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RESUMO 

ROSA, Júlio César Câmara, D.Sc., Universidade Federal de Viçosa, abril de 2011. 
Engenharia metabólica da levedura Kluyveromyces lactis para síntese de Ácido L-
ascórbico (Vitamina C). Orientadora: Flávia Maria Lopes Passos. Coorientadores: 
Denise Mara Soares Bazzolli e Luciano Gomes Fietto. 

 

O Ácido L-ascórbico (L-AA), popularmente conhecido como vitamina C é 

naturalmente sintetizado pelas plantas a partir de D-glicose por uma via de 10 etapas. L-

galactose é o intermediário chave para a biossíntese de L-ascórbico, cuja via de 

biossíntese foi recentemente elucidada. As leveduras produzem um composto análogo 

ao L-AA, o ácido D-eritroascórbico, mas em presença de um de seus precursors tais 

como L-galactose, L galactono-1,4-lactona, ou L-gulono-1 ,4-lactona, as leveduras são 

capazes de sintetizar o L-AA. Para evitar alimentar a cultura de levedura com o "L" 

enantiômero, a levedura Kluyveromyces lactis  CBS2359 foi engenheirada com genes da 

via de biossíntese de L-galactose: GDP-manose-3 ,5-epimerase (GME), GDP-L-

galactose fosforilase (VTC2) e L-galactose-1-fosfato fosfatase (VTC4) isolados de 

Arabidopsis thaliana. Com este objetivo plasmídeos foram construídos visando a 

integração por recombinação homóloga dos cassetes de expressão no Locus LAC4 (�-

galactosidase) Após o processo de transformação, o promotor do gene LAC4 promove a 

transcrição do gene GME, enquanto que genes VTC2 e VTC4 estão sob o controle dos 

promotores GPD1 e ADH1 respectivamente  provenientes da levedura S. cerevisiae. A 

expressão dos genes da via de biossíntese de L-galactose em K. lactis foi determinada 

por RT-PCR e western blot. As leveduras recombinantes foram capazes de produzir 

cerca de 23 mg.L-1 de ácido L-ascórbico após 48 horas de cultivo, quando cultivados em 

meio YP suplementado com 2% (p/v) de D-galactose. A biossíntese de L-AA foi 



x 
 

também realizada quando as linhagens recombinantes foram cultivadas em meio de soro 

de queijo, fonte alternativa rica em lactose proveniente da indústria de laticínios. 

Este trabalho é um dos primeiros relatos de engenharia metabólica na levedura K. 

lactis visando a biossíntese de ácido L-ascórbico por um processo fermentativo sem a 

adição de intermediários precursores no meio de cultura. 
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ABSTRACT 

ROSA, Júlio César Câmara, D.Sc., Universidade Federal de Viçosa, April 2011. 
Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) 
synthesis. Adviser: Flávia Maria Lopes Passos. Co-Advisers: Denise Mara Soares 
Bazzolli and Luciano Gomes Fietto. 

 

 

L-ascorbic acid is naturally synthesized in plants from D-glucose via a ten-step 

pathway.  The branch pathway to synthesize L-galactose, the key intermediate for L-

ascorbic biosynthesis, has been recently elucidated. Budding yeast is only able to 

synthesize L-ascorbic acid if it is cultivated in the presence of one of its precursors: L-

galactose, L-galactono-1,4-lactone, or L-gulono-1,4-lactone extracted from plants or 

animals. To avoid feeding the yeast culture with this “L” enantiomer, we engineered 

Kluyveromyces lactis with L-galactose biosynthesis pathway genes: GDP-mannose-3,5-

epimerase (GME), GDP-L-galactose phosphorylase (VTC2) and L-galactose-1-

phosphate phosphatase (VTC4) isolated from Arabidopsis thaliana. Plasmids were 

constructed to target the cloned plant genes to the K. lactis LAC4 Locus by homologous 

recombination and the expression was associated to the growth of the cells on D-

galactose or lactose. Upon K. lactis transformation, GME was under the control of the 

native LAC4 promoter while VTC2 and VTC4 genes were transcribed by the S. 

cerevisiae promoters GPD1 and ADH1 respectively.  The expression in K. lactis of the 

endogenous L-galactose biosynthesis plant genes was determined by RT-PCR and 

western blotting. The recombinant yeasts were able to produce about 23 mg.L-1 of L-

ascorbic acid in 48 hours of cultivation when cultured on rich medium with 2% (w/v) 

D-galactose. We have also successfully evaluated the L-AA production culturing 

recombinant strains in cheese whey as an alternative source of lactose and which is a 

waste product during cheese production. This work is the first attempt to engineering K. 



xii 
 

lactis cells for L-ascorbic acid biosynthesis through a fermentation process without any 

trace of “L” isomers precursors in the culture medium. 
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INTRODUCTION 

 

The L-Ascorbic acid or vitamin C is a hydrosoluble vitamin derived from glucose 

metabolism. It is required for collagen fibers biosynthesis through hydroxylation of 

proline and lysine residues, and it also confers protection against deleterious effects 

caused by free radicals. However, humans are not able to synthesize L-ascorbic acid, 

therefore this essential compound must be obtained from the diet. Currently, most of the 

commercially available L-ascorbic acid is synthesized from glucose by the Reichstein 

method. In this process, the synthesis of L-ascorbic acid occurs from D-glucose which 

involves seven steps, six chemical steps and one fermentation step that presents an 

overall yield of 50%. Various stages of the Reichstein process use considerable 

quantities of organic and inorganic solvents and reagents. These include acetone, 

sulfuric acid and sodium hydroxide. Some companies have employed a modified 

Reichstein method in an attempt to minimize the use of such solvents.  

The use of a biological alternative to chemical synthesis for L-ascorbic acid (L-

AA) production is a technological strategy that follows the current order for sustainable 

development. Thus the interaction between the traditional industry of fermentation and 

recombinant DNA technology demonstrates that organic compounds can be produced 

by microorganisms in fermentation processes, although such organic compounds were 

previously only available through complex methods of extraction from plant or animal 

tissue with low yields and purity, and sometimes unsafe to be used by humans. So the 

use of microorganisms, the availability of several sequenced genomes associated to 

genetic engineering allow us to develop new strategies for L-AA production by 

fermentation.  



2 
 

Although L-AA naturally occurs in plants, yeasts do not present endogenous 

genes for its biosynthesis. However, they are capable of synthesizing D-erythroascorbic 

acid (D-EAA) that has antioxidant properties similar to L-AA. Under appropriate 

conditions, yeast cells can synthesize L-AA for D-EAA biosynthesis. Research with the 

yeast K lactis has increased due to its ability to assimilate lactose, ethanol and also to 

synthesize �-galactosidase enzyme (LAC4). The knowledge concerning the induction of 

LAC4 gene expression in K. lactis is the basis for the construction and operation of 

vectors for heterologous expression of proteins induced by lactose or D-galactose.  

This project aimed at engineering Kluyveromyces lactis in order to make this yeast 

able to synthesize L-AA from D-galactosil residue generated by the assimilation of 

cheese whey or lactose. Genes and strategies for the engineering the L-AA biosynthesis 

pathway in this yeast have been mapped and cloned. In this study, we targeted genes 

from Arabidopsis thaliana that encode proteins whose enzymatic activities result in the 

production of the key intermediate L-galactose that are reported from Arabidopsis 

thaliana. In this manner, we evaluated the ability of K. lactis to host and express plant 

genes and also to produce L-AA by fermentation process. 
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Chapter 1 

 

 

 

1. Background 

 

Although required as nutrients in tiny amounts by an organism, vitamins are 

organic compounds that cannot be synthesized in sufficient quantities, therefore must be 

obtained from the diet (Lieberman & Breunig, 1990). Moreover, vitamins have diverse 

biochemical functions such as hormones precursors (vitamin D), antioxidants (vitamin 

E and C), and mediators of cell signaling and regulators, tissue growth and cell 

differentiation (vitamin A).  

A great number of vitamins (B complex vitamins) function as coenzymes that act 

as catalysts and substrates in metabolism. In the first case, the vitamins must be bound 

to enzymes and they are called prosthetic groups (Bolander, 2006). The vitamins are 

classified by their biological and chemical activities, not their structure. In humans there 

are two groups of vitamins: 1) water-soluble; which comprises 9 compounds, 8 B 

vitamins (B complex vitamin) and vitamin C;  and 2) fat soluble, represented by 

vitamins A, D, E and K. Generally the water-soluble vitamins are involved in enzymatic 

functions and metabolism control by their involvement in substances such as co-

enzymes while the fat soluble tends to be used in the development and tissue 

maintenance (Rashida et al, 2009).  
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The ascorbate is the fully reduced form from L-ascorbic acid, and the 

semidehydroascorbate (SDA) is the result of one electron loss which is much more 

stable and less reactive than the other free radicals. Further, this compound might be 

completely oxidized to dehydroascorbate (DHA).  

In the early 80’s, Poydock et. al. reported the anti-cancer role of DHA studying 

the effect of the mixture of Vitamin C and B12 on tumors cells. The studies were 

performed with malignant murine cell lines in vitro and in vivo and they found that the 

L-AA, which they had used, was old and oxidized to DHA. They established that DHA 

was an active factor against cancer cells instead of L-AA.  Therefore, the L-AA can act 

as powerful antioxidant due to its capacity of easily donate a hydrogen atom and form a 

relatively stable ascorbyl free radical. As a scavenger of reactive oxygen, ascorbic acid 

has been shown to be effective against the superoxide radical ion, hydrogen peroxide, 

the hydroxyl radical and singlet oxygen (Weber et al., 1996). Several chemicals could 

serve to this purpose; however, the L-AA is considered as an efficient biological 

antioxidant for aerobic organisms because it is in appropriate amount in the cell, reacts 

with a variety of free radicals and it is suitable for regeneration (Rose & Bode, 1993; De 

Tullio & Arrigoni, 2004). Besides being an essential antioxidant in humans, the L-AA 

has a remarkable function on collagen maturation process acting as lisyl and prolyl 

hydroxilase enzyme cofactor. These enzymes catalyze the hydroxylation of lysine and 

proline residues on collagen peptide stabilizing the triple collagen helix which is 

extremely important in the connective tissue development and maintenance (Pinnel, et 

al. 1987; May & Qu, 2005).  

