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RESUMO 

 

MUNDIM, Gabriel Borges, M. Sc., Universidade Federal de Viçosa, fevereiro de 

2013. Diversidade genética, análise de trilha e mapeamento associativo para 

eficiência no uso de nitrogênio em milho-pipoca. Orientador: José Marcelo 

Soriano Viana. Coorientadores: Fabyano Fonseca e Silva e Glauco Vieira Miranda. 

 

Os objetivos deste estudo foram (i) identificar linhagens de milho-pipoca eficientes 

no uso de nitrogênio; (ii) avaliar a diversidade genética entre linhagens de milho-

pipoca em alto e baixo N; (iii) investigar os efeitos causais de vários caracteres sobre 

a eficiência no uso de nitrogênio (NUE) e (iv) identificar marcadores SSR associados 

com caracteres relacionados à NUE. Foram avaliadas 25 linhagens-elite de milho-

pipoca pertencentes às populações 'Viçosa' e 'Beija-Flor', em alto e baixo N. Foram 

mensurados os seguintes caracteres: crescimento diário (DG, cm), massa de parte 

aérea (SDW, mg), de raiz (RDW, mg), e da planta total seca (TDW, mg), razão parte 

aérea:raiz seca (RSR), eficiência no uso (NUE, mg mg-¹), na absorção (NUpE, mg 

mg-¹) e na utilização (NUtE, mg mg-¹) de nitrogênio, diâmetro médio (RAD, mm), 

comprimento total (TRL, cm), área superficial (RSA, cm²) e volume (RV, cm³) de 

raízes. Foram identificadas linhagens eficientes em cada nível de N. A avaliação da 

diversidade genética pelo método de agrupamento UPGMA baseado no quadrado da 

Distância Euclidiana Média resultou em quatro grupos de linhagens para cada nível 

de N e a análise de componentes principais mostrou que as linhagens poderiam ser 

agrupadas predominantemente pelos seus caracteres de parte aérea. A eficiência na 

absorção de N (NUpE) foi a característica mais importante para a NUE em estádios 

precoces de desenvolvimento da planta em ambos os níveis de N, por apresentar alta 

correlação e alto efeito direto sobre a variável principal (NUE) na análise de trilha. 

Em baixo N, a eficiência na utilização de N (NUtE) também apresentou alta 

correlação e alto efeito direto sobre a variável NUE, mostrando ser uma característica 

importante para esta condição nesses estádios. Contudo, a seleção direta ainda parece 

ser o melhor método para aumentar a eficiência de seleção para NUE em estádios 

precoces. Três marcadores SSR foram validados como associados com os caracteres 

relacionados à NUE pela análise de mapeamento associativo baseada em ANOVA. 
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ABSTRACT 

 

MUNDIM, Gabriel Borges, M. Sc., Universidade Federal de Viçosa, February, 2013. 

Genetic diversity, path analysis and association mapping for nitrogen use 

efficiency in popcorn. Adviser: José Marcelo Soriano Viana. Co-advisers: Fabyano 

Fonseca e Silva and Glauco Vieira Miranda. 

 

The objectives of this study were to (i) identify efficient inbred lines in nitrogen use; 

(ii) assess the genetic diversity among popcorn inbred lines under high and low N; 

(iii) investigate the causal effects of several traits in nitrogen use efficiency (NUE) 

and (iv) identify SSR markers associated with the traits related to NUE. Twenty-five 

elite popcorn inbred lines belonging to the 'Viçosa' and 'Beija-Flor' populations were 

evaluated under high and low N. The following traits were assessed: daily growth 

(DG, cm), shoot dry weight (SDW, mg), root dry weight (RDW, mg), total plant dry 

weight (TDW, mg), root:shoot ratio (RSR), nitrogen use efficiency (NUE, mg mg-¹), 

nitrogen uptake efficiency (NUpE, mg mg-¹), nitrogen utilization efficiency (NUtE, 

mg mg-¹), root average diameter (RAD, mm), total root length (TRL, cm), root 

surface area (RSA, cm²) and root volume (RV, cm³). Efficient inbred lines were 

identified under each N level. The genetic diversity assessment using the UPGMA 

method based on the squared Mean Euclidean distance grouped the inbred lines into 

four clusters for each N level and the principal component analysis revealed that the 

inbred lines could be categorized predominantly by their shoot traits. Nitrogen 

uptake efficiency (NUpE) was the most important trait for NUE in the early stages of 

plant development under both N levels, due its high correlation with and high direct 

effect on NUE obtained in the path analysis. Under low N, nitrogen utilization 

efficiency (NUtE) also showed high correlation with and direct effect on NUE, 

demonstrating its importance in this N level in these early stages. Notwithstanding, 

the direct selection still seems to be the best method to increase the selection 

efficiency for NUE in these early stages. Furthermore, three SSR markers were 

identified as true associations with the traits related to NUE, through the association 

mapping analysis based on ANOVA. 
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1. Introduction 

 

Nitrogen use efficiency (NUE) can be defined as the ratio between grain yield 

per unit of nitrogen applied to plants and is a function of nitrogen uptake efficiency 

(NUpE) and nitrogen utilization efficiency (NUtE). Nitrogen uptake efficiency is 

defined as the ratio between the quantities of nitrogen absorbed and applied, while 

NUtE corresponds to the ability of a particular genotype to convert the absorbed 

nitrogen into biomass or grain yield or the ratio between grain yield and nitrogen 

absorbed (Moll et al. 1982). In studies conducted during the early stages of plant 

development, NUE is usually estimated based on shoot dry weight (SDW) instead of 

grain yield. According to Hirel et al. (2007), increased NUE can be obtained by 

increasing any of its components. Increased NUpE can be achieved through 

modifying root architecture and morphological traits (Garnett et al. 2009; Liu et al. 

