Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/19092
Tipo: Artigo
Título: Enhanced activity of carbohydrate- and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais
Autor(es): Araújo, R.A.
Guedes, R.N.C.
Oliveira, M.G.A.
Ferreira, G.H.
Abstract: Insecticide resistance is frequently associated with fitness disadvantages in the absence of insecticides. However, intense past selection with insecticides may allow the evolution of fitness modifier alleles that mitigate the cost of insecticide resistance and their consequent fitness disadvantages. Populations of Sitophilus zeamais with different levels of susceptibility to insecticides show differences in the accumulation and mobilization of energy reserves. These differences may allow S. zeamais to better withstand toxic compounds without reducing the beetles' reproductive fitness. Enzymatic assays with carbohydrate- and lipid-metabolizing enzymes were, therefore, carried out to test this hypothesis. Activity levels of trehalase, glycogen phosphorylase, lipase, glycosidase and amylase were determined in two insecticide-resistant populations showing (resistant cost) or not showing (resistant no-cost) associated fitness cost, and in an insecticide-susceptible population. Respirometry bioassays were also carried out with these weevil populations. The resistant no-cost population showed significantly higher body mass and respiration rate than the other two populations, which were similar. No significant differences in glycogen phosphorylase and glycosidase were observed among the populations. Among the enzymes studied, trehalase and lipase showed higher activity in the resistant cost population. The results obtained in the assays with amylase also indicate significant differences in activity among the populations, but with higher activity in the resistant no-cost population. The inverse activity trends of lipases and amylases in both resistant populations, one showing fitness disadvantage without insecticide exposure and the other not showing it, may underlay the mitigation of insecticide resistance physiological costs observed in the resistant no-cost population. The higher amylase activity observed in the resistant no-cost population may favor energy storage, preventing potential trade-offs between insecticide resistance mechanisms and basic physiological processes in this population, unlike what seems to take place in the resistant cost population.
Palavras-chave: Insecticide resistance
Amylase
Lipase
Trehalase
Fitness cost
Cost mitigation
Editor: Bulletin of Entomological Research
Tipo de Acesso: Cambridge University Press
URI: https://doi.org/10.1017/S0007485308005737
http://www.locus.ufv.br/handle/123456789/19092
Data do documento: 1-Nov-2007
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo.pdf
  Until 2100-12-31
Texto completo138,56 kBAdobe PDFVisualizar/Abrir ACESSO RESTRITO


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.