The recommended dietary allowance (RDA) for vitamin C was set at 75 mg/day 

for nonsmoking, nonpregnant women and 90 mg/day for nonsmoking men in order to 

achieve adequate levels of serum ascorbic acid. Serum ascorbic acid concentrations are 

considered to be adequate if over 28 µmol.L-1, suboptimal if between 11 and 28 µmol.L-

1, and deficient if lower 11 µmol.L-1 (Jacob, 1990; Loria et al. 1998), because symptoms 

of scurvy have been observed just below this level. The connective tissue inside and 

surrounding the blood vessels becomes impaired, and the vessel wall weakened leading 

the capillaries rupture and hemorrhages throughout the body. Cartilage and bone require 

L-ascorbic acid to secrete new matrix among the cells. The failure of the cells to deposit 

collagen fibrils and intercellular matrix results in periosteal and subperiosteal 

hemorrhages causing bone pain, inflammatory gingivitis, tooth loosening and eventual 

loss. In addition, defective bone matrix, cessation of bone growth and failure to ossify 
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result in musculoskeletal limb pain, limping, swelling over long bones, progressive leg 

weakness, pseudoparalysis, and fractures.   

Since its discovery, the L-AA has considerably reduced the scurvy prevalence in 

industrialized societies whereas it remains a threat, especially in developing countries 

(Popovich et. al., 2009). Moreover, the L-AA has an important function on anemia 

prevention by ensuring the iron uptake in intestinal luminal. It can efficiently convert 

iron from ferric to the ferrous form in low environmental pH. Furthermore, the vitamin 

C is able to release iron from ferritin complex and mobilize it from the 

reticuloendothelial transferrin system which ensure the iron utilization in the 

erythrocytes.  

Kim et al. (2008) described an inhibitory effect of vitamin C on replicative 

senescence. Vitamin C was found to inhibit p53-induced senescence in human bladder 

cancer EJ cells. Senescence-like phenotypes induced by p53 which comprises 

morphological changes and irreversible cell cycle arrest were not observed in EJ cells 

treated with vitamin C. Besides, recent findings have reported the effect of L-AA on cell 

signaling and transcriptional factor activation as a perspective research (De Tullio and 

Arrigoni 2004, Bremus et. al., 2006). 

In summary, L-AA is an important compound involved in several physiological 

functions associated with tissue protection against harmful oxidative products that have 

been implicated with many chronic disorders, including cardiovascular disease and 

cancer as well. 

 

1.2   Biosynthesis of L-Ascorbic Acid 

 

In 1934, Reichstein and Grüssner introduced a biochemical method known as 

Reichstein process, which allows the production of L-AA from glucose (Figure 2). 
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hydroxide. Although some of these components can be recycled, there is still a need of 

more environmental control. Some companies such as BASF, Merck and ADM have 

adopted a modified Reichstein method in an attempt to minimize the use of such 

solvents. The modified method includes two stages of fermentation using 

microorganisms. Both processes consume a large quantity of energy and employ high 

temperatures and pressure. These economic factors arouse interest in the use of an 

economically viable alternative process for L-AA production. Thus the use of 

microorganisms along with recent innovations in biochemistry and molecular biology 

allows us to develop new strategies for fermentation (Bremus et al., 2006). 

 L-AA is naturally produced in plants and its biosynthetic pathway has been 

completely elucidated recently. All genes encoding enzymes with their respective 

enzymatic activities have been identified and partially characterized (Smirnoff & 

Wheeler, 2000; Linster et al., 2007). Wheeler et al. (1998) have previously reported the 

presence of L-galactose biosynthesis pathway in plants from GDP-D-mannose. Three 

other pathways for L-AA production in plants have been described (Hancock and Viola 

2005): the L-Gulose pathway (Wolucka & Van Montagu 2003), the D-Galacturonic 

acid pathway (Agius et al. 2003), and the Myoinositol pathway (Lorence et al. 2004), 

but these seem to be of minor importance. However, the L-galactose pathway is 

recognized as the main route for L-AA biosynthesis (Valpuesta et al., 2004; Ishikawa et 

al. 2006). The Figure 3 illustrates the L-AA biosynthesis pathway in plants. 
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might present both enzymatic and regulatory function in L-AA biosynthesis pathway in 

plants (Müller-Moulé, 2008). The third enzyme is L-galactose-1-phosphate phosphatase 

(VTC4) which is a bifunctional enzyme that affects both ascorbate as well as 

myoinositol biosynthesis pathway, although it shows selective preference for L-

galactose 1-phosphate (Torabinejad et al., 2009). 

Humans, non-humans primates and a few other mammals are not capable to 

produce L-ascorbic acid due the last enzyme from that pathway, L-gulono-1,4-lactone 

oxidase, which is highly mutated and non functional. Thus this important antioxidant 

must be incorporated into the human diet (Chatterjee, 1973; Valpuesta et al 2004). The 

L-AA is widely found in nature, mostly in rich fresh fruits and leafy vegetables such as 

guava, mango, papaya, cabbage, mustard leaves and spinach (Tee et al., 1997). The 

table 1 shows the nutritional value of L-AA in some foods. 

 

 

 

 



 

TABLE 1.  Nutritional value of L-AA in vegetable foods.  Source: Davey et. al., (2000) 
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gsh1 mutants that are deficient in glutathione biosynthesis, a well known antioxidant. 

The cells grew normally in minimal medium as well as in complex medium whereas the 

cells overexpressing the gene ALO1 showed a slight difference in growth rate compared 

to the wild type. When oxidative stress was induced by addition of t-BHP (ter-butyl 

hydroperoxide - organic peroxide) the intracellular D-EAA levels were drastically 

reduced, but increased levels of D-EAA did not prevent the loss of glutathione during 

oxidative stress. In addition, the sub-lethal oxidative stress did not result in a high rate 

of biosynthesis of D-EAA even when the precursors were added (Spickett et. al. 2000). 

These results suggest that D-EAA does not play a crucial role in adaptive oxidative 

stress response considering the high levels of intracellular glutathione in yeast. 

However, the D-EAA must play a role in defense systems in order to assist non-

enzymatic glutathione intracellular pool under oxidative stress.  

Lee et al. (2001) established that NADH-cytochrome b5 reductase mitochondrial 

plays a crucial role in reducing free radical-D eritroascorbil in S. cerevisiae. Similar to 

L-AA, D-EA has the potential to protect both cytosolic and membrane components 

against damage caused by oxidative stress. The D-EAA is almost as readily oxidized in 

aqueous system (Shao et al. 1993) and has a similar system to L-AA in order to 

maintain its redox system (Figure 7). 

 

Figure 7.  L-AA (A) and D-EAA (B) redox equilibrium. (Source: Lee et al.2001) 

 

It is assumed that the balance EASC / EAFR is maintained by a putative NADH-

D-erythroascorbyl oxidase free radical although no record of purification and 

characterization of NADH-reductase in S. cerevesiae have been reported. 

It has been reported in mammalian cells the presence of NADH-cytochrome b5 

reductase, encoded by the gene MCR1, and their participation in the regeneration of L-
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AA from the ascorbyl free radical. Lee et al. (2001) showed that this enzyme is present 

in the outer membrane of mitochondria and reduces EAFR radical (D-erythroascorbyl 

free radical) in EASC (D-EAA). However, the overexpression and interruption of 

CYB5, single cytochrome b5 gene reported in S. cerevisiae, did not cause any change in 

NADH-cytochrome b5 reductase. Nevertheless, the overexpression of MCR1 resulted in 

an increased oxidative stress resistance whereas the opposite was observed when the 

gene was interrupted. Furthermore, the content of D-EAA in mcr1 mutant cells was 

higher compared with the alo1 mutants, but they were more sensitive to stress. These 

data indicate that the NADH-cytochrome b5 reductase has another function besides the 

reduction of -D erythroascorbyl free radical. Although it is possible that D-EAA plays 

an important role as an antioxidant with protective effect, one possible explanation is 

that D-EAA acts as an essential component for other biochemical processes, and it is 

normally produced in limiting concentrations and its depletion during oxidative stress 

reduces cell viability. Possibly, at low concentrations, D-EAA is required as a cofactor 

for iron dependent hydroxylases as it is known for L-AA in plants and animals (Davies 

et al. 1991, Sipckett et al. 2000) or required for the synthesis of oxalate as reported in S. 

sclerotiorum (Loewus et al. 1995). 

Huh et al. (2001) reported that �alo1 Candida albicans are more sensitive to 

oxidative stress and its overexpression has increased the survival rate during oxidative 

stress. In addition, alo1 mutants showed an attenuated virulence and hyphal growth 

deficiency. It is suggested that the D-EAA in C. albicans plays an important role as an 

antioxidant, whereas systems of defense against oxidizing agent is essential to resist the  

immune system during host infection and as a virulence factor. In addition, the D-EAA 

can be required as a component of the signal transduction pathway involved in the 

transition to hyphal growth as well as an integral normal cell wall during host infection.  

Huh et al. (2008) found that D-EAA activates cyanide-resistant respiration in C. 

albicans. This respiratory pathway is mediated by an alternative oxidase (AOX) that 

accepts electrons from the ubiquinone pool and reduces O2 to H2O. Increased levels of 

D-EAA induce the expression of AOX, playing an important role in the activation of 

this alternative respiratory pathway. 

In Neurospora crassa the levels of D-EA were higher when the cells were under 

nitrogen deprivation. D-EAA levels were also elevated in mutants for adenylate cyclase, 

and much lower when cAMP was added. It is suggested that in filamentous fungi the 

cAMP intracellular pool affects the biosynthesis of D-EA in response to nitrogen stress 

(Dumbrava & Pall, 1987). 
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These evidences reveal that D-EA can participate in different biochemical 

processes, and have a protective function against oxidative stress. It is synthesized at 

very low levels when compared to other cellular antioxidants such as glutathione 

peroxidase, catalase, superoxide dismutase and also to lipophilic antioxidants 

(ubiquinol, �-tocoferol, etc.). The functions of D-EA can vary from organism to 

organism whose mechanisms of regulation of the biosynthesis pathway might have 

diverged during the evolutionary process to improve environmental adaptations. Thus, 

considering the lack of information regarding the regulation of the biosynthesis of D-

EA, the elucidation of these mechanisms in a particular organism requires further study. 