2009), while increased NUtE results from improving enzymatic and metabolic 

processes (Hirel et al. 2001). 

Recently, many studies aiming to identify markers related to NUE and nitrogen 

stress tolerance have been performed in different species (Schnaithmann & Pillen 

2013; Wei et al. 2012; Liu et al. 2008). The most important methods used for this 

purpose are QTL analysis and, more recently, the association mapping (AM), which 

is described by Liu et al. (2011) as a powerful approach for the dissection of the 

genetic architecture of quantitative traits. Chen et al. (2011) reported that AM can be 

useful for marker-assisted selection by enhancing previously known information 

about quantitative trait loci (QTLs). To investigate responses to abiotic stress, Cai et 

al. (2012a,b) evaluated a set of 218 maize recombinant inbred lines (RILs) under low 

nitrogen and low phosphorus supply and identified several QTLs for traits as leaf 
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area, chlorophyll content, plant height, ear height and grain yield. They reported that 

these QTLs identify chromosomal regions as targets for genetic improvement of low 

nitrogen and low phosphorus tolerance and may be useful for improving lodging 

resistance in intensive maize cropping systems with high fertilizer inputs. Given the 

importance of the root system for nutrient uptake, some studies have also tried to 

detect QTLs controlling root traits to understand the genetic basis of these traits and 

their contribution to grain yield (Cai et al. 2012c; Ku et al. 2012). 

Information about the genetic diversity of the germplasm available is essential 

to maize breeders to develop better breeding strategies in any breeding program. 

Makumbi et al. (2011) evaluated the combining ability, heterosis and genetic 

diversity of 15 tropical maize inbred lines under drought stress, low N stress and 

well-watered conditions, aiming to identify breeding strategies for stress and non-

stress environments. They assessed the genetic diversity using RFLP (Restriction 

Fragment Length Polymorphism), AFLP (Amplified Fragment Length 

Polymorphism) and Simple Sequence Repeat (SSR) markers and their results 

revealed clustering of most lines in accordance with known pedigree and origin, 

which is consistent with other studies in tropical maize (Betrán et al. 2003; 

Warburton et al. 2002). In the study of Kumar et al. (2012), the clustering of lines 

based on root morphology was not consistent with the genetic background and origin 

of maize lines. Studies of genetic diversity with popcorn germplasm have also been 

performed. Franzoni et al. (2012) evaluated changes in genetic variability and genetic 

structure during eight cycles of recurrent selection in the population CMS-43 using 

SSR markers and concluded that there was no tendency in changes in the allele 

frequencies, probably, because of the major proportion of the variation in the SSR 

loci not to be related to selection for grain yield and popping expansion. 
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Comparisons among maize genotypes under normal and stressed nitrogen 

conditions allow breeders to develop breeding strategies for each specific condition. 

Studies try to evaluate the genetic effects involved in NUE, the selection efficiency 

in each condition and the relationship among traits associated with NUE. DoVale et 

al. (2012) detected high magnitude correlations between NUpE and NUE and 

between these efficiencies and shoot dry weight (SDW) under high and low N 

conditions and identified the additive genetic effects as the most important for the 

traits associated with NUE. However, these high correlation values indicate no 

perfect cause and effect relationship among the traits. Badu-Apraku et al. (2012) 

evaluated ninety extra early maize inbred lines under low N to confirm the reliability 

of ears per plant and anthesis-silking interval (ASI) for selecting for low N tolerance. 

Aiming to partition the correlations among several traits into causal and residual 

effects, Wu et al. (2011) evaluated maize inbred lines under normal and low N 

conditions and performed the path analysis to investigate the direct and indirect 

effects of each trait on low-N agronomic efficiency (LNAE). 

Considering the foregoing, the objectives of this study were to (i) identify 

efficient inbred lines in nitrogen use; (ii) assess the genetic diversity among popcorn 

inbred lines under high and low N; (iii) investigate the causal effects of several traits 

in NUE and (iv) identify SSR markers associated with the traits related to NUE. 
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2. Materials and methods 

 

2.1. Plant materials 

 

A total of 25 popcorn inbred lines (S6) belonging to the popcorn breeding 

program of the Federal University of Viçosa (UFV), Minas Gerais, Brazil, were used 

in this study (Table 1). The inbred lines were chosen among the elite inbred lines of 

the program, which were selected for improving the popping volume, one of the most 

important traits for popcorn quality. The 25 inbred lines represent a sample of the 

two populations used as germplasm in the program; with 15 belonging to the 'Viçosa' 

population and 10 to the 'Beija-Flor' population, which are the base populations of 

the program. As there is not a definition of heterotic groups of popcorn, the 

populations cannot be stated as representatives of different heterotic groups. Both 

populations have similar cycle, vegetative development, shape of grain (pearl), 

quality and grain yield (Viana et al. 2011). 

