 - -

T055 SA50 - 12 0,05 200 8 - -



A. Parameter Calibration 51

Table A.1: Treatments and their respective parameters

Treatment Alg. itn Ti α itn Tf nrep tabus

T056 SA51 - 12 0,05 200 10 - -

T057 SA52 - 12 0,05 300 6 - -

T058 SA53 - 12 0,05 300 8 - -

T059 SA54 - 12 0,05 300 10 - -

T060 SA55 - 15 0,002 100 6 - -

T061 SA56 - 15 0,002 100 8 - -

T062 SA57 - 15 0,002 100 10 - -

T063 SA58 - 15 0,002 200 6 - -

T064 SA59 - 15 0,002 200 8 - -

T065 SA60 - 15 0,002 200 10 - -

T066 SA61 - 15 0,002 300 6 - -

T067 SA62 - 15 0,002 300 8 - -

T068 SA63 - 15 0,002 300 10 - -

T069 SA64 - 15 0,01 100 6 - -

T070 SA65 - 15 0,01 100 8 - -

T071 SA66 - 15 0,01 100 10 - -

T072 SA67 - 15 0,01 200 6 - -

T073 SA68 - 15 0,01 200 8 - -

T074 SA69 - 15 0,01 200 10 - -

T075 SA70 - 15 0,01 300 6 - -

T076 SA71 - 15 0,01 300 8 - -

T077 SA72 - 15 0,01 300 10 - -

T078 SA73 - 15 0,05 100 6 - -

T079 SA74 - 15 0,05 100 8 - -

T080 SA75 - 15 0,05 100 10 - -

T081 SA76 - 15 0,05 200 6 - -

T082 SA77 - 15 0,05 200 8 - -

T083 SA78 - 15 0,05 200 10 - -

T084 SA79 - 15 0,05 300 6 - -

T085 SA80 - 15 0,05 300 8 - -

T086 SA81 - 15 0,05 300 10 - -

T087 SA82 - 20 0,002 100 6 - -

T088 SA83 - 20 0,002 100 8 - -

T089 SA84 - 20 0,002 100 10 - -
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Table A.1: Treatments and their respective parameters

Treatment Alg. itn Ti α itn Tf nrep tabus

T090 SA85 - 20 0,002 200 6 - -

T091 SA86 - 20 0,002 200 8 - -

T092 SA87 - 20 0,002 200 10 - -

T093 SA88 - 20 0,002 300 6 - -

T094 SA89 - 20 0,002 300 8 - -

T095 SA90 - 20 0,002 300 10 - -

T096 SA91 - 20 0,01 100 6 - -

T097 SA92 - 20 0,01 100 8 - -

T098 SA93 - 20 0,01 100 10 - -

T099 SA94 - 20 0,01 200 6 - -

T100 SA95 - 20 0,01 200 8 - -

T101 SA96 - 20 0,01 200 10 - -

T102 SA97 - 20 0,01 300 6 - -

T103 SA98 - 20 0,01 300 8 - -

T104 SA99 - 20 0,01 300 10 - -

T105 SA100 - 20 0,05 100 6 - -

T106 SA101 - 20 0,05 100 8 - -

T107 SA102 - 20 0,05 100 10 - -

T108 SA103 - 20 0,05 200 6 - -

T109 SA104 - 20 0,05 200 8 - -

T110 SA105 - 20 0,05 200 10 - -

T111 SA106 - 20 0,05 300 6 - -

T112 SA107 - 20 0,05 300 8 - -

T113 SA108 - 20 0,05 300 10 - -

T114 TS1 - - - - - 100 3

T115 TS2 - - - - - 100 5

T116 TS3 - - - - - 100 7

T117 TS4 - - - - - 100 9

T118 TS5 - - - - - 100 10

T119 TS6 - - - - - 100 15

T120 TS7 - - - - - 100 20

T121 TS8 - - - - - 200 3

T122 TS9 - - - - - 200 5

T123 TS10 - - - - - 200 7
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Table A.1: Treatments and their respective parameters

