
FREDY AUGUSTO MACIEL ALVES

DOMAIN-SPECIFIC AND GENERAL-PURPOSE

ACCELERATION IN RECONFIGURABLE AND

VECTOR PROCESSOR PLATFORMS

Dissertação apresentada à Universidade

Federal de Viçosa, como parte das exi-

gências do Programa de Pós-Graduação

em Ciência da Computação, para ob-

tenção do título de Magister Scientiae.

Orientador: José Augusto Miranda Nacif

VIÇOSA - MINAS GERAIS

2019

Ficha catalográfica elaborada pela Biblioteca Central da Universidade
Federal de Viçosa - Campus Viçosa

T

 Alves, Fredy Augusto Maciel, 1993-

A474d
2019

 Domain-specific and general-purpose acceleration in
reconfigurable and vector processor platforms / Fredy Augusto
Maciel Alves. – Viçosa, MG, 2019.

 39 f. : il. (algumas color.) ; 29 cm.

 Texto em inglês.

 Orientador: José Augusto Miranda Nacif.

 Dissertação (mestrado) - Universidade Federal de Viçosa.

 Inclui bibliografia.

 1. Processamento paralelo (Computadores).
2. Processadores de matriz. 3. Arranjos de lógica programável
em campo. I. Universidade Federal de Viçosa. Departamento de
Informática. Programa de Pós-Graduação em Ciência da
Computação. II. Título.

CDD 22. ed. 004.35

Este texto é dedicado à minha família

que sempre esteve ao meu lado e aos meus amigos.

AGRADECIMENTO

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

RESUMO

ALVES, Fredy Augusto Maciel, M.Sc., Universidade Federal de Viçosa, outubro de 2019,
Aceleração de uso geral e de domínios específicos em plataformas reconfigurá-
veis e processadores vetoriais. Orientador: José Augusto Miranda Nacif.

Muitas plataformas heterogêneas CPU-FPGA emergiram nos últimos anos variando de

grandes sistemas a nós compostos por um único chip. Neste trabalho nós apresentamos

três artigos cuja implementação foi realizada neste tipo de plataforma heterogênea. O

primeiro explica a implementação de um acelerador de detecção de colisões, o segundo

compara esta implementação à um acelerador de redes booleanas de regulação de genes

e à outras aplicações do estado da arte, lições são derivadas sobre o que deve ser levado

em consideração antes de começar uma implementação para um sistema heterogêneo. O

terceiro artigo compara duas ISAs Vetoriais diferentes, Vector Register (VR) e Vector

Memory (VM). Este trabalho mostra as vantagens de se utilizar VM ao invés de VR. O

foco do primeiro e segundo artigos é na aceleração de aplicações específicas para uma

plataforma específica, o foco do terceiro artigo é comparar duas ISAs vetoriais em uma

mesma plataforma para ambas.

Palavras-chave: FPGA. Processador Vetorial. Acelerador em hardware.

ABSTRACT

ALVES, Fredy Augusto Maciel, M.Sc., Universidade Federal de Viçosa, October, 2019,
Domain-Specific and General-Purpose Acceleration in Reconfigurable and Vec-
tor Processor Platforms. Orientador: José Augusto Miranda Nacif.

Many heterogeneous CPU-FPGA platforms have emerged in the past few years ranging

from large systems to single chip nodes. In this work we present three different papers

implemented on this type of heterogeneous platform. The first one explains the implemen-

tation of a collision detector accelerator, the second one compares this implementation to

a boolean gene regulatory network accelerator and other applications, it derives lessons

learned about what to take into consideration before implementing for heterogeneous

systems. The third paper compares two different vector processor ISAs, vector register

(VR) and vector memory (VM). It shows the advantages of using VM over VR. The focus

of the first and second work is on the acceleration of specific applications for a specific

platform, the focus of the third one is to compare two different vector ISAs on the same

platform for both.

Keywords: FPGA. Vector Processor. Hardware Accelerator.

SUMÁRIO

INTRODUCTION . 8

PAPER 1: DESIGNING A COLLISION DETECTION ACCELERATOR ON A

HETEROGENEOUS CPU-FPGA PLATFORM 11

PAPER 2: LESSONS LEARNED ON WHICH APPLICATIONS BENEFIT WHEN

IMPLEMENTED ON CPU-FPGA HETEROGENEOUS SYSTEM 18

PAPER 3: MEMORY-BASED VECTOR INSTRUCTION SET ARCHITECTU-

RES . 26

CONCLUSION . 38

REFERÊNCIAS . 39

8

INTRODUCTION

A wide variety of heterogeneous platforms are emerging in the past few years, those

can range from single chips with different types of cores such as CPUs, GPUs and FPGAs

to large systems composed of many heterogeneous nodes. On large systems, processors are

connected to communication and memory systems in many different ways with different

topologies and interconnection fabrics (ALVES et al., 2018). Industry vendors such as

Microsoft, Amazon, Intel and Xilinx have been working on heterogeneous CPU-FPGA

platforms. Intel is working on integrating both CPU and FPGA on the same die, the

FPGA on the heterogeneous CPU-FPGA Intel HARPv2 platform is capable of reaching a

peak bandwidth of 25 GB/s while accessing the main memory. The FPGA is getting closer

to an on-die core for the same reason that memories and data communication improves as

the physical distance between them decreases. (ALVES et al., 2018)