 

2.2. Experimental procedures 

 

The contrasting N levels were defined in a preliminary experiment, where two 

popcorn inbred lines were evaluated under eight N levels (196, 224, 252 and 280 mg 

L
-1

 - equivalent to the high N levels; and 19.6, 22.4, 25.2 and 28.0 mg L
-1

 - 

equivalent to the low N levels) with two replications. The results indicated that the 

contrasting N levels should be 224 and 22.4 mg L
-1

, for high and low N conditions, 

respectively, due to a 49% of reduction on SDW of the inbred lines grown under low 

N when compared with the plants grown under high N. 
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The experiment was conducted in March 2012 at a greenhouse in the UFV (20º 

50' S, 42° 48' W). The seeds were pre-germinated in trays with separate germination 

cells containing a sand-vermiculite mixture. After emergence, the seedlings were 

transplanted to 9 dm³ cylindrical plastic pots (diameter 150 mm and height 50 cm) 

containing a mixture of 50% sand (0.25-0.5 mm diameter) washed with deionized 

water for five consecutive days and 50% fine vermiculite (minimum capacity to 

retain water (m/m) = 60%; cationic exchange capacity = 200 cmolc/dm³; maximum 

humidity (m/m) = 25%), as recommended by Walk et al. (2006). Each plot had a 

single plant in a pot. Plants were harvested in the vegetative stage V6 (six fully 

expanded leaves), approximately 30 days after sowing. The plants were cut off at the 

soil surface and the roots were separated from the sand-vermiculite mixture gently 

after soaking them in water. The remaining mixture adhering to the roots was then 

washed away. Then, the shoot was dried in a forced-air oven at 60°C for 72h and the 

root system was placed in a solution of 70% alcohol for posterior image analysis. 

The experiment was conducted in a factorial arrangement (25 inbred lines x 2 N 

levels) in the randomized block design with four replications, resulting in 200 pots. 

The nutrient solutions were supplied every two days from the seventh day after 

transplantation. The solutions contained (in mmol L
-1

): 2.0 Ca(NO3)2, 0.75 K2SO4, 

0.65 MgSO4, 0.1 KCl, 0.25 KH2PO4, 1 x 10
-3

 H3BO3, 1 x 10
-3

 MnSO4, 1 x 10
-4

 

CuSO4, 1 x 10
-3

 ZnSO4, 5 x 10
-6

 (NH4)6Mo7O24, and 0.1 Fe-EDTA, at two nitrogen 

levels (low N - LN; and high N - HN). The LN solution contained 10 times less N 

(0.2 mmol L
-1

 Ca(NO3)2) than the HN solution. The low Ca concentration was 

compensated by the addition of CaCl2 in the LN solution, as described by Chun et al. 

(2005). 
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2.3. Trait measurements 

 

The root system was divided into primary, seminal and crown roots, according 

to Hochholdinger & Tuberosa (2009). Samples of the seminal and crown roots were 

obtained from each plot. Then, the root samples were floated in a transparent plastic 

tray (15 x 20 cm) and scanned using the WinRHIZO Pro 2009 software (Regent 

Instruments, Quebec, Canada) coupled to an EPSON Perfection V700/V750 scanner 

equipped with additional light (transparency unit) at a resolution of 400 dpi. The 

following traits were assessed: root average diameter (RAD, mm), total root length 

(TRL, cm), root surface area (RSA, cm²) and root volume (RV, cm³). Then, the total 

root system was dried in a forced-air oven at 60°C for 72h to obtain the root dry 

weight (RDW, mg). 

At harvest time, the plant height was measured until the insertion node of the 

last fully expanded leaf. To calculate the daily growth (DG, cm), the plant height was 

divided by the number of days that each inbred line took to reach the V6 stage. After 

drying the shoot and the root system, the shoot dry weight (SDW, mg), the total plant 

dry weight (TDW, mg) and root:shoot ratio (RSR) were calculated. Furthermore, the 

genotypes were evaluated for nitrogen use efficiency (NUE = shoot dry weight/N 

applied, mg mg
-1

) and its two components using the following concepts (Hirel et al. 

2007): nitrogen uptake efficiency (NUpE) = N in plant/N applied (mg mg
-1

) and 

nitrogen utilization efficiency (NUtE) = shoot dry weight/N in plant (mg mg
-1

). The 

content of N in plant was obtained through samples of 0.2 g from SDW for each plot, 

following a protocol proposed by Bremner & Mulvaney (1982). 
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2.4. DNA finger printing 

 

The inbred lines were genotyped for 90 SSR loci chosen from the MaizeGDB 

database. These markers are related to QTLs for traits associated with abiotic stress 

(Chen et al. 2009; Chen et al. 2008), popping ability (Babu et al. 2006) and grain 

yield components (Messmer et al. 2009). Genomic DNA was extracted from young 

leaf tissue using hexadecyltrimethylammonium bromide (CTAB) following a 

modified protocol described by Doyle & Doyle (1990). Polymerase chain reactions 

(PCRs) were performed in a thermal cycler PTC-200 (MJ Research, Watertown, 

MA) using a touchdown profile and the products were analyzed by gel 

electrophoresis in 0.8% (w/v) agarose gels. Each PCR mixture contained 1x buffer, 1 

mM MgCl2, 0.5 U Taq polymerase, 0.1 µM of each primer, 0.1 µM of each 

deoxynucleotide (dATP, dTTP, dGTP, and dCTP) and 30 ng of template DNA 

diluted with water to a total reaction volume of 20 μl. Electrophoresis was conducted 

in 1x TBE buffer (pH 8.0) at 50 W for 2-3 h in a Sequi-Gen GT (Bio-Rad) apparatus. 