 

1.4   Kluyveromyces lactis 

 

The genus Kluyveromyces was originally established by van der Walt (1956) to 

accommodate the new isolated yeast specie Kluyveromyces polysporus, an unusual 

yeast that formed large asci containing great numbers of ascospores. Later, van der Walt 

(1965) transferred yeasts species that had been previously assigned to Saccharomyces 

into this new group. Currently, Kluyveromyces is classified within the major group 

Saccharomyces complex from Saccharomycotina subphyla. More than 1000 species 

have been described in this subphyla. The Saccharomyces complex is primarily 

comprised by Saccharomyces and Kluyveromyces species. The Figure 8 presents the 

phylogenetic relationship among the yeasts.  
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Figure 8: Phylogenetic relationship among the sequenced yeasts genomes. The tree is a 
maximum-likelihood phylogeny reconstruction using the concatenated sequences of 153 
genes that are universally presented in the genomes shown. Bootstrap percentages are 
shown for all nodes. (Source: adapted from Scannel et al., 2007). 

 

Besides the major Saccharomyces complex, Saccharomycotina subphyla 

comprises two other clusters: one consists of yeasts species that translate CTG codons 

as serine than leucine, a reassignment that occurred more than 170 million years ago 

(Massey et al., 2003; Miranda et al., 2006), which includes Candida species, 

Debaryomyces hansenii and Lodderomyces elongisporus (Fitzpatrick, et al., 2006); and 

the cluster comprising only the yeast Yarrowia lipolytica (Dujon  et al., 2004). The 

major phylogenetic division within the Saccharomyces complex is between those yeasts 

whose common ancestor underwent whole genome duplication (WGD; Dujon et al., 

2004; Kellis et al., 2004) and those that diverged prior to this event. 

The WGD in yeast is estimated to have occurred in the ancestor of the 

Saccharomyces sensu stricto species complex around 100 million years ago (Dietrich et 

al., 2004) and has been proposed to have led to evolution of an efficient fermentation 

system in this lineage (Piskur & Langkjaer 2004; Piskur et al., 2006).  Most of the post 

WGD yeast species primarily carry out fermentation to generate energy under aerobic 

conditions (Merico et al., 2007) due to glucose repression of respiration pathways 

(Wang  et al., 2004; Santangelo 2006),  phenomena  known as crabtree-positive. 
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However, the pre-WGD yeast species such as Kluyveromyces lactis predominantly 

generate energy for fast cellular growth through respiration pathway. The regulation of 

primary carbon metabolism in K. lactis differs noticeably from Saccharomyces 

cerevisiae and reflects the dominance of respiration over fermentation typical for the 

majority of yeasts. The low glucose repression of respiration, a high capacity of 

respiratory enzymes and a tight regulation of glucose uptake in K. lactis are key factors 

determining physiological differences to S. cerevesiae (Breunig et al., 2000). 

The yeasts within the genus Saccharomyces, Kluyveromyces belong to the family 

Saccharomycetaceae, originated from a common ancestor, and the ability of these yeasts 

to assimilate galactose as carbon source is determined by the presence of genes 

comprising the GAL regulon (Schaffrath & Breunig , 2000; Bhat & Murthy, 2001; 

Rubio-Texeira, 2005). The system for internalization and hydrolysis of sources of 

galactose has differently evolved between these yeasts. The assimilation of lactose (O-

�-D-galactopiranosil -1.4 - � - D-glucose) by K. lactis is due the presence of two genes 

LAC12 and LAC4 encoding the Lactose permease and �-galactosidase (lactase) 

respectively (Sreekrishna & Dickson, 1985). K. lactis has been used as a source of 

lactase (�-galactosidase) since the earlier fifties mainly to provide the enzyme for 

lactose hydrolysis in dairy products for lactose intolerant consumers.  The LAC4 and 

LAC12 genes are divergently transcribed from an intergenic region of about 2.6 Kb, 

which contains an upstream activator sequence (UAS). The activating sequence 

contributes synergistically to the activation of both genes to allow the binding of 

transcriptional activator Lac9/KlGal4p. The presence of lactose / galactose increases the 

transcription of the LAC / GAL regulon. The galactose together with an ATP molecule 

activates the sensing function of the KlGal1p (galactokinase) which is the first active 

enzyme of the metabolic pathway for conversion of galactose into glucose-6-phosphate 

intermediate of the glycolytic pathway (Leloir Pathway). Figure 9 shows the simplified 

scheme for LAC/GAL regulation in K. lactis. 
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efficient systems for proteins expression in K. lactis (Dujon, et. al., 2004). High-level of 

gene expression can be approached from either integrative or episomal strategies 

allowing mitotic stability or multicopy dosage effects of the foreign gene. Both 

approaches have been successfully exploited for bovine prochymosin and human 

serumalbumin (van den Berg et al., 1990; Fleer et al., 1991). 

Colussi & Taron (2005) developed an integrative vector for expression and 

secretion of recombinant proteins, called pKLAC1, whose integration occurs in the 

promoter region of the gene LAC4.  The vector pKLAC1 is a component of an 

expression system that was developed from basic research at New England Biolabs, Inc. 

and DSM Biologics Company B.V. This vector harbors a fungal acetamidase selectable 

marker gene (amdS) which allows the use of non-auxothrophic K. lactis strain and non-

antibiotic selection. Read et al. (2007) demonstrated that the high frequency of 

multicopy integration associated with the use of acetamide selection can be exploited to 

rapidly construct expression strains that simultaneously produce multiple heterologous 

proteins 

The ability of K lactis to assimilate lactose as carbon source allows the 

employment of the LAC genes in bioremediation processes for the conversion of whey 

lactose. Whey is a major by-product from the dairy industry and its composition varies 

depending on the cheese. It is estimated that for every kilogram of cheese around 9 kg 

of whey are produced (Yang & Silva, 1995). This by-product contains about 6.0 to 

6.5% total solids, and about 4.5 to 5.0% lactose, 0.8 to 1.1% protein, 0.03 to 0.1% fat, 

0.5 to 0.8% of ash and 0.2 to 0.8% lactic acid.  

Whey is used to produce ricotta, brown cheeses and many other products for 

human consumption. Indeed, it is also an additive in many processed foods, including 

breads and commercial pastry, and in animal feed. Whey proteins consist primarily of �-

lactalbumin and �-lactoglobulin. Due to the high concentration of organic compounds, 

mainly represented by lactose (approximately 70% of total solids) and proteins 

(approximately 20% of total solids), the whey places a high value of biological oxygen 

demand (BOD) during the wastewater treatment. The ultrafiltration process is 

considered as an alternative way to minimize the polluting effects of whey. 

Furthermore, it is suitable for obtaining a protein concentrate due to its high nutritional 

and functional value. (Siso, 1996;)  

Thus exploiting the Kluyveromyces lactis fermentation capacity, the conversion of 

lactose from cheese whey into valuable industrial compounds is a project of great social 

and economic interest. 
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Metabolic Engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) 

synthesis 

 

 

ABSTRACT 

L-ascorbic acid is naturally synthesized in plants from D-glucose via a ten-step 

pathway.  The branch pathway to synthesize L-galactose, the key intermediate for L-

ascorbic biosynthesis, has been recently elucidated. Budding yeast is only able to 

synthesize L-ascorbic acid if it is cultivated in the presence of one of its precursors: L-

galactose, L-galactono-1,4-lactone, or L-gulono-1,4-lactone extracted from plants or 

animals. To avoid feeding the yeast culture with this “L” enantiomer, we engineered 

Kluyveromyces lactis with L-galactose biosynthesis pathway genes: GDP-mannose-3,5-

epimerase (GME), GDP-L-galactose phosphorylase (VTC2) and L-galactose-1-

phosphate phosphatase (VTC4) isolated from Arabidopsis thaliana. Plasmids were 

constructed to target the cloned plant genes to the K. lactis LAC4 Locus by homologous 

recombination and the expression was associated to the growth of the cells on D-

galactose or lactose. Upon K. lactis transformation, GME was under the control of the 

native LAC4 promoter while VTC2 and VTC4 genes were transcribed by the S. 

cerevisiae promoters GPD1 and ADH1 respectively.  The expression in K. lactis of the 

endogenous L-galactose biosynthesis plant genes was determined by RT-PCR and 

western blotting. The recombinant yeasts were able to produce about 23 mg.L-1 of L-

ascorbic acid in 48 hours of cultivation when cultured on rich medium with 2% (w/v) 

D-galactose. We have also successfully evaluated the L-AA production culturing 
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recombinant strains in cheese whey as an alternative source of lactose and which is a 

waste product during cheese production. This work is the first attempt to engineering K. 

lactis cells for L-ascorbic acid biosynthesis through a fermentation process without any 

trace of “L” isomers precursors in the culture medium. 
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1. INTRODUCTION 

 

The enediol ascorbate or L-ascorbic acid (L-AA), known as Vitamin C, is an 

important metabolite in many organisms. In eukaryotes, L-AA is essential for a variety 

of cellular functions (21) such as  i) scavenger of free radicals (44); ii) reducing agent 

(3), iii) cofactor for enzyme activity (31,  33), iv) intermediate on catecholamines 

biosynthesis and v) limiting growth factor in plant development (2). Most of the 

commercially available vitamin C is synthetically synthesized by the Reichstein 

process, using D-glucose as start material (13). 

