Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/12573
Tipo: Artigo
Título: The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-Rich protein-mediated signaling pathway
Autor(es): Reis, Pedro A.A.
Rosado, Gustavo L.
Silva, Lucas A.C.
Oliveira, Luciana C.
Oliveira, Lucas B.
Costa, Maximiller D.L.
Alvim, Fátima C.
Fontes, Elizabeth P.B.
Abstract: The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.
Palavras-chave: Protein BiP
Soybean via
N-Rich
Editor: Plant Physiology
Tipo de Acesso: Open Access
URI: https://doi.org/10.1104/pp.111.179697
http://www.locus.ufv.br/handle/123456789/12573
Data do documento: Dez-2011
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
1853.full.pdftexto completo1,37 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.