Bands were visualized using silver nitrate staining. 

 

2.5. Statistical analysis 

 

The analysis of variance under each N level, the joint analysis and the 

estimation of genetic parameters for all the traits were performed using the restricted 

maximum likelihood/best linear unbiased prediction (REML/BLUP) method 

(Patterson & Thompson 1971; Henderson 1974). In matrix terms, assuming the 

inbred lines as a random factor, and blocks and N levels as fixed effects, the models 

are 
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 11uZXy , for the individual analysis and 

 2211 uZuZXy , for the joint analysis 

where y is the vector of phenotypic values; X is the incidence matrix of the fixed 

effects;   is the vector of fixed effects; Z1 and Z2 are the incidence matrices of the 

random effects; u
1
 is the vector of genotypic values of the inbred lines, where

)G,0(N~u 11  , being 
2

g1 AG  ; u
2
 is the vector of genotype x N levels interaction, 

where )G,0(N~u 22 , being 
2

ge2 IG   and  is the residuals vector, where

)R,0(N~ , being 2

eIR  . 

In this study, the coefficient of coancestry (A) was not considered and, 

consequently, the matrix G
1
 was assumed as an identity matrix. Thus, 

2

g  

corresponds to the genetic variance among the inbred lines and the vector 1u~  

corresponds to the predictions of the genotypic values of the inbred lines. Based on 

the predicted genotypic values, the genotypic correlation matrix among the traits 

studied was estimated using the Pearson's coefficient. The probability values of the 

significance tests were obtained from the standardized normal distribution (Littell et 

al. 2006). The analyses were performed using the MIXED procedure of the SAS 

System v.9.2 (SAS Institute 2007). All other analyses were performed for each N 

level. 

The phenotypic dataset was analyzed using the NTSYSpc v.2.2 software 

(Rohlf 2009) to assess the genetic diversity among the inbred lines. The data were 

standardized to minimize problems relative to units of each measure. Then, the 

squared Mean Euclidean distance was calculated. The distance matrix was used to 

perform a principal component analysis (PCA) to identify the major traits accounting 
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for most of the variation among the studied inbred lines. The inbred lines were also 

grouped using the Unweighted Pair-Group Method using Arithmetic Averages 

(UPGMA). Furthermore, the genotypic correlation matrix was used to perform a path 

analysis in order to partition the genotypic correlations into causal and residual 

effects, and the causal effects into direct and indirect effects. This analysis was 

performed using the procedures CORR and IML of the SAS System v.9.2 (SAS 

Institute 2007). 

The association mapping (AM) analysis was performed using the single-locus 

F-test procedure in the PowerMarker software (Liu & Muse 2005). In this test, each 

marker is regarded as a factor in a one-way ANOVA layout, as each genotype stands 

for a different level, and an F-test is then performed for each marker. The set of 

inbred lines was subdivided into two subsets, each one belonging to its origin 

population. Ten markers described in chromosome 5 and close to the gene "nnr2 - 

nitrate reductase2" (Long et al. 1992) were considered. The analysis was performed 

for the following traits: SDW, RDW, NUpE, NUtE, NUE and TRL. A p-value < 0.05 

was considered to identify the markers associated with each trait. 

 

3. Results and discussion 

 

3.1. Inbred lines performance 

 

At harvest time of the experiment, the plants grown under high N were better 

nourished than the plants grown under low N. These latter presented the lower leaves 

yellow, a typical symptom of N deficiency. The root system was composed of the 
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embryonic primary root; from one to four seminal roots depending on the genotype; 

the first postembryonic crown roots and lateral roots. 

The genotypes presented differential behavior for most traits under the two 

contrasting N levels, which can be evidenced by the significant effect of the G x N 

interaction (Table 2). These results demonstrate the differential expression of genes 

under each N level and the need for evaluation under each environment separately. 

For the traits DG, NUpE and RAD, the selection could be realized in any N level or 

when considering the means of the inbred lines across the two N levels, as evidenced 

by the absence of significance for the G x N interaction (Table 2). Rare studies 

(Gardner et al. 1990; DoVale et al. 2012) concluded that there was no G x N 

interaction. Clearly, these results depend on the set of genotypes studied and it is 

mainly evidenced when hybrids are evaluated. 

Another way to show G x N interaction is to consider the correlation between 

the two N levels   
LN,HNgr . These correlations also allow us to infer about the nature 

of the G x N interaction. The correlation among the inbred lines under high and low 

N levels ranged from 0.04 to 0.97 and indicates the simple G x N interaction for most 

traits, except for NUtE (Table 2). Bertin & Gallais (2000) and Presterl et al. (2003) 

found an average correlation coefficient of 0.75. According to Robertson (1959), the 

simple G x N interaction is provided only by the differences in variability among 

genotypes in the two environments and it is not a problem for the selection of the 

superior genotypes. 