L-AA is naturally produced in plants where its biosynthetic pathway has been 

completely elucidated (25, 39). In most cases, GDP-D-mannose is converted into L-

galactose, which is further converted into L-AA (45).  Although there may be 

alternative routes (1, 26), this pathway is recognized as the main route for L-AA 

biosynthesis (16, 43). There are three enzymes required for the conversion of GDP-D-

mannose into L-galactose. The GDP-mannose 3,5 epimerase (GME) catalyzes the 

conversion of GDP-D-mannose to GDP-L-gulose or to GDP-L-galactose, depending 

whether the epimerization occurs on 5’- carbon or on both 3’- and 5’- carbon of GDP-

D-mannose respectively (46). GDP-L-gulose seems to represent the minor part of the 

products (around 25% under equilibrium) and can also be converted to L-AA (27). The 

epimerization of D to L-substrates, which is rare in nature, is a crucial step to generate 

the galactose enantiomer in the L-AA pathway. GDP-L-galactose is then converted to 

L-galactose-1-phosphate by GDP-L-galactose phosphorylase, encoded by the VTC2 

gene (9). This gene encodes a member of GalT/Apa1 branch of the histidine triad 

protein superfamily that catalyzes the conversion of GDP-L-galactose to L-galactose 1-

phosphate in a reaction that consumes inorganic phosphate and produces GDP (25). The 

VTC2 may present both enzymatic and regulatory functions in the L-AA biosynthesis 

pathway in plants (30). The third enzyme is L-galactose-1-phosphate phosphatase 

encoded by VTC4 (23) which is a bifunctional enzyme that plays a role in both 

ascorbate as well as myoinositol biosynthetic pathways, although it shows selective 
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preference for L-galactose 1-phosphate (42). The resulting L-galactose is then the main 

precursor for L-AA biosynthesis.  

Yeasts are known to produce the 5-carbon ascorbic acid analogue, D-

erythroascorbic acid (D-EAA), which is synthesized from D-arabinose. Although D-

EAA does not show any anti scurvy activity, its physicochemical properties and 

biological activities are quite similar to those of L-AA. For this reason D-EAA can 

replace L-AA in some industrial applications (15, 37). Surprisingly, the structural 

motifs of the enzymes involved in the D-EAA biosynthetic pathway resemble those of 

the pathway in plants that converts L-galactose into L-AA. D-EAA pathway enzymes 

from Candida albicans and Saccharomyces cerevisiae have shown to be able to convert 

a broad range of substrates besides D-arabinose including L-galactose into their 

respective galactonic acids in vitro (19, 20). Furthermore, L-AA production in yeasts 

was achieved when appropriate precursors such as L-galactose, L-galactono-1,4-

Lactone, L-gulono-1,4-lactone were exogenously supplied in the  growth medium (35). 

Thus, isolation of genes involved in L-galactose production in plants provides 

biochemical support to guide the metabolic capacity of industrial microorganisms to 

produce L-AA by fermentation (13).  

Attempts have been made to synthesize L-AA in genetically modified 

microorganisms. Sauer et al. (35) observed a high production of vitamin C in the culture 

supernatant of S. cerevisiae cells expressing the L-galactose dehydrogenase (LDGH) 

and D-arabinose-1, 4-lactone oxidase (ALO1) from yeast or the L-galactona-1, 4-

lactone dehydrogenase (AGD) from Arabidopsis thaliana when cultivated in a medium 

containing 250 mg.L-1 L-galactose. Further, Branduardi et al. (5) have engineered this 

strain with GME and VTC4 from A. thaliana and also with L-fucose 

guanylyltransferase from Rattus norvegicus FGT in order to convert D-glucose to L-AA 

completing the L-AA pathway in S. cerevisiae. The L-AA production conferred an 

increased stress tolerance under oxidative conditions. 

Kluyveromyces lactis is one of the most important non-Sacharomyces yeast 

species used as an eukaryotic model and tool for biotechnological applications including 

an alternative host for heterologous gene expression. K. lactis has the ability of 

growing, by respiration, on a wide range of substrates, including lactose with low 

glucose repression (4). The genome has been completely sequenced and the Lac-Gal 

regulon with the induced genes for lactose transport and hydrolysis has been extensively 

studied (36). Many heterologous expression systems have been developed, based on the 

lac4 promoter with the production of lysozyme (17), serum albumin (7), thermostable 
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bacterial xylanase (47) and heparin sulfate sulphotransferase (48) as examples. The 

potential use of K. lactis as a host for protein expression associated to its physiological 

properties suggest that this yeast could also be used for large-scale protein production in 

the food and pharmaceutical industry. Furthermore, its ability to express and process 

heterologous proteins makes this yeast well suited for multiple proteins expression such 

as the enzymes involved in L-galactose metabolism from plants. Considering the high 

costs of using non-physiological substrates in the L enantiomer form for industrial 

applications, herein, we report the construction of K. lactis strains capable to convert D-

galactose or lactose into L-galactose, the main intermediate metabolite of the L-AA 

pathway in plants, and its simultaneous conversion into L-ascorbic acid. 
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2. MATERIAL AND METHODS 

 

2.1 Cell strains and growth medium.  

 

Escherichia coli TOP10 cells [F- mcrA �(mrr-hsdRMS-mcrBC) �80lacZ�M15 

�lacX74 nupG recA1 araD139 �(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 �-] 

were used to amplify the plasmids. E. coli cells were grown on Luria Bertani (LB) 

medium (10 g.L-1 tryptone, 5 g.L-1 yeast extract, 10 g.L-1 NaCl, pH 7.5) with or without 

100µg.mL-1 ampicilin at 37°C.  E. coli TOP10 cells harboring the recombinant vector 

pGEM T easy were grown on solid LB medium supplemented with 1mM isopropyl �-

D-thiogalactopyranoside (IPTG) and 40 µg.mL-1 5-bromo-4-chloro-3-indolyl- beta-D-

galactopyranoside (X-Gal). Kluyveromyces lactis CBS2359 strain was used as host for 

protein expression on this work. YPD medium (20 g.L-1peptone, 10 g.L-1 Yeast extract, 

20 g.L-1Dextrose) or YPGal (20 g.L-1peptone, 10 g.L-1 Yeast extract, 20 g.L-1 Galactose) 

were routinely used for obtaining  biomass of the recombinant and parental yeast strains 

at 30°C. For solid medium 20 g.L-1 agar was added. YCB (Yeast Carbon Base - Sigma) 

medium supplemented with 5 mM acetamide and YPD containing 200 µg.mL-1 

geneticin were used to select K. lactis cells transformed with the vectors constructed on 

this work. Cheese whey, YNB (Yeast Nitrogen Base - Sigma) or YP medium 

supplemented with 20 g.L-1 galactose or lactose was used to grow the cells for L-

ascorbic acid measurements.   
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2.2 L-ascorbic acid pathway genes amplification.  

 

L-Ascorbic acid pathway genes from Arabidopsis thaliana, GDP-D-Mannose 

3',5'-Epimerase [AtGME (E.C. 5.1.3.18)], GDP-L-Galactose Phosphorylase 

[AtVTC2(E.C.2.7.7.220], L-Galactose-1-Phosphate  Phosphatase [AtVTC4 ( E.C. 

3.1.3.23) were amplified using A. thaliana cDNA, kindly provided by Dr. Filip Rolland 

(K.U. Leuven, Belgium), as a template. L-AA pathway proteins were tagged with the 

Flag Tag (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys). Phusion High Fidelity DNA 

polymerase was used for PCR amplification and primers are listed on Table 1. 

Amplification cycles comprised 5 minutes 95°C, 1 minute 95°C, 30 seconds Tmx, 90 

seconds 72°C, 5 minutes 72°C.  Tmx was 58°C for AtGME, 66°C for AtVTC2 and 

60°C for AtVTC4 amplification.  

 

2.3 Construction of plasmid vectors.  

 

Maps of the plasmids used on this study are shown in Figure 1. pKLAC1 plasmid 

(7) was used as starting point. pMB7-A (10) was used as template for hisG fragments 

amplification, 1 minute 94°C, 1 minute 63°C, 1 minute 68°C (34 cycles), with the 

primers hisGI-F and hisGI-R, hisGII-F and hisGII-R. HisG fragments were subcloned 

into pGEM T easy Vector and further transferred to pKLAC1 generating the plasmid 

pKLhisG2. The repeat hisG sequences flank the amdS (acetamidase) marker for its 

removal by homologous recombination in the counterselection procedure. Bidirectional 

promoter in the pBEVY-L vector (28), ScGPD and ScADH1 fused promoters, and the 

ADH2 sequence terminator were amplified using the primers GPDADH1-F and 

GPDADH1-R in the following amplification cycles: 20 sec 98°C, 20 sec 63°C, 45 sec 

72°C (34 cycles). The resulting 1405 bp fragment was subcloned into the pGEM vector 

linearized by AatII and NdeI, generating the plasmid pGDPADH1. The AtVTC4 gene 

was inserted into pGPDADH1 linearized by EcoRI and KpnI. Finally, the AtVTC4 

expression cassette, under the control of the ADH1 promoter was cut out from the 

pGPDADH1 vector and cloned into pKLhisG2, linearized with HindIII and NotI. 

Afterwards, the AtVTC2 gene was released from the pGEM Vector with NotI and StuI 

digestion and transferred to pKLhisG2, linearized with the same restriction sites 

resulting in the vector pKlVTc.  pKLAC1 was digested with HindIII and XhoI, 

followed by treatment with Klenow enzyme and also with T4 DNA ligase to destroy the 

signal secretion sequence of the alpha mating factor. AtGME gene was released from 
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pGEM vector with the XhoI and StuI and inserted into the SalI and StuI sites from 

pKLAC1 �-mating factor free vector generating the vector pKLJC/GME. LoxP-

KanMX-LoxP cassette was amplified by polymerase chain reaction using pYX012 

vector (Novagen) as template and the primers KanMX-F and KanMX-R in the 

following amplification cycles: 3 minutes 98°C, 20 sec 98°C, 20 sec 63°C, 45 sec 72°C 

(34 cycles). The cassette was further inserted into BsrGI and XmaI site from 

pKLJC/GME vector. All ligation reactions were performed with Rapid DNA Ligation 

Kit from Roche®.  

 

2.4 Yeast transformation.  

 

Kluyveromyces lactis transformation was carried out according to Kooistra et. al. 