Treatment Alg. itn Ti α itn Tf nrep tabus

T124 TS11 - - - - - 200 9

T125 TS12 - - - - - 200 10

T126 TS13 - - - - - 200 15

T127 TS14 - - - - - 200 20

T128 TS15 - - - - - 300 3

T129 TS16 - - - - - 300 5

T130 TS17 - - - - - 300 7

T131 TS18 - - - - - 300 9

T132 TS19 - - - - - 300 10

T133 TS20 - - - - - 300 15

T134 TS21 - - - - - 300 20

In the next section, a set of three tables will be shown for each heuristic approach.

The first shows the results found in the additive indicator metric and is composed by the

treatments and their respective depedent variable values (Tables A.2 and A.4, A.6). The

next table shows the Shapiro-Wilk p-values (so it is possible to check if these methods do

not violate any statistical assumption, such as data normality), followed by the groups of

treatments (if any difference can be infered) and their respective averages given by the

Scott-Knott test (Tables A.3, A.5 and A.7). A boxplot is also shown to visualize the last

table (Figures A.1, A.2, A.3 and A.4).

A.1 TS+LS parameter calibration

The TS+LS combinations were put in a script and ten repetition tests were made in 51

instances of the 75 known instances. The number was set to 51, for a feasible amount

of time (instances with four vehicles ran for more than 10 minutes) The residuals were

considered normal according to the Shapiro-Wilk test, and no difference could be inferred

in all combinations. The combination {100, 7} had the second lowest average and this

combination was chosen, because the first lowest combination {300, 3} runs for an exces-

sive amount of time on the instances with four vehicles (more than 4000 seconds). Tables

A.2 and A.3 refers to the TS+LS statistical data and Figure A.1 is the boxplot that refers

to table A.3 data.
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Table A.2: TS+LS statistical data

Treatment Averages
TS001 3,811036
TS002 3,883321
TS003 3,571547
TS004 3,730748
TS005 3,808890
TS006 3,768393
TS007 3,734628
TS008 3,585761
TS009 3,756768
TS010 3,752020
TS011 3,697099
TS012 3,831125
TS013 3,681276
TS014 3,649213
TS015 3,554143
TS016 3,834498
TS017 3,646526
TS018 3,761541
TS019 3,778317
TS020 3,703896
TS021 3,673472

Figure A.1: TS+LS boxplot image
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Table A.3: TS+LS Shapiro-Wilk and Scott-Knott test results

Shapiro-Wilk test
P-value 0,1693

Scott-Knott test
Groups Averages

TS001 - 3,811036
TS002 - 3,883321
TS003 - 3,571547
TS004 - 3,730748
TS005 - 3,80889
TS006 - 3,768393
TS007 - 3,734628
TS008 - 3,585761
TS009 - 3,756768
TS010 - 3,75202
TS011 - 3,697099
TS012 - 3,831125
TS013 - 3,681276
TS014 - 3,649213
TS015 - 3,554143
TS016 - 3,834498
TS017 - 3,646526
TS018 - 3,761541
TS019 - 3,778317
TS020 - 3,703896
TS021 - 3,673472

A.2 SA+LS parameter calibration

The SA+LS combinations were put in a script and ten repetition tests were made in

60 instances of the 75 known instances. The number of instances was set to 60 to avoid

fixing results when using all instances, which may mask the statistical data. The residuals

were not considered normal according to the Shapiro-Wilk test, and differences could be

inferred according to the Scott-Knott test and are shown in Table A.5. The combination

{20, 0, 002, 300, 6} had the lowest average on the lowest group, so this combination was

chosen. Tables A.4 and A.5 refer to SA+LS statistical data and Figure A.2 is the boxplot

that refers to table A.5 data.