Regardless of the N level, the analyses showed significant genetic variability 

among the inbred lines for most traits (Tables 3 and 4), except for RAD under low N 

(Table 4) and for NUtE under high N (Table 3). These results demonstrate the 

possibility of obtaining genetic gains in the selection of efficient inbred lines in 
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nitrogen use. Many studies have shown a genetic variability for NUE or at least one 

of its two components under a given level of N (DoVale et al. 2012; Presterl et al. 

2002; Worku et al. 2007; Bertin & Gallais 2000). Regarding the NUtE, the genetic 

variability among the inbred lines under high N may have been suppressed over time 

due to the advance of selfing generations and selection of superior inbred lines was 

always conducted under optimal conditions of N supply. Moreover, the NUtE tends 

to be less pronounced in the early stages of plant development (Caixeta 2012). 

The coefficients of variation (CVs) ranged from 9.3 to 36.0% under high N 

(Table 3) and from 10.9 to 43.0% under low N (Table 4). The CVs were high for 

several traits; however, they are in the range observed in other studies of abiotic 

stresses (DoVale et al. 2012; Maia et al. 2011; Souza et al. 2008) and indicate 

satisfactory experimental precision and high reliability of the results, since the CVs 

need to be classified according to each trait evaluated (Fritsche-Neto et al. 2012). 

Regarding the broad-sense heritabilities, the estimates ranged from 0.25 to 0.83 

under high N (Table 3) and from 0.22 to 0.79 under low N (Table 4). The estimates 

of heritability were generally lower under low N and in accordance with other studies 

(Abdel-Ghani et al. 2013; Wu et al. 2011). According to Coque & Gallais (2006), the 

genetic variability and the heritabilities are reduced under conditions of low N due to 

an increase in environmental error and because the genotypes tend to present a 

similar performance, which hampers the selection. 

The SDW of the plants grown under low N (Table 4) decreased 14.6% 

compared with the plants grown under high N (Table 3). The RDW remained almost 

constant across the two N levels (Tables 3 and 4), while the TRL of the plants grown 

under low N (Table 4) increased 15.5% compared with the TRL of the plants grown 

under high N (Table 3). These results suggest a better allocation of resources in the 
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root growth under N deficiency, as reported by other authors (Liu et al. 2008; Chun 

et al. 2005). 

To achieve gains in NUE, breeders should select those genotypes that are more 

efficient in terms of nitrogen uptake and utilization (Hirel et al. 2001). The predicted 

genotypic values of the inbred lines for NUpE and NUtE under high and low N are 

shown in the Figures 1 and 2, respectively. Through this representation, it is possible 

to identify the desired genotypes regarding the two components of nitrogen use 

efficiency. Some inbred lines had predicted genotypic values very contrasting 

according to the N level, such as the IL 05-383, IL 05-391-1 and 03-583-2, as well as 

shown in the evaluation of maize inbred lines under contrasting N and P levels 

performed by DoVale et al. (2013). Under high N, the inbred line 03-658-7 was the 

most efficient in nitrogen use due to its highest genotypic value for NUpE (Figure 1). 

Under low N, the IL 05-402-1 was the most efficient due to its high genotypic values 

for NUpE and NUtE (Figure 2). This inbred line also had the second highest 

genotypic value for NUpE under high N, revealing its genetic potential for NUE 

under the two N levels. 

 

3.2. Genetic diversity 

 

The results obtained with the principal component analysis (PCA) are shown in 

Table 5. The scores of the inbred lines under high (Figure 3) and low N (Figure 4) 

were plotted in a plane defined by the two principal components. Under high N, the 

first two principal components explained about 85.8% of the total variation among 

the inbred lines (Table 5). The relative magnitude of eigenvectors for the first 

component was 64.6%, explained mainly by NUE, SDW and NUpE, as can be seen 
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through the correlation coefficients higher than 0.90 among these traits and the first 

component (Table 5). From the second principal component, which contributed with 

21.2% of the total variation, the most predominant trait was DG. Under low N, the 

first component explained 73.2% of the total variation with contributions from NUE, 

SDW and RDW. Once again, DG was the highest contributor for the second 

component, which explained 15.0% of the total variation. The popcorn inbred lines 

could be categorized predominantly by their shoot traits, such as NUE and SDW 

under the two N levels. Only one trait of the root system had significant contribution 

for the PCA. The RDW was responsible for a small portion of the total phenotypic 

variation under low N. 

Before assessing the genetic diversity among the inbred lines, an analysis to 

compute the relative contribution of each trait to the diversity was performed using a 

procedure based on canonical variables. According to this evaluation, the TDW and 

RSA traits were eliminated, as they were considered to be less variant among 

genotypes and therefore redundant. Then, the squared Mean Euclidean distance 

matrix was computed based on the 10 remaining traits to perform the UPGMA 

cluster analysis. For each N level, a dendrogram was created (Figures 5 and 6), in 

which the presence of four clusters of inbred lines can be noticed. Just as in the 

principal component analysis, the efficient inbred lines were grouped closely, as 

were the inefficient lines. Sharma et al. (2010) also found four major clusters through 

phenotypic and molecular characterization of a set of 48 selected maize landrace 

accessions. The majority of the populations from the same geographical origin were 

grouped together, due its similarity for the nine morphoagronomic traits evaluated. 

On the other hand, the maize inbred lines used in the study of Kumar et al. (2012) did 

not cluster according to their genetic background and origin, indicating that a high 
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level of variability for root architecture traits is still present among and within the 

different genetic backgrounds. 