(22) with some modifications. Fresh CBS2359 cells were plated on YPD agar medium 

and incubated overnight at 30°C. An isolated colony was grown in 2 mL YPD culture at 

30°C, 200 rpm overnight. 50 mL YPD were inoculated with this 2mL pre-cultured cells 

to start O.D600 0.0025 per mL (0,1 O.D.).  When O.D600 reached approximately 1, the 

cells were harvested at 1,075 x g for 5 minutes at 4°C and washed with 25 mL sterile 

ice-cold electroporation buffer EB (10 mM tris-HCl, pH 7.5, 270 mM sucrose and 1mM 

MgCl2). 25 mL YPD medium containing 25 mM DTT and 20 mM HEPES pH 8.0 were 

added and further incubated at 30°C for 30 minutes without shaking.  Cells were 

collected at 1,075 x g for 5 minutes at 4°C and washed with 10 mL sterile ice-cold EB 

buffer. Cells were resuspended in 0.2 mL ice-cold EB and added to 60 µL aliquots of 

competent cells. To each aliquot 50 µg SS-DNA (Salmon Sperm DNA) plus 2µg 

transforming DNA was added and kept on ice for 15 minutes. The mixture was 

transferred to a chilled electroporation cuvette (2 mm) and eletroporated at 1KV, 25 µF 

and 400 Ohm. Immediately, 1 mL YPD was added and the mixture was incubated at 

30°C for 3 hours, 200 rpm. The cells were harvested at 1,075 x g for 5 minutes at 4°C 

and washed with sterile water. Cells were plated on selective agar plates and kept at 

30°C for 2 days. 
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2.5 Total DNA extraction and yeast transformants screening. 

 

 Cells were grown in 2 mL YPD at 30°C to saturation. The biomass were 

collected by centrifugation, resuspended in 0.2 mL lysis buffer (2% Triton X-100, 1% 

SDS, 100 mM NaCl, 10 mM Tris pH8, 1 mM EDTA) and transferred to a 2 mL 

screwcap tube. Afterwards, 0.2 mL PCI [ phenol pH 6.7- chloroform-isoamylalcohol 

(25:24:1)] and 0.3 g glass beads were added. The cells were broken using the fastprep 

machine, speed 6 for 20 sec followed by centrifugation at 17,968 x g for 10 minutes. 

The supernatant was transferred to a new tube, 0.5 mL ethanol was added and kept at -

20°C for at least 20 minutes. The total DNA was pelleted by centrifugation at 17,968 x 

g for 10 minutes, washed with 70% ethanol and dried at room temperature. The DNA 

samples were dissolved in 30 µL nuclease-free H20 and kept on -20°C. The correct 

cassette integration into the LAC4 locus was confirmed by colony PCR or by using 

their total DNA as template. For colony PCR, isolated colonies obtained on selective 

media were transferred to fresh selective agar media for the isolation of single colonies. 

Single colonies were picked up with a sterile toothpick and dissolved in 100 µL 0.01M 

NaOH and kept at room temperature for 45 minutes.  A 1.5 µL aliquot of this sample or 

1 µL from total purified DNA was used as a template for a 50 µL PCR reaction.  The 

specific primers used to detect the single or multiple cassette insertions into the LAC4 

promoter locus are indicated in Table 2. The amplification cycles comprised 5 minutes 

98°C, 45 seconds 98°C, 30 seconds 58°C, 1 minute 72°C (35 cycles) and 5 minutes 

72°C. 

 

2.6 Total RNA extraction from yeast and RT-PCR 

 

The cells were grown overnight in 5 mL YPGal medium at 30°C, 200 rpm. The 

cells were pelleted by centrifugation and the supernatant was discarded. The total RNA 

from recombinant K. lactis yeast cells was extracted using the Trizol® method 

(Invitrogen). The cDNA synthesis from the total RNA extracted was achieved using the 

Reverse Transcription System from Promega®.  A 2 µL cDNA aliquot from each 

sample was used in a 50 µL PCR reaction in order to qualitatively detect mRNA 

expression of the L-AA pathway plant genes inserted into K. lactis genome. The RT-

PCR was performed using the same primers and amplification cycles used for plant 

genes amplification.  
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2.7 Protein extraction, immunoprecipitation and western blotting 

 

 The recombinant cells were precultured overnight in 3 mL YPGal, 200 rpm at 

30°C and used to inoculate 50 mL YPGal. When the culture reached the OD600 of 5, the 

cells were pelleted by centrifugation at 1,075 x g, 4°C for 5 minutes and washed with 

ice-cold Phosphate buffered saline (PBS, 140 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4 at pH 7.3). Protein extraction was carried out with glass 

beads in lysis buffer containing 1x PBS, 0.001% Triton X-100, 8.7% glycerol, 25 mM 

MgCl2, 10 mM EDTA (pH 7), 10 mM dithiotreitol, 100 mM NaF, 4 mM Na3VO4, 1 

mM �-glycerophosphate and one tablet of Complete Protease Inhibitor Cocktail 

(Roche). Total protein content was measured according to Bradford, (1975) using 

bovine serum albumin (BSA) as standard. An aliquot, comprising 400 to 500 �g total 

protein extract, was used for flag tagged protein immunoprecipitation with monoclonal 

anti-FLAG antibodies (M2, Sigma-Aldrich) by incubation with Protein G agarose 

(Roche) for 3 hours at 4°C.  SDS sample buffer (5X: 250 mM Tris–HCl, 10% SDS, 

0.5% bromophenol blue, 1.4 M �-mercapto-ethanol) was added after three wash steps 

and stored at -20°C.  

Proteins were separated by SDS-polyacrylamide gel electrophoresis on the 

NUPAGE Novex Bis-Tris mini Gel system (Invitrogen®). Separated proteins were 

transferred to nitrocellulose membrane (HybondC extra, Amersham) and detected by 

incubation with monoclonal anti Flag antibodies and horseradish peroxidase-conjugated 

anti mouse IgG secondary antibodies (Amersham) and detected using the Supersignal 

West Pico Luminol solution (Thermo Scientific). Immunoblots chemiluminescence was 

imaged using Fujifilm LAS-4000 mini, and the accompanying software Image Reader 

LAS-4000, (Life Science Fuji Photofilm Co., Ltd). 

 

2.8 Measurement of intracellular L-galactose formation.  

 

Recombinant cells precultured in 3 ml YPGal were used to inoculate 50 mL 

YPGal, 30°C, 200 rpm for 24 hours. The cells were harvested by filtration on 

nitrocellulose filters 0.45 µm, transferred to 8 mL methanol/chloroform (5 mL 

MeOH/3mL Chloroform) and kept at -20°C overnight. Aliquots from the supernatant 

were taken, transferred to 2mL tubes and cleared by centrifugation at 13,201 x g, 4°C 

for 10 minutes. Fractions of the supernatant were dried by speedvac and resuspended in 

1 mL milliQ H2O. Charged compounds were removed from the sample using Dowex 
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ion-exchange resins (1:1 v/v) 50WX8-200 (Sigma-Aldrich) and 1X8 200 (Acros 

Organics) The samples were used immediately for HPLC analysis (CarboPac PA1 

anion-exchange column, 10 µm, 4 x 250 mm, DIONEX, eluent: 100 mM and 16 mM 

NaOH, flow rate: 1mL.min-1, detection: pulse amperometry ED40 gold electrode) using 

pure D-galactose (Sigma-Aldrich, G0750) and L-galactose (Sigma, G7134) as 

standards. 

 

2.9 Determination of L-Ascorbic acid.  

 

For intracellular L-ascorbic acid determination, yeast cells were pregrown in 3 mL 

YP or YNB medium supplemented with 2% (w/v) galactose or lactose. These cells were 

used to inoculate 50 mL of either medium at an initial optical density of 0.1. The cells 

were grown for 24 hours, harvested by centrifugation at 2,988 x g for 5 minutes at 4°C 

and washed once with ice cold distilled H2O. The cell pellet was resuspended in about 

twice the volume with ice cold 10% (w/v) trichloroacetic acid, vortexed vigorously for 2 

minutes and kept on ice for 20 minutes. The supernatant was cleared from cell debris by 

centrifugation. L-ascorbic acid was determined spectrofotometrically according the 

method adapted from Sullivan et Clarke (40): 135 µL of sample was mixture with 40 

µL 85 % (v/v) H3PO4, 675 µL 0.5% (w/v) �’�’ dipyridyl and 135 µL 1% (w/v) FeCl3. 

After incubation at room temperature for 10 minutes the absorbance at 525 nm was 

measured and the L-ascorbic acid concentration was calculated using the L-AA standard 

curve.  

 

 

2.10 Statistical analysis.  

 

The L-AA measurement experiments were carried out at least three times. Herein, 

we reported mean values as well as for L-AA standard curve. Student’s t-test was 

performed with p < 0.05. 
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TABLE 1: List of primers used on this study 

 

Name Sequence (5’�3’) 
Restriction  

site 

   

