Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/1497
Tipo: Tese
Título: Estimativa dos parâmetros de distribuição e profundidade do sistema radicular pela calibração de modelos micrometeorológicos aplicação à floresta tropical Amazônica
Título(s) alternativo(s): Estimate parameters of distribution and depth of the root system for the calibration of the micrometeorological models application to the Amazon rainforest
Autor(es): Imbuzeiro, Hemlley Maria Acioli
Primeiro Orientador: Costa, Marcos Heil
Primeiro coorientador: Sediyama, Gilberto Chohaku
Segundo coorientador: Rocha, Humberto Ribeiro da
Primeiro avaliador: Gonçalves, Luís Gustavo Gonçalves de
Segundo avaliador: Costa, José Maria Nogueira da
Terceiro avaliador: Justino, Flávio Barbosa
Abstract: Neste trabalho utilizaram-se medidas micrometeorológicas, amostras de solo e medidas de umidade e temperatura do solo coletadas no sítio experimental da Floresta Nacional do Tapajós K83 (FNT-K83) para calibrar o modelo de superfície terrestre, o IBIS, a fim de estimar os parâmetros ZR e β2 através da otimização da partição do saldo de radiação (Rn) entre o fluxo de calor sensível (H) e o fluxo de calor latente (LE). A metodologia se baseia na premissa que esta partição é função do estresse hídrico, o qual depende da profundidade e da distribuição vertical do sistema radicular. O diferencial deste trabalho é o uso de condições de contorno, associadas às propriedades físicas do solo, com diferentes níveis de incertezas e os erros introduzidos por essas incertezas também são analisados no presente trabalho. As simulações realizadas pelo IBIS foram organizadas em três grupos, de acordo com os diferentes tipos de dados e condições de contorno, com diferentes níveis de incerteza. No primeiro grupo, o modelo opera no modo normal, simulando LE utilizando dados das propriedades físicas do solo estimadas através de um banco de dados global de granulometria dos solos. Neste grupo de simulações, a incerteza é maior, pois as propriedades físicas do solo são determinadas por meio de tabelas com valores representativos para cada tipo granulometrial de solo. No segundo grupo, o modelo utiliza parâmetros de solo obtidos localmente a partir da curva de retenção de água no solo através de amostra coletada na FNT-K83 para simular LE. Neste grupo, a incerteza é reduzida, pois as propriedades físicas do solo são determinadas localmente. No terceiro grupo, o modelo simula LE forçando as condições de solo com dados de temperatura e umidade do solo, medidos no sítio experimental FNT-K83. Neste grupo, a incerteza é menor, pois são utilizados dados reais de umidade do solo. Para o procedimento de calibração, para cada grupo de simulações foram obtido os parâmetros ZR e β2, que otimizavam as estatísticas dos coeficientes de correlação (ρ) e de inclinação da reta de regressão entre os dados observados e simulados (α), e a minimização do erro absoluto médio (MAE), do viés máximo (Bmáx) e da função objetivo (F(ZR,β2)). Antes de iniciar o processo de calibração foi realizada uma análise de sensibilidade dos resultados simulados pelo modelo aos parâmetros ZR e β2. Nesta análise, foi observado nos três grupos de simulações que o IBIS apresentou sensibilidade ao parâmetro ZR e β2, exceto o terceiro grupo de simulações que não apresentou sensibilidade à β2. Posteriormente, foi realizado um procedimento de calibração envolvendo cerca de 120 simulações para os três grupos de simulações envolvendo diferentes condições de contorno. O novo conjunto de parâmetros, calibrados para cada grupo de simulações, apresentaram valores distintos. Os parâmetros calibrados utilizando o banco de dados global de granulometria do solo, foram ZR = 4 m e β2 = 0,999, enquanto que os parâmetros calibrados para as simulações que utilizaram amostras de solo coletadas localmente, foram ZR = 30 m e β2 = 0,999, já os parâmetros calibrados para as simulações que usaram os dados de temperatura e umidade do solo, foram ZR = 3 m e β2 = 0,999. Em geral, os parâmetros estimados são ZR = 30 m e β2 = 0,999 para a FNT-K83. Já as análises dos erros introduzidos pelas condições de contorno, relacionadas às propriedades físicas do solo, mostraram que a escolha dessas condições de contorno influencia o perfil de umidade volumétrica do solo simulado pelo IBIS, por conseguinte, a quantidade de água disponível para os processos de transpiração e evaporação, conseqüentemente, modificando a partição de Rn em H e LE. Estas análises indicam que a melhor condição de contorno, a que produz menores erros, seria a que utiliza dados observados do perfil de temperatura e umidade do solo para alimentar o modelo. Porém, esses dados são escassos, restritos a alguns experimentos e localidades. Com isso, a condição de contorno que utiliza parâmetros de solo obtidos a partir de amostras de solo coletadas localmente, seria a melhor opção, pois produz resultados satisfatórios e podem ser obtidas facilmente no local do experimento. As conclusões obtidas no presente trabalho e as dificuldades encontradas durante sua execução têm importantes implicações. Em primeiro lugar, provavelmente é real a necessidade de compreender melhor o sistema radicular nos ecossistemas em geral. Isto envolveria, por exemplo, mais medições e especificações da profundidade e distribuição do sistema radicular para validar as estimativas destes parâmetros. Em segundo lugar, a criação de um protocolo de medições em experimentos de campo, que padronizasse nestes experimentos algumas medições básicas, como amostras de solo, que poderiam ser utilizadas para estimar parâmetros do solo para serem utilizados pelos modelos.