 

3.3. Path analysis 

 

The path analysis involved the effects of NUpE, NUtE, SDW and RDW on 

NUE (Table 6) under each one of the two N levels. These traits are the main 

explanatory variables of NUE, regardless of the N level, which can be confirmed by 

comparing the determination coefficients of the diagrams (R² = 0.99, for both N 

levels) with the residual effects (0.10 and 0.09), which represents the effect of the 

other variables not included in the diagrams. The shoot and root dry weight had high 

correlations with NUE under both N levels, ranging from 0.77 to 0.94 (Table 6). 

Similar results were found in the study of DoVale et al. (2012), where the 

correlations between SDW and the root traits with NUE ranged from 0.83 to 1.00. 

These results are in accordance with those obtained by Pereira (2011), which 

identified the SDW as the essential trait for early and indirect selection of maize 

genotypes with high NUE. However, it is possible that there is no clear evidence of 

cause and effect relationship between SDW and RDW with NUE, due its low direct 

effects, which ranged from -0.02 to 0.19 (Table 6). Thus, only these two traits may 

not be adequate to perform indirect selection of superior inbred lines for NUE. 

The highest contributions of the shoot and root dry weight for NUE happened 

by the indirect effects through NUpE under both N levels (from 0.39 to 0.69). These 

results suggest that NUpE has to be considered in the selection for NUE, regardless 

of the N level. Moreover, NUpE had the highest correlations (0.95 and 0.89) and 

direct effects (0.82 and 0.60) on NUE under both N levels (Table 6). Popcorn plants 
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uptake more nutrients than using them in the early stages of development, as well as 

maize plants. Thus, the NUpE becomes the most important trait for NUE in these 

early stages of development. However, in the course of plant development, the NUtE 

component has its importance increased in detriment of the NUpE (Caixeta 2012). 

DoVale et al. (2012) also demonstrated that the genetic differences for NUE in the 

early stages of plant development were due to NUpE, regardless of the N level. The 

NUtE also had a high correlation with and a direct effect on NUE (0.84 and 0.50, 

respectively) under low N (Table 6). Gallais & Hirel (2004) reported that the genetic 

variability for NUE occurs due to differences in NUpE at high N and is a function of 

NUtE under low N, as well as described by Gallais & Coque (2005). From the 

physiological point of view, it is interesting to note that the nitrogen utilization is less 

pronounced under high N than under low N level. As the nitrogen from soil is not 

limiting under high N, it can be absorbed at any time and in greater quantities. Then, 

the need for remobilization of the nitrogen absorbed is less pronounced. In contrast, 

as the nitrogen availability is limiting under low N, the processes of uptake and 

utilization have to be complementary. 

The use of physiological traits to help in the selection will be efficient only if 

the traits used for indirect selection have the following qualities: high heritability, 

greater than the primary trait (NUE); high genetic correlation with the primary trait 

(NUE); easy to measure on a great number of genotypes; measurable in young stage 

and highly correlated with grain yield in the end of plant development (Gallais 

1983). The only trait that presented all these qualities was the SDW. However, the 

direct effects of SDW on NUE were reduced in the two N levels (Table 6). Thereby, 

the results from the path analysis and the heritabilities estimated suggest that the 
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direct selection in each specific condition of N availability still seems to be the best 

method to increase the selection efficiency for NUE. 

 

3.4. Association mapping 

 

Considering the subset of inbred lines belonging to the 'Viçosa' population, 

only one marker (umc1110, bin 5.03) was identified as associated with SDW under 

high N and with SDW, RDW, TRL and NUtE under low N (Table 7). When 

considering the inbred lines belonging to the 'Beija-Flor' population, three different 

markers (phi085, umc1153 and umc1447) were identified as associated with SDW, 

RDW, TRL and NUE under low N and two markers (bnlg161 and umc1792) were 

identified as associated with SDW, NUtE and NUE under high N. Among these 

markers associated with these traits related to NUE, the loci phi085, umc1792 and 

umc1153 can be considered as true associations with the gene "nnr2 - nitrate 

reductase2" (bin 5.07, 211.2 cM), responsible for the regulation of maize root nitrate 

reductase mRNA levels, as described by Long et al. (1992). The reason why only 

these associations were validated is that these markers are located very close to the 

gene, with a correspondent distance less than 6.0 cM (Table 7). These markers 

explained from 57.6 to 80.8% of the total variation in the traits associated with NUE 

in the early stages of plant development when considered the inbred lines belonging 

to the 'Beija-Flor' population (Table 7). 

Under normal field conditions, nitrate (NO3
-
) is the most common form of 

nitrogen available to plants. Nitrate taken up by the plant may be reduced in the 

roots, stored in the vacuoles or transferred to the shoots before being processed. The 

first enzyme involved in the reduction of nitrate within the plant is the nitrate 
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reductase (Forde 2000; Forde & Clarkson 1999; Miller & Smith 1996). Therefore, 

the detection of markers very close to the gene "nnr2 - nitrate reductase2" (Long et 

al. 1992) can help maize and popcorn breeders in the identification of superior 

genotypes in nitrogen use through marker-assisted selection. 

 

4. Conclusions 

 

Twenty-five popcorn inbred lines were evaluated under high and low N. 