GME-F CTCGAGATGGGAACTACCAATGGAACAG XhoI 

GME-RFlag CCCGGCGGCCGTTCCAACTTGTCATCGTCATCCTTGTAATCCTCTTTTCCATCAGCCGCG NotI 

VTC2-F GCGGCCGCATGTTGAAAATCAAAAGAGTTCCGACC NotI  

VTC2-RFlag AGGCCTTTCCAACTTGTCATCGTCATCCTTGTAATCCTGAAGGACAAGGCACTCGGCGGC’ StuI  

VTC4-F CTCGAGATGGCGGACAATGATTCTCTAG XhoI 

VTC4-RFlag AGGCCTTTCCAACTTGTCATCGTCATCCTTGTAATCTGCCCCTGTAAGCCGC StuI 

VT4-F CGACTCGGTACCATGGCGGACAATGATTCTCTAG KpnI 

VT4-R CGACTCGAATTCTCACTTGTCATCGTCATCCTTG EcoRI 

hisG I – F TGTACACCAGTGGTGCATGAACGC BsrGI 

hisG I – R ACATGTCTAGGGATAACAGGGTAATATAGACATGG BsrGI 

hisG II – F CGACTCCCCGGGCCAGTGGTGCATGAACGC XmaI/SmaI 

hisG II – R CGACTCCTGCAGCTAGGGATAACAGGGTAATATAGACATGG PstI  

KanMX-F CGACTCTGTACACTGAAGCTTCGTACGCTGCA BsrGI 

KanMX-R CGACTCCCCGGGATCACCTAATAACTTCGTATAGCATACATTATAC SmaI 

GPDADH1-F CGACTCCATATG GCGGCCGCGTCGAAACTAAGTTCTTGGTGTTTTAAAACT NdeI /NotI 

GPDADH1-R CGACTCGACGTC AAGCTTGGCATGCGAAGGAAAATGAGA AatII / HindIII 

KlACT1-F ATGGATTCTGAGGTCGCTGC  

KlACT1-R TTAGAAACACTTCAAGTGAACGATGG  

P1 ACACACGTAAACGCGCTCGGT  

P2 ATCATCCTTGTCAGCGAAAGC  

P3 ACCTGAAGATAGAGCTTCTAA  

P4 GGTACCCCTAGGAGATCTAGCTC  

Underlined are shown the Flag Tag sequence. 
In bold are represented the restriction site. 
In blue, the stop codon. 
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FIG. 1. Maps of the plasmid vectors used for L-AA genes expression. pKlJC/GME (B) 
and pKlVTc (C) vectors are derived from pKLAC1(A).  The vectors contain the 5´ and 
3´ ends of the LAC4 promoter separated by DNA encoding �-lactamase (Amp

R
) and the 

pMB1 origin (ori). The yeast ADH1 promoter drives expression of an acetamidase 
selectable marker gene (amdS) which is flanked by hisG into pKlVTc plasmid. ADH1 
and GPD promoters from Saccharomyces cerevesiae drive the transcription of AtVTC4 
and AtVTC2 respectively.  The cassette LoxP-KanMX-LoxP in the pKLJC/GME vector 
confers resistance to geneticin. 

 

The codons of the plant genes were not optimized for expressing in K. lactis as 

Carbone et al. (6) reported that Saccharomyces sp. and plants shared the same preferred 

codons, supporting K. lactis as a host for unmodified plant genes expression.  

 

3.2 Kluyveromyces lactis strains expressing L-AA genes.  

 

To obtain strains producing L-AA, K. lactis CBS2359 cells were transformed with 

Sac II linearized pKLJC/GME and pKlVTc vectors constructed in this work (Fig 1). 

Strain JVC1-5, was obtained by transformation of K. lactis CBS2359 cells with the 

pKLJC/GME vector. The strains JVC1-51, JVC1-52, JVC1-53 were derived from 

JVC1-5 by transformation with pKlVtc vector containing the AtVTC4 and AtVTC2 

expression cassette. The JVC3-2 strain was generated by one step transformation with 

both plasmids. The JVC2-1 and JVC2-2 strains were constructed by transformation of 

the K. lactis CBS2359 cells with the pKlVTc vector. All yeast strains used in this work 

are listed in table 2.  

TABLE 2: Yeasts strains used in this study 

 

Strain Markers Cassette expression Plasmids Reference 

CBS 2359 Wild type 
- - Genolevures 

consortium* 

JVC1-5 KanR AtGME pKLJC/GME This study 

JVC1-51 KanR, amDs AtGME, AtVTC2, AtVTC4 pKLJC/GME, pKlVTc This study 

JVC1-52 KanR, amDs AtGME, AtVTC2, AtVTC4 pKLJC/GME, pKlVTc This study 

JVC1-53 KanR, amDs AtGME, AtVTC2, AtVTC4 pKLJC/GME, pKlVTc This study 

JVC2-1 amDs AtVTC2, AtVTC4 pKlVTc This study 

JVC2-2 amDs AtVTC2, AtVTC4 pKlVTc This study 

JVC3-2 KanR, amDs AtGME, AtVTC2, AtVTC4 pKLJC/GME, pKlVTc This study 

 KanR cassette conferring resistance to Geneticin;   amDs acetamidase marker. 
*Kluyveromyces lactis strain used for Genome sequencing by the Génolures consortium 
(www.genolevures.org)  
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The selection of K. lactis cells transformed with pKlVtc was achieved by growth 

on YCB agar medium containing 5 mM acetamide.  The vector harbors the amDs 

marker which has been reported to favor transformants with more than one integration 

event into the genome (34).  Correct integration into the K. lactis LAC4 locus was 

confirmed by PCR analysis using the primers P1, P2, P3 and P4 (Table 1).  Figure 2 

provides a schematic overview of the resulting genomic organization of the integrated 

plasmids at the K. lactis LAC4 chromosomal locus. Primer P1 was designed to anneal at 

the chromosomal LAC4 promoter upstream of the vector integration site and the reverse 

primers P2 and P4 anneal to pKlVTc and pKLJC/GME expression cassettes sequence 

respectively. When multiple copies of the cassette are integrated in tandem at the same 

locus a 2.3 kb fragment will be amplified by using the forward primer P3 in 

combination with either reverse primers P2 or P4 for each vector. Single and multiple 

insertions from each cassette were detected by the presence of 2.4 kb and 2.3 kb 

amplicons respectively. The insertion of the cassette into the LAC4 locus by 

homologous recombination duplicates the LAC4 promoter region so that it can be 

targeted by another cassette resulting in multiple copies integration.  Although the 

analysis does not indicate the number of integrated copies, the transformants analyzed 

harbor multiple copies of each cassette in tandem at the LAC4 locus. 



 

 

FIG. 2. Integration 
transformation.  (A) S
designed primers P1 
multiple copies of AtV
and P2 (2.4 kb) and P

 

The AtGME ge

integration by homo

promoters GPD1 an

respectively. The ex

recombinant cells wa

protein extract were

antibody (Fig.  3). A

n of SAC II linearized vectors into K. lacti

) Single and multiple copies of GME cassette d
1 and P3 (2.4 kb), P3 and P4 (2.3 kb) respec
tVTC2 and AtVTC4 cassette detected by PCR
P3 and P2 (2.3 kb) respectively.  

 gene is under the control of the inducible L

mologous recombination. The strong const

and ADH1 drive the transcription of the A

expression analysis of L-AA pathway plan

was peformed by RT-PCR and the flag-tagge

re immunoprecipitated and blotted against 

 All JVC1-5 derived strains, JVC1-51, JVC1

47 

ctis LAC4 locus upon 
e detected by PCR using 
pectively; B) single and 
CR using the primers P1 

 LAC4 promoter upon 

nstitutive S. cerevisiae 

AtVTC2 and AtVTC4 

ant genes in K. lactis 

ged proteins from total 

t monoclonal anti-Flag 

-52 and JVC1-53, are 



 

expressing the L-gala

only expresses AtGM

AtVTC2 and AtVTC4

 

 
FIG. 3. Expression a
cells. A- RT-PCR usi
pathway plant genes f
and plasmids harborin
PCR. KlACT1 actin 
quality.  B – Western 
recombinant cells usi
used as negative cont
out from cells grow
incubation at 30°C, 20

 

 

alactose pathway genes, AtGME, AtVTC2, A

ME and the JVC2-1 and JVC2-2 strains are 

C4 expression.  

 analysis of L-AA pathway plant genes by 
using cDNA from K. lactis cells transformed w
s from Arabidopsis thaliana. C+ - the cDNA fr
ring the corresponding genes was used as temp
in gene from K. lactis CBS2359 was used a
rn blotting of flag-tagged immunoprecipitated p
using monoclonal anti-flag antibody. K. lactis

ntrol. The RNA extraction and total protein e
wn in YP medium with 2% (w/vol) D-Gala
 200 rpm. 

48 

, AtVTC4. The JVC1-5 

e the control strains for 

 

y recombinant K. lactis 
d with three early L-AA 
 from A. thaliana leaves 
plate for control in RT-

 as a control for RNA 
d proteins from K. lactis 
tis CBS2359 strain was 
 extraction were carried 
alactose after 24 hours 



49 
 

Simultaneous expression of the proteins AtGME (43.8 kDa), AtVTC2 (49 kDa) 

and AtVTC4 (30 kDa) in the engineered JVC3-2 and JVC1-5 derived strains should 

result in the production of L-galactose, when lactose or D-galactose are used as the 

carbon source in the growth medium. To address whether the plant genes integrated into 

the K. lactis genome would allow the cells to produce L-galactose from GDP- mannose 

we analyzed the L-galactose content in the recombinant strains grown in YP medium 

supplemented with 2% (w/v) D-galactose and in YP medium with 2% (w/v) lactose for 

24 hours at 30°C, 200 rpm. Since we could not detect its intracellular production 

through HPLC analysis, the expression, as shown by western blot analysis, of the 

AtGME, AtVTC2 and AtVTC4 in K. lactis cells did not result in any measurable L-

galactose biosynthesis (data not shown). This suggests that L-galactose was 

immediately converted into L-AA by the D-EAA enzymes thereby preventing its 

intracellular accumulation. Hence, the recombinant strains were screened for L-AA 

production. They were grown in YP or in YNB medium supplemented with 2% (w/v) 

D-galactose or lactose and grown for 48 hours, before the level of L-AA was 

determined.  As one of the aims of our work is to use cheese whey, which is the waste 

product during cheese production, as an alternative source of lactose, we also evaluated 

the L-AA production culturing recombinant strains in cheese whey. Figure 4 shows the 

L-AA intracellular accumulation by the K. lactis strains that we engineered in this 

study. In the untransformed strain, low levels of L-AA could be measured in either 

minimal or rich medium supplemented with D-galactose. The accumulation of 

intracellular L-AA in JVC1-5 derived strains or in the JVC3-2 strain was 4 to 7-fold 

higher, but only when cultivated in YP medium and not in minimal medium with D-

galactose as carbon source (Fig. 4A). When cells were cultivated in both YP and YNB 

medium with lactose as the sole carbon source, the L-AA accumulation was lower, but 

still a two-fold increase of L-AA was present in the JVC1-52 and JVC3-2 strains (Fig. 