Table A.4: SA+LS statistical data

Treatment Averages

SA001 1,06886
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Table A.4: SA+LS statistical data

Treatment Averages

SA002 1,43269

SA003 4,21887

SA004 0,88843

SA005 1,08366

SA006 4,19446

SA007 0,66557

SA008 0,90133

SA009 4,24547

SA010 1,97331

SA011 2,45460

SA012 4,07564

SA013 1,60324

SA014 2,00693

SA015 4,20067

SA016 1,30599

SA017 1,70926

SA018 4,18087

SA019 3,15729

SA020 3,67309

SA021 4,20134

SA022 2,75253

SA023 3,22621

SA024 4,20091

SA025 2,44666

SA026 2,79827

SA027 4,35845

SA028 0,85467

SA029 1,02927

SA030 1,45623

SA031 0,72776

SA032 0,74747

SA033 1,07075

SA034 0,56849

SA035 0,64771
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Table A.4: SA+LS statistical data

Treatment Averages

SA036 0,91690

SA037 1,70391

SA038 2,00766

SA039 2,46814

SA040 1,28706

SA041 1,50951

SA042 2,02196

SA043 1,13721

SA044 1,26733

SA045 1,73629

SA046 2,83262

SA047 3,16351

SA048 3,62799

SA049 2,31775

SA050 2,68220

SA051 3,11916

SA052 2,01838

SA053 2,39303

SA054 2,92058

SA055 0,72118

SA056 0,85489

SA057 0,98954

SA058 0,51238

SA059 0,58461

SA060 0,79286

SA061 0,40736

SA062 0,48286

SA063 0,62843

SA064 1,45177

SA065 1,66529

SA066 1,94797

SA067 1,09874

SA068 1,17150

SA069 1,41345
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Table A.4: SA+LS statistical data

Treatment Averages

SA070 0,90085

SA071 1,08221

SA072 1,25560

SA073 2,48737

SA074 2,87110

SA075 3,10077

SA076 2,08539

SA077 2,21842

SA078 2,63982

SA079 1,82428

SA080 2,00145

SA081 2,33786

SA082 0,63045

SA083 0,74291

SA084 0,85727

SA085 0,43525

SA086 0,56444

SA087 0,66336

SA088 0,37431

SA089 0,42078

SA090 0,54401

SA091 1,25694

SA092 1,36293

SA093 1,54958

SA094 0,95663

SA095 1,03755

SA096 1,27833

SA097 0,78930

SA098 0,90904

SA099 1,09009

SA100 2,28237

SA101 2,55522

SA102 2,69015

SA103 1,84211
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Table A.4: SA+LS statistical data

Treatment Averages

SA104 2,04399

SA105 2,19341

SA106 1,66986

SA107 1,80729

SA108 1,88563

Table A.5: SA+LS Shapiro-Wilk and Scott-Knott test results

Shapiro-Wilk test

P-value < 0,005

Scott-Knott test

Groups Averages

SA027 a 4,35845

SA009 a 4,24547

SA003 a 4,21887

SA021 a 4,20134

SA024 a 4,20091

SA015 a 4,20067

SA006 a 4,19446

SA018 a 4,18087

SA012 a 4,07564

SA020 b 3,67309

SA048 b 3,62799

SA023 c 3,22621

SA047 c 3,16351

SA019 c 3,15729

SA051 c 3,11916

SA075 c 3,10077

SA054 d 2,92058

SA074 d 2,87110

SA046 d 2,83262

SA026 d 2,79827

SA022 d 2,75253

SA102 e 2,69015
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Table A.5: SA+LS Shapiro-Wilk and Scott-Knott test results

Shapiro-Wilk test

P-value < 0,005

Scott-Knott test

Groups Averages

SA050 e 2,68220

SA078 e 2,63982

SA101 f 2,55522

SA073 f 2,48737

SA039 f 2,46814

SA011 f 2,45460

SA025 f 2,44666

SA053 g 2,39303

SA081 g 2,33786

SA049 g 2,31775

SA100 g 2,28237

SA077 h 2,21842

SA105 h 2,19341

SA076 i 2,08539

SA104 i 2,04399

SA042 i 2,02196

SA052 i 2,01838

SA038 i 2,00766

SA014 i 2,00693

SA080 i 2,00145

SA010 i 1,97331

SA066 i 1,94797

SA108 i 1,88563

SA103 j 1,84211

SA079 j 1,82428

SA107 j 1,80729

SA045 k 1,73629

SA017 k 1,70926

SA037 k 1,70391

SA106 k 1,66986

SA065 k 1,66529
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Table A.5: SA+LS Shapiro-Wilk and Scott-Knott test results