Efficient inbred lines in nitrogen use were identified under each N level. The genetic 

diversity assessment grouped the inbred lines into four clusters for each N level and 

the principal component analysis revealed that the inbred lines could be categorized 

predominantly by their shoot traits. Nitrogen uptake efficiency (NUpE) was the most 

important trait for nitrogen use efficiency (NUE) in the early stages of plant 

development under both N levels. Notwithstanding, the direct selection still seems to 

be the best method to increase the selection efficiency for NUE in these early stages. 

Furthermore, three SSR markers were identified as true associations with the traits 

related to NUE. 
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Table 1 List of the 25 popcorn inbred lines with their origin populations. 

Inbred Lines Origin population 

IL 05-351-8 Viçosa 

IL 05-356-6 Viçosa 

IL 05-381-1 Viçosa 

IL 05-383 Viçosa 

IL 05-391-1 Viçosa 

IL 05-470-2 Viçosa 

IL 05-284-7 Viçosa 

IL 05-394-2 Viçosa 

IL 05-389-4 Viçosa 

IL 03-583-2 Beija-Flor 

IL 05-274-3 Viçosa 

IL 03-658-7 Beija-Flor 

IL 03-657-4 Beija-Flor 

IL 03-687-1 Beija-Flor 

IL 05-343-2 Viçosa 

IL 03-591-7 Beija-Flor 

IL 05-402-1 Viçosa 

IL 03-610-7 Beija-Flor 

IL 03-655-3 Beija-Flor 

IL 03-566-5 Beija-Flor 

IL 03-677-5 Beija-Flor 

IL 03-689-4 Beija-Flor 

IL 05-345-1 Viçosa 

IL 05-388 Viçosa 

IL 05-425-1 Viçosa 
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Table 2 Genetic parameters for traits associated with nitrogen use efficiency evaluated in 25 popcorn inbred lines under contrasting N levels. 

DG, daily growth; SDW, shoot dry weight; RDW, root dry weight; TDW, total plant dry weight; RSR, root: shoot ratio; NUE, nitrogen use 

efficiency; NUpE, nitrogen uptake efficiency; NUtE, nitrogen utilization efficiency; RAD, root average diameter; TRL, total root length; 

RSA, root surface area; RV, root volume. 
ns

 non-significant; 
*
, 

**
 and 

***
 significant at 0.10, 0.05 and 0.01 probability, respectively.  
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Table 3 Genetic parameters for traits associated with nitrogen use efficiency evaluated in 25 popcorn inbred lines under high N. 

DG, daily growth; SDW, shoot dry weight; RDW, root dry weight; TDW, total plant dry weight; RSR, root: shoot ratio; NUE, nitrogen use 

efficiency; NUpE, nitrogen uptake efficiency; NUtE, nitrogen utilization efficiency; RAD, root average diameter; TRL, total root length; 

RSA, root surface area; RV, root volume. 
ns

 non-significant; 
*
, 

**
 significant at 0.05 and 0.01 probability, respectively.  

Estimates DG (cm) SDW (mg) RDW (mg) TDW (mg) RSR NUE (mg mg
-1

) 

2

g̂  
0.0057 

**
 86123.5 

**
 16749.8 

**
 167134.3 

**
 0.2222 

**
 0.4587 

**
 

2

e̂  0.0046 87103.2 21944.6 177726.7 0.2178 0.4902 

2

gĥ  0.83 0.80 0.75 0.79 0.80 0.79 

Mean 0.53 931.9 448.9 1380.8 2.18 2.24 

CV (%) 12.8 31.7 33.0 30.5 21.4 31.3 

Estimates NUpE (mg mg
-1

) NUtE (mg mg
-1

) RAD (mm) TRL (cm) RSA (cm²) RV (cm³) 

2

g̂  
0.0006 

**
 2.2933 

ns
 0.0003 

*
 433842.6 

**
 3943.0 

*
 0.2488 

*
 

2

e̂  0.0007 28.0512 0.0010 659597.3 8453.4 0.7796 

2

gĥ
 

0.78 0.25 0.57 0.73 0.65 0.56 

Mean 0.08 29.18 0.341 2690.8 286.75 2.45 

CV (%) 33.3 18.2 9.3 30.2 32.1 36.0 
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Table 4 Genetic parameters for traits associated with nitrogen use efficiency evaluated in 25 popcorn inbred lines under low N. 

DG, daily growth; SDW, shoot dry weight; RDW, root dry weight; TDW, total plant dry weight; RSR, root: shoot ratio; NUE, nitrogen use 

efficiency; NUpE, nitrogen uptake efficiency; NUtE, nitrogen utilization efficiency; RAD, root average diameter; TRL, total root length; 

RSA, root surface area; RV, root volume. 
ns

 non-significant; 
*
,
**

 and 
***

 significant at 0.10, 0.05 and 0.01 probability, respectively. 