4B). However, when cheese whey was used as substrate all recombinant strains showed 

a significant intracellular L-AA accumulation compared to YNB medium (Fig. 4B).  
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The insertion of the L-AA pathway plant genes into the K. lactis genome creates 

an alternative route to metabolize GDP-mannose, which is naturally produced in yeasts 

for cell wall construction (18). GDP-mannose undergoes epimerization to GDP-L-

galactose by GME activity. VTC2 and VTC4 convert GDP-L-galactose in L-galactose 

that can be used as substrate for L-AA biosynthesis by D-EAA pathway enzymes. The 

D-EAA pathway is the only known route which contains enzymes able to metabolize 

non-physiological substrates such as L-galactose (13). Considering cofactors enzymes 

requirements, the new GDP-mannose branched pathway apparently would not affect the 

cell redox balance. The NADP(H) molecule produced in the reaction catalyzed by 

AtGME could be easily recycled by the K. lactis redox control system or being used in 

biosynthetic pathways. Besides the Glutathione/Thiorredoxin reductase system, two 

alternative dehydrogenases in the external mitochondrial membrane (NDE1 and NDE2) 

are the main source of cytosolic NADPH reoxidation in K. lactis cells (11).   NADPH   

reoxidation is extremely important to maintain the pentose phosphate pathway which 

has been reported more active in K. lactis compared to S. cerevesiae (12).  

Lactose and galactose metabolism seem to have different effects on this branched 

pathway. Probably, glucose released from lactose hydrolysis by �-galactosidase activity, 

may somehow affect the activity of the L-galactose pathway enzymes. Moreover, 

Lactose seems to stimulate the D-EAA accumulation in K. lactis cells more efficient 

than galactose since we could detect a high L-AA background in CBS2359 (Figure 4A 

and B). This background in K. lactis CBS2359 may be due to D-erythroascorbic acid 

synthesis naturally occurring in this yeast, which is much higher than in S. cerevesiae. 

This idea is also supported by Porro & Sauer (32).  

 Cheese Whey represents 85-95% of the milk volume retaining about 85% of milk 

nutrients such as lactose, soluble proteins, lipids and minerals. It also contains 

appreciable quantities of lactic and citric acids, non-protein nitrogen compounds (urea 

and uric acid) and B group vitamins (38). We suggest that this rich medium can provide 

intermediate metabolites that could be promptly assimilated reducing metabolic flux 

towards biosynthetic pathways such as cell wall biosynthesis. Likely, cheese whey (and 

also the YP medium) might enhance the flux of GDP-mannose towards to L-galactose 

formation and its subsequent conversion into L-AA.  

 The downstream L-galactose metabolism is the bottleneck for L-AA biosynthesis 

throughout this pathway since D-EAA enzymes regulation in yeast has not extensively 

been elucidated. The D-EA production is observed when yeasts are grown in some 

sources of D-aldoses such as D-glucose, D-galactose, D-mannose or D-arabinose (29). 
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The kinetic parameters of enzymes D-arabinose dehydrogenase (ARA2) and D-

arabinono-1, 4 lactone oxydase (ALO1) has been determined in vitro and the results 

have demonstrated low substrate specificity (24). The ALO1 gene has a putative domain 

for the covalent FAD molecule similar to the domain found in oxygen-dependent 

oxidoreductases. Spickett et al. (41) found that the production of L-AA analogues is 

strongly influenced by the aeration of the culture. Probably the key regulatory enzyme 

pathway may be dependent on the dissolved oxygen levels. Also, when S. cerevisiae 

alo1� was grown in the presence of H2O2 cells were more sensitive while the 

overexpression leads to resistance. However no changes in the transcription levels of 

ALO1 gene were observed under the same conditions. Thus, transcriptional and post 

translation regulation of the genes from D-EAA pathway in yeast must be considered in 

this process. Thus, the engineering of D-EAA genes in K. lactis strains might be the 

main target in order to improve L-AA biosynthesis. 

This work is the first attempt of engineering K. lactis cells for L-ascorbic acid 

biosynthesis by fermentation taking advantage of its natural ability to grow on lactose 

and without any exogenously addition of its precursors in the growth medium. By the 

insertion of the genes for L-galactose pathway from A. thaliana, we engineered K. lactis 

strains capable of converting lactose and D-galactose into L-galactose, a rare sugar 

which is one of the main precursor for L-AA production. Three other pathways for L-

AA production in plants have been described (14): the L-Gulose pathway (46), the D-

Galacturonic acid pathway (1), and the Myoinositol pathway (26), but these seem to be 

of minor importance. Thus, we developed yeast strains with great industrial potential to 

biologically produce L-AA exploiting their fermentation abilities.  

Cheese whey represents an environmental problem due to its high volumes 

produced. Besides, the high organic matter content, mainly lactose, exhibits a 

biochemical oxygen demand (BOD) of 30-50 g. L-1 and a chemical oxygen demand 

(COB) of 60 – 80 g L-1 (38, 8). Considering its fermentation capacity, the recombinant 

K. lactis strains can convert lactose from cheese whey to valuable compounds such as 

L-AA. Moreover, since L-AA acid producing yeast strains have an improved stress 

resistance and robustness (5) these strains can also be used as host for producing 

heterologous proteins with industrial interest in biotechnological processes.  
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7. CONCLUSÕES 

 
No presente trabalho foi realizada a engenharia metabólica da levedura 

Kluyveromyces lactis visando a produção do ácido L-ascórbico (L-AA).  

Embora as leveduras naturalmente não apresentem genes de biossíntese do L-AA, 

elas são capazes de sintetizar o ácido D-eritroascórbico (D-EA) que apresenta 

propriedades antioxidantes similares ao L-AA. Em plantas, o ácido L-ascórbico é 

sintetizado a partir de D-glicose, sendo L-galactose, o intermediário chave. Os genes GME, 

VTC2 e VTC4 que estão envolvidos na via de biossíntese do isômero L-galactose a 

partir de GDP-manose foram isolados e corretamente amplificados a partir de uma 

biblioteca de cDNA proveniente de folhas de Arabidopsis thaliana.  

Os plasmideos pKlJC/GME e pKlVTc  construídos neste trabalho direcionaram a 

integração dos cassetes de expressão dos genes na região promotora do gene LAC4 da 

célula hospedeira.  

A transformação de células de K. lactis com os plasmideos contendo os genes de 

biossíntese de L-galactose resultou em múltiplas integrações in tandem na região 

promotora do gene LAC4.  

 A expressão dos genes GME, VTC2 e VTC4 não resultou em acúmulo 

intracelular de L-galactose. Porém, as linhagens de K. lactis recombinantes foram 

capazes de sintetizar o ácido L-ascórbico quando cultivadas em meio YP suplementado 

com 2% (p/v) galactose ou lactose ou em meio de soro de queijo. O soro de queijo 

apresenta um alto teor matéria orgânica principalmente lactose. Apesar de inúmeros 

estudos sobre o potencial nutricional, funcional e tecnológico do soro de queijo, 

nenhuma opção para seu aproveitamento tem sido suficiente para evitar seu despejo sem 

tratamento nos cursos de água especialmente pelas pequenas e médias empresas. A 

conversão da lactose do soro de queijo em compostos que apresentam um valor 

industrial e comercial agregado constitui-se uma alternativa para minimizar os efeitos 

poluentes do soro. 

Portanto ao final deste trabalho, aplicando as técnicas de engenharia genética e de 

biologia molecular associada à indústria de fermentação, foi desenvolvida uma nova 

estratégia para produção biológica do ácido L-ascórbico (vitamina C).   
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Arabidopsis thaliana  GME (GDP-D-Mannose 3',5'-Epimerase) 
 
 

LOCUS       NM_122767.3               1134 pb mRNA 
 

 
 
        1 ATGGGAACTA CCAATGGAAC AGACTATGGA GCATACACAT ACAAGGAGCT AGAAAGAGAG 

       61 CAATATTGGC CATCTGAGAA TCTCAAGATA TCAATAACAG GAGCTGGAGG TTTCATTGCA 

      121 TCTCACATTG CTCGTCGTTT GAAGCACGAA GGTCATTACG TGATTGCTTC TGACTGGAAA 

      181 AAGAATGAAC ACATGACTGA AGACATGTTC TGTGATGAGT TCCATCTTGT TGATCTTAGG 

      241 GTTATGGAGA ATTGTCTCAA AGTTACTGAA GGAGTTGATC ATGTTTTTAA CTTAGCTGCT 

      301 GATATGGGTG GTATGGGTTT TATCCAGAGT AATCACTCTG TGATTATGTA TAATAATACT 

      361 ATGATTAGTT TCAATATGAT TGAGGCTGCT AGGATCAATG GGATTAAGAG GTTCTTTTAT 

      421 GCTTCGAGTG CTTGTATCTA TCCAGAGTTT AAGCAGTTGG AGACTACTAA TGTGAGCTTG 

      481 AAGGAGTCAG ATGCTTGGCC TGCAGAGCCT CAAGATGCTT ATGGTTTGGA GAAGCTTGCT 

      541 ACGGAGGAGT TGTGTAAGCA TTACAACAAA GATTTTGGTA TTGAGTGTCG AATTGGAAGG 

      601 TTCCATAACA TTTATGGTCC TTTTGGAACA TGGAAAGGTG GAAGGGAGAA GGCTCCAGCT 

      661 GCTTTCTGTA GGAAGGCTCA GACTTCCACT GATAGGTTTG AGATGTGGGG AGATGGGCTT 

      721 CAGACCCGTT CTTTTACCTT TATCGATGAG TGTGTTGAAG GTGTACTCAG GTTGACAAAA 

      781 TCAGATTTCC GTGAGCCGGT GAACATCGGA AGCGATGAGA TGGTGAGCAT GAATGAGATG 

      841 GCTGAGATGG TTCTCAGCTT TGAGGAAAAG AAGCTTCCAA TTCACCACAT TCCTGGCCCG 

      901 GAAGGTGTTC GTGGTCGTAA CTCAGACAAC AATCTGATCA AAGAAAAGCT TGGTTGGGCT 

      961 CCTAATATGA GATTGAAGGA GGGGCTTAGA ATAACCTACT TCTGGATAAA GGAACAGATC 

     1021 GAGAAAGAGA AAGCAAAGGG AAGCGATGTG TCGCTTTACG GGTCATCAAA GGTGGTTGGA 

     1081 ACTCAAGCAC CGGTTCAGCT AGGCTCACTC CGCGCGGCTG ATGGAAAAGA GTGA 

 
 
Protein Sequence 
  Number of residues:  377; 
                Molecular weight:  42.8 kDa 
 
  
  

 

“MGTTNGTDYGAYTYKELEREQYWPSENLKISITGAGGFIASHIARRLKHEGHYVIASDWKKNEHMTEDM

FCDEFHLVDLRVMENCLKVTEGVDHVFNLAADMGGMGFIQSNHSVIMYNNTMISFNMIEAARINGIKRFF

YASSACIYPEFKQLETTNVSLKESDAWPAEPQDAYGLEKLATEELCKHYNKDFGIECRIGRFHNIYGPFG

TWKGGREKAPAAFCRKAQTSTDRFEMWGDGLQTRSFTFIDECVEGVLRLTKSDFREPVNIGSDEMVSMNE

MAEMVLSFEEKKLPIHHIPGPEGVRGRNSDNNLIKEKLGWAPNMRLKEGLRITYFWIKEQIEKEKAKGSD

VSLYGSSKVVGTQAPVQLGSLRAADGKE” 

 

 
 
Appendix A: Arabidopsis thaliana GME mRNA sequence and corresponding protein 
sequence. GME was amplified by PCR in this study using specific primers and cDNA 
from A. thaliana leaves as template. 
 