Shapiro-Wilk test

P-value < 0,005

Scott-Knott test

Groups Averages

SA013 l 1,60324

SA093 l 1,54958

SA041 l 1,50951

SA030 m 1,45623

SA064 m 1,45177

SA002 m 1,43269

SA069 m 1,41345

SA092 n 1,36293

SA016 n 1,30599

SA040 n 1,28706

SA096 n 1,27833

SA044 n 1,26733

SA091 n 1,25694

SA072 n 1,25560

SA068 o 1,17150

SA043 o 1,13721

SA067 o 1,09874

SA099 o 1,09009

SA005 o 1,08366

SA071 o 1,08221

SA033 o 1,07075

SA001 o 1,06886

SA095 o 1,03755

SA029 o 1,02927

SA057 o 0,98954

SA094 p 0,95663

SA036 p 0,91690

SA098 p 0,90904

SA008 p 0,90133

SA070 p 0,90085

SA004 p 0,88843
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Table A.5: SA+LS Shapiro-Wilk and Scott-Knott test results

Shapiro-Wilk test

P-value < 0,005

Scott-Knott test

Groups Averages

SA084 p 0,85727

SA056 p 0,85489

SA028 p 0,85467

SA060 p 0,79286

SA097 p 0,78930

SA032 q 0,74747

SA083 q 0,74291

SA031 q 0,72776

SA055 q 0,72118

SA007 q 0,66557

SA087 q 0,66336

SA035 q 0,64771

SA082 q 0,63045

SA063 q 0,62843

SA059 q 0,58461

SA034 r 0,56849

SA086 r 0,56444

SA090 r 0,54401

SA058 r 0,51238

SA062 r 0,48286

SA085 s 0,43525

SA089 s 0,42078

SA061 s 0,40736

SA088 s 0,37431

A.3 ILS+LS parameter calibration

The ILS+LS combination was put in a script and ten repetition tests were made in 60

instances of the 75 known instances. The residuals were considered not normal according

the Shapiro-Wilk test, and differences could be inferred in some combinations. The value
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Figure A.2: SA+LS boxplot image

maxnoimprovement = 100 had the lowest average so this value was chosen. In the end of this

section, figure A.4 shows the boxplot of all algorithms tested. Even tough the ILS+LS had

better results, the SA+LS combination had the better average, but they are in a group

that does not differ in 95% of confiability, which might be a indication that the SA+LS

is a more robust approach. Below tables A.6 and A.7 are shown followed by Figure A.3

referring to table A.7 data.

Table A.6: ILS+LS statistical data

Treatment Averages
ILS001 1,57309
ILS002 1,00650
ILS003 0,79083
ILS004 0,62150
ILS005 0,48117
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Table A.7: ILS+LS Shapiro-Wilk and Scott-Knott test results

Shapiro-Wilk test
P-value <0,005

Scott-Knott test
Groups Averages

ILS001 a 1,573085
ILS002 b 1,006496
ILS003 c 0,790826
ILS004 d 0,621496
ILS005 e 0,481167

Figure A.3: ILS+LS boxplot image
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Figure A.4: All algorithms boxplot image
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A.4 DVRPMS-ILS parameter calibration

The ILS used in the normal DVRPMS had only one parameter, which was the time in

which the algorithm was run. 10 repetition tests were performed on all instances and a

graph of the objective functions averages was ploted against time. The parameter time

was chosen as 10 seconds since the solutions for greater times did not vary much, as can

be seen in Figure A.5.

Figure A.5: DVRPMS-ILS graph