 

Estimates DG (cm) SDW (mg) RDW (mg) TDW (mg) RSR NUE (mg mg
-1

) 

2

g̂  0.0025 
***

 51323.4 
***

 20223.4 
***

 131412.1 
***

 0.0575 
*
 14.3995 

***
 

2

e̂  0.0037 53846.3 27240.2 145256.3 0.2835 22.5347 

2

gĥ  0.73 0.79 0.75 0.78 0.45 0.72 

Mean 0.44 796.1 486.4 1282.5 1.75 16.68 

CV (%) 13.8 29.2 33.9 29.7 30.5 28.5 

Estimates NUpE (mg mg
-1

) NUtE (mg mg
-1

) RAD (mm) TRL (cm) RSA (cm²) RV (cm³) 

2

g̂  0.0020 
*
 22.6284 

**
 0.0001 

ns
 624144.7 

**
 6685.4 

**
 0.4646 

***
 

2

e̂  0.0095 77.4056 0.0011 1784141.0 14354.0 0.8306 

2

gĥ  0.45 0.54 0.22 0.58 0.65 0.69 

Mean 0.37 45.13 0.310 3107.9 298.51 2.31 

CV (%) 26.5 19.5 10.9 43.0 40.1 39.5 
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Table 5 Correlation coefficients among traits related to NUE and the first two 

principal components (PC) in popcorn inbred lines under high and low N conditions. 

 

 High N  Low N 

Trait PC1 PC2  PC1 PC2 

Daily growth (DG) 0.58 0.63  0.43 0.87 

Shoot dry weight (SDW) 0.94 -0.20  0.95 -0.18 

Root dry weight (RDW) 0.87 -0.32  0.93 -0.26 

Nitrogen uptake efficiency (NUpE) 0.93 0.28  0.81 0.22 

Nitrogen utilization efficiency (NUtE) -0.10 -0.88  0.89 0.02 

Nitrogen use efficiency (NUE) 0.97 0.02  0.97 0.16 

Total root length (TRL) 0.86 -0.31  0.88 -0.35 

Percentage of total variance 64.6 21.2  73.2 15.0 

Cumulative % of total variance 85.8  88.2 
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Table 6 Estimates of direct and indirect effects obtained from the path analysis 

involving the dependent variable nitrogen use efficiency (NUE, mg mg
-1

) and the 

independent variables nitrogen uptake efficiency (NUpE, mg mg
-1

), nitrogen 

utilization efficiency (NUtE, mg mg
-1

), shoot dry weight (SDW, mg) and root dry 

weight (RDW, mg) evaluated in 25 popcorn inbred lines under each N level. 

 

Trait Association effect 
Estimates 

High N Low N 

NUpE 

Direct in NUE  0.82  0.60 

Indirect through NUtE -0.06  0.26 

Indirect through SDW  0.16  0.04 

Indirect through RDW  0.03 -0.01 

Total  0.95  0.89 

NUtE 

Direct in NUE  0.18  0.50 

Indirect through NUpE -0.26  0.31 

Indirect through SDW  0.02  0.05 

Indirect through RDW  0.01 -0.01 

Total -0.05  0.84 

SDW 

Direct in NUE  0.19  0.06 

Indirect through NUpE  0.69  0.44 

Indirect through NUtE  0.02  0.42 

Indirect through RDW  0.04 -0.01 

Total  0.94  0.90 

RDW 

Direct in NUE  0.04 -0.02 

Indirect through NUpE  0.55  0.39 

Indirect through NUtE  0.02  0.41 

Indirect through SDW  0.16  0.05 

Total  0.77  0.83 

Determination coefficient (R²)  0.99  0.99 

Residual effect 0.10  0.09 
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Table 7 Markers associated (p-value < 0.05) with traits related to NUE evaluated in popcorn inbred lines from two origin populations under 

contrasting N levels. 

 

SDW, shoot dry weight; RDW, root dry weight; TRL, total root length; NUtE, nitrogen utilization efficiency; NUE, nitrogen use efficiency 
a
 Chromosome bins of the marker and position taken from MaizeGDB database. 

 

Origin Trait Low N      High N     

population  Marker p-value bin 
a
 Position 

a
 (cM) R² (%)  Marker p-value bin Position (cM) R² (%) 

'Viçosa' SDW umc1110 0.0012 5.03 82.5 86.1  umc1110 0.0164 5.03 82.5 74.2 

 RDW umc1110 0.0069 5.03 82.5 79.1       

 TRL umc1110 0.0253 5.03 82.5 71.3       

 NUtE umc1110 0.0036 5.03 82.5 82.1       

'Beija-Flor' SDW phi085 0.0113 5.06 205.2 77.6  bnlg161 0.0495 5.05 171.5 70.0 

  umc1153 0.0059 5.09 211.8 76.9       

  umc1447 0.0336 5.03 33.8 67.7       

 RDW phi085 0.0131 5.06 205.2 76.5       

  umc1153 0.0109 5.09 211.8 72.5       

 TRL phi085 0.0471 5.06 205.2 63.9       

  umc1153 0.0495 5.09 211.8 57.6       

 NUtE       umc1792 0.0368 5.08 211.6 80.8 

 NUE umc1153 0.0395 5.09 211.8 60.3  bnlg161 0.0250 5.05 171.5 77.1 
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Figure 1 Genotypic values for nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE) obtained from 25 popcorn inbred lines 

under high N.  
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Figure 2 Genotypic values for nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE) obtained from 25 popcorn inbred lines 

under low N.  
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Figure 3 Principal component analysis of traits related to NUE evaluated in 25 popcorn inbred lines under high N. 

 

  



 

36 

 

 

 
 

Figure 4 Principal component analysis of traits related to NUE evaluated in 25 popcorn inbred lines under low N. 
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Figure 5 Dendrogram of 25 popcorn inbred lines evaluated under high N. 
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Figure 6 Dendrogram of 25 popcorn inbred lines evaluated under low N. 

 

 