 

 

 

 

 

 



62 
 

 

 

 

Arabidopsis thaliana VTC2 (GDP-L-Galactose Phosphorylase) 
  

    
  LOCUS       NM118819               1329 bp    mRNA 
 

        1 ATGTTGAAAA TCAAAAGAGT TCCGACCGTT GTTTCGAACT ACCAGAAGGA CGATGGAGCG 

       61 GAGGATCCCG TCGGCTGTGG ACGGAATTGC CTCGGCGCTT GTTGCCTTAA CGGGGCTAGG 

      121 CTTCCATTGT ATGCATGTAA GAATCTGGTA AAATCCGGAG AGAAGCTTGT AATCAGTCAT 

      181 GAGGCTATAG AGCCTCCTGT AGCTTTTCTC GAGTCCCTTG TTCTCGGAGA GTGGGAGGAT 

      241 AGGTTCCAAA GAGGACTTTT TCGCTATGAT GTCACTGCCT GCGAAACCAA AGTTATCCCG 

      301 GGGAAGTATG GTTTCGTTGC TCAGCTTAAC GAGGGTCGTC ACTTGAAGAA GAGGCCAACT 

      361 GAGTTCCGTG TAGATAAGGT GTTGCAGTCT TTTGATGGCA GCAAATTCAA CTTCACTAAA 

      421 GTTGGCCAAG AAGAGTTGCT CTTCCAGTTT GAAGCTGGTG AAGATGCCCA AGTTCAGTTC 

      481 TTCCCTTGCA TGCCTATTGA CCCTGAGAAT TCTCCCAGTG TTGTTGCCAT CAATGTTAGT 

      541 CCGATAGAGT ATGGCCATGT GCTGCTGATT CCTCGTGTTC TTGACTGCTT GCCTCAAAGG 

      601 ATCGATCACA AAAGCCTTTT GCTTGCAGTT CACATGGCTG CTGAGGCTGC TAATCCATAC 

      661 TTCAGACTCG GTTACAACAG CTTGGGTGCT TTTGCCACTA TCAATCATCT CCACTTTCAG 

      721 GCTTATTACT TGGCCATGCC TTTCCCACTG GAGAAAGCTC CTACCAAGAA GATAACTACC 

      781 ACTGTTAGTG GTGTCAAAAT CTCAGAGCTT CTAAGTTACC CTGTGAGAAG TCTTCTCTTT 

      841 GAAGGTGGAA GCTCTATGCA AGAACTATCT GATACTGTTT CAGACTGCTG TGTTTGCCTT 

      901 CAAAACAACA ACATTCCTTT CAACATTCTC ATCTCTGATT GTGGAAGGCA GATCTTCTTA 

      961 ATGCCACAGT GTTACGCAGA GAAACAGGCT CTAGGTGAAG TGAGCCCGGA GGTATTGGAA 

     1021 ACACAAGTGA ACCCAGCCGT GTGGGAGATA AGTGGTCACA TGGTACTGAA GAGGAAAGAG 

     1081 GATTACGAAG GTGCTTCAGA GGATAACGCG TGGAGGCTCC TTGCGGAAGC TTCTCTGTCG 

     1141 GAGGAAAGGT TTAAGGAGGT TACTGCTCTC GCCTTTGAAG CCATAGGTTG TAGTAACCAA 

     1201 GAGGAGGATC TTGAAGGAAC CATAGTTCAT CAGCAAAACT CTAGTGGCAA TGTTAACCAG 

     1261 AAAAGCAACA GAACCCATGG AGGTCCGATC ACAAATGGGA CGGCCGCCGA GTGCCTTGTC 

     1321 CTTCAGTGA 
 
 
Protein Sequence 
  Number of residues: 442; 

                Molecular weight: 49.0 kDa 

  

  

“MLKIKRVPTVVSNYQKDDGAEDPVGCGRNCLGACCLNGARLPLYACKNLVKSGEKLVISHEAIEPPVAF

LESLVLGEWEDRFQRGLFRYDVTACETKVIPGKYGFVAQLNEGRHLKKRPTEFRVDKVLQSFDGSKFNFT

KVGQEELLFQFEAGEDAQVQFFPCMPIDPENSPSVVAINVSPIEYGHVLLIPRVLDCLPQRIDHKSLLLA

VHMAAEAANPYFRLGYNSLGAFATINHLHFQAYYLAMPFPLEKAPTKKITTTVSGVKISELLSYPVRSLL

FEGGSSMQELSDTVSDCCVCLQNNNIPFNILISDCGRQIFLMPQCYAEKQALGEVSPEVLETQVNPAVWE

ISGHMVLKRKEDYEGASEDNAWRLLAEASLSEERFKEVTALAFEAIGCSNQEEDLEGTIVHQQNSSGNVN

QKSNRTHGGPITNGTAAECLVLQ” 

 

 

 
 
Appendix B: Arabidopsis thaliana VTC2 mRNA sequence and corresponding protein 
sequence. VTC2 was amplified by PCR in this study using specific primers and cDNA 
from A. thaliana leaves as template. 
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Arabidopsis thaliana VTC4 (L-galactose-1-phosphate phosphatase/ inositol or 
phosphatidylinositol phosphatase) 

 
 

LOCUS       NM111155                816 bp    mRNA 
 
 
        1 ATGGCGGACA ATGATTCTCT AGATCAGTTT TTGGCTGCCG CCATTGATGC CGCTAAAAAA 

       61 GCTGGACAGA TCATTCGTAA AGGGTTTTAC GAGACTAAAC ATGTTGAACA CAAAGGCCAG 

      121 GTGGATTTGG TGACAGAGAC TGATAAAGGA TGTGAAGAAC TTGTGTTTAA TCATCTCAAG 

      181 CAGCTCTTTC CCAATCACAA GTTCATAGGA GAAGAAACTA CAGCTGCATT TGGTGTGACA 

      241 GAACTAACTG ACGAACCAAC TTGGATTGTT GATCCTCTTG ATGGAACAAC CAATTTCGTT 

      301 CACGGGTTCC CTTTCGTGTG TGTTTCCATT GGACTTACGA TTGGAAAAGT CCCTGTTGTT 

      361 GGAGTTGTTT ATAATCCTAT TATGGAAGAG CTATTCACCG GTGTCCAAGG GAAAGGAGCA 

      421 TTCTTGAATG GAAAGCGAAT CAAAGTGTCA GCTCAAAGCG AACTTTTAAC CGCTTTGCTC 

      481 GTGACAGAGG CGGGTACTAA ACGAGATAAA GCTACATTAG ACGATACAAC CAACAGAATC 

      541 AACAGTTTGC TAACCAAGGT CAGGTCCCTT AGGATGAGTG GTTCGTGTGC ACTGGACCTC 

      601 TGTGGCGTTG CGTGTGGAAG GGTTGATATC TTCTACGAGC TCGGTTTCGG TGGTCCATGG 

      661 GACATTGCAG CAGGAATTGT TATCGTGAAA GAAGCTGGTG GACTCATCTT TGATCCATCC 

      721 GGTAAAGATT TGGACATAAC ATCGCAGAGG ATCGCGGCTT CAAACGCTTC TCTCAAGGAG 

      781 TTATTCGCTG AGGCGTTGCG GCTTACAGGG GCATGA 

 

 
 
 
 
 
Protein Sequence 
  Number of residues:  271;    

  Molecular weight:  29.1 kdal 

  

 

“MADNDSLDQFLAAAIDAAKKAGQIIRKGFYETKHVEHKGQVDLVTETDKGCEELVFNHLKQLFPNHKFI

GEETTAAFGVTELTDEPTWIVDPLDGTTNFVHGFPFVCVSIGLTIGKVPVVGVVYNPIMEELFTGVQGKG

AFLNGKRIKVSAQSELLTALLVTEAGTKRDKATLDDTTNRINSLLTKVRSLRMSGSCALDLCGVACGRVD

IFYELGFGGPWDIAAGIVIVKEAGGLIFDPSGKDLDITSQRIAASNASLKELFAEALRLTGA” 

 

 
 
Appendix C: Arabidopsis thaliana VTC4 mRNA sequence and corresponding protein 
sequence. VTC4 was amplified by PCR in this study using specific primers and cDNA 
from A. thaliana leaves as template. 
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Appendix D: Plasmids  pBEVY-L, pMB-7A and pYX012 KanMX used as template for GPD-ADH1 fused promoters, His and LoxP-KanMX-LoxP 
cassette in vitro amplification, respectively.  
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Appendix E: L-Asco
L-AA content in reco
 

 

 

 

 

 

 

 

 

 

 

corbic acid standard curve used as reference to
combinant K. lactis strains 
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