In this work we calibrated the land-surface model IBIS estimating the parameters based on the optimization of net radiation (Rn) partitioning between sensible heat flux (H) and latent heat flux (LE). We used micrometeorological databases, measurements of soil samples properties and soil moisture and temperature obtained from the site of the National Forest of Tapajós km83 (FNT-K83). The methodology is based on the premise that the partition between the heat fluxes is a function of water stress, which depends on the depth and vertical distribution of the root system. It is the first time that it is used boundary conditions, associated with soil physical properties, with different levels of uncertainties and the errors introduced by these uncertainties. The simulations run by IBIS were organized into three groups according to the different types of data and boundary conditions, with different levels of uncertainty. In the first group, the model operates in normal mode, simulating LE using data from physical properties of soil estimated from global database of soil properties. In these simulations group, the uncertainty is greater because the soil physical properties are determined by tables of representative values for each type of soil granulometrial. In the second group, the model uses soil parameters obtained locally from soil water retention curve samples collected in the FNT-K83 to simulate LE. In this group, the uncertainty is reduced because the soil properties are determined locally. In the third group, the model simulates LE forcing conditions with soil temperature and soil moisture data measured in the experimental site FNT-K83. In this group, the uncertainty is smaller, because the model uses real data of soil moisture. For the calibration procedure each group of simulations obtained ZR and β2 parameters that optimized the statistics of the correlation coefficient (ρ) and the slope of the linear regression line between the simulates and observed data (α), and the minimization of the mean absolute error (MAE), the maximum bias (Bmáx) and the objective function (F(ZR,β2)). Before starting the calibration itself, a sensitivity analysis of the modelsimulated was performed for ZR and β2 parameters. In this analysis, it was observed in all simulations groups that the IBIS is sensitive to ZR and β2 parameters, except in the third group of simulations that showed no sensitivity to β2 parameter. After the sensitivity analysis was performed, a calibration procedure was performed involving around 120 simulations, for all groups of simulations that used different boundary conditions. The new set of parameters calibrated for each group of simulations, presented different results. The calibrated parameters using data from physical properties of soil estimated from the global database of soil properties were ZR = 4 m and β2 = 0,999, while the calibrated parameters for the simulations that used soil parameters obtained locally from the soil water retention curve samples, were ZR = 30 m e β2 = 0,999, whereas the calibrate parameters for simulations that uses soil temperature and soil moisture data measured in the experimental site FNT-K83, were ZR = 3 m e β2 = 0,999. In general, the best estimated parameters are ZR= 30 m e β2 = 0,999 for FNT-K83. The analysis of the errors introduced by the boundary conditions related to soil physical properties showed that the choice of boundary conditions influence the volumetric soil water content profile simulated by IBIS, therefore, the amount of water available for the processes of evaporation, transpiration and consequently the partition of Rn into H and LE. These analyses indicate that the boundary condition that produces small errors is that use local data of temperature and moisture soil profiles to run the model. However, these data sets are scarce, restricted to some experiments and localities. Thus, the boundary condition using soil parameters obtained from soil samples collectedlocally would be the best option because it produces satisfactory results and can be easily obtained at the experimental site. The conclusions and difficulties in this work encountered duringimplementation have important implications. Firstly, it is probably a real requirement to understand better the root system on general ecossystems. This would involve, for example, more measurements of depth and distribution of the root system characteristics to validate the estimation of these parameters. Secondly, the creation of a protocol for measurements in fieldexperiments, those standardize some basic measurements such as soil samples, which could be used to estimate soil parameters to be used by models.
Palavras-chave: Calibração
Sistema radicular
Modelos micrometeorológicos
Calibration
Root system
Micrometeorological models
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA::MICROMETEOROLOGIA
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Agrometeorologia; Climatologia; Micrometeorologia
Citação: IMBUZEIRO, Hemlley Maria Acioli. Estimate parameters of distribution and depth of the root system for the calibration of the micrometeorological models application to the Amazon rainforest. 2010. 130 f. Tese (Doutorado em Agrometeorologia; Climatologia; Micrometeorologia) - Universidade Federal de Viçosa, Viçosa, 2010.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/1497
Data do documento: 8-Jul-2010
Aparece nas coleções:Meteorologia Agrícola

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf2,22 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.