Early vector processors such as the Cray-1 used vector register files due to their

fast access speed. While a 16x4 flip flop, used to build the Cray-1 vector registers, had

a 6ns cycle time, main memory chips with higher capacities (1Kb) had a much slower

50ns cycle time. (ALVES et al., 2019) Modern technologies such as the latest FPGAs

place billions of transistors on chip, which makes it faster and less costly to implement

large on-chip memories (ALVES et al., 2019). The Intel Arria 10 FPGA can have up to

28620 M20K and 4164 MLAB memory blocks which is equivalent to 48Mb total of internal

memory running up to 800 MHz which consists of a 1.25ns cycle time. It is important

to evaluate if vector processors should keep the named register files or if memory-based

operands are now more suitable to this new technological reality. MXP is a memory-based

vector architecture which uses the device internal memory in order to store the vector

data called the vector scratchpad, it can vary from Kb to tens of Mb in size. It is possible

to have the maximum frequency impacted by the amount of interconnection network to

connect memory blocks but as we show on this work, 65535 Bytes of internal memory is

already enough to achieve a considerable speedup when comparing a memory-based to a

register-based vector architecture.

In this work we study the impact of these technology shifts in reconfigurable

platforms implementations and vector processor architectures. The main contributions

derived from this work are:

1. Heterogeneous CPU-FPGA implementation of a sphere collision detection algorithm

showing that FPGAs can suffice as a useful co-processor even for the finest-grain

collision detection calculations.

2. A set of lessons derived from two applications that need to be taken into account

Introduction 9

when developing domain-specific accelerators for emerging heterogeneous systems.

3. Demonstration of advantages of memory-based over register-based vector architectu-

res through diagrams, code fragments and benchmarks performance results.

Collision detection algorithms are used to detect collisions between bodies in a

virtual space and calculate the results for these collisions, they are used in many domains

such as simulation, tolerance checking, and video games. The later was the main reason for

the creation of GPUs and the performance growth of CPUs and memory, and this indicates

that algorithms used in these domains such as collision detection should be investigated

as viable applications on co-processors such as FPGAs as these become more common

on modern systems. Our first work (ALVES et al., 2017) is about the implementation of

an application specific accelerator for collision detection on a CPU-FPGA platform, It

implements the smallest piece of the collision detection pipeline, and shows how collision

detection can benefit from FPGA co-processing even for the finest grain part of its pipeline.

With the recent emerging of heterogeneous systems composed of CPUs, GPUs and

FPGAs, it is important to investigate which applications are best accelerated on this type

of system and what needs to be taken into account when porting them. In (ALVES et al.,

2018) we present the implementation of accelerators for two types of applications (Collision

Detection (ALVES et al., 2017) and Boolean Gene Regulatory Networks) on the same

CPU-FPGA platform as in (ALVES et al., 2017),and we compare each implementation to

other works which also implemented these same applications on heterogeneous systems.

We then provide four lessons learned about what should be considered before starting an

implementation for this type of platform.

Modern platforms such as the latest FPGAs provide on-chip memories which rival

the speed and capacity of register files. Due to this new reality, on (ALVES et al., 2019)

we compare two different vector processor architectures, one using a vector register file

(VR) with named registers and one using an addressable on-chip vector memory (VM) in

order to store their vector data. We show that the VM approach shows advantages over

VR such as better use of the vector storage, easier programming, improved flexibility with

vector sizes and data sizes, improved data reuse (locality), better prefetching, less data

movement and higher performance (ALVES et al., 2019). Both VM and VR are emulated

on MXP which is originally a Vector Memory processor, it’s architecture can be seen in

more details on Figure 1. The DMA Engine and the Scalar core can both access main

memory. The scratchpad is a vector memory built with fast on-chip memory ranging from

KB to tens of MB. If data is outside the scratchpad, the DMA Engine exchanges data

between main memory and the scratchpad. It works similar to a GPU shared memory.

This Master’s thesis is structured according to the format of a paper’s collection

standardised by the technical and graduate council of Universidade Federal de Viçosa.

Introduction 10

Vector Scratchpad
Vector Memory

Dma and Vector
Instruction Queues

Scalar core
(NIOS, Microblaze, etc.)

DMA
Engine

Addr generation

Align A

Align B

Align C

Vector
Engine

Main memory / Memory mapped device

Bank 0

Bank 1

Bank 2

Bank 3

Figura 1: MXP Architecture

This format is composed by 5 chapters. Chapter 1 consists of a general introduction which

correlates the themes addressed on the papers which compose this thesis. On Chapters 2,

3 and 4 we present the three papers produced during the Masters program and on Chapter

5 we present a general conclusion for the thesis.

11

PAPER 1: DESIGNING A COLLISION DETECTION ACCELERATOR
ON A HETEROGENEOUS CPU-FPGA PLATFORM

978-1-5386-3797-5/17/$31.00 c©2017 IEEE

Designing a Collision Detection Accelerator

on a Heterogeneous CPU-FPGA Platform

Fredy Augusto M. Alves1, Peter Jamieson2, Lucas B. da Silva1, Ricardo S. Ferreira3, José Augusto M. Nacif1

1Science and Technology Institute, Universidade Federal de Viçosa, Florestal, Brazil
2Department of Electrical and Computer Engineering, Miami University, USA
3Departament of Informatics, Universidade Federal de Viçosa, Viçosa, Brazil

{fredy.alves, lucas.braganca, ricardo, jnacif}@ufv.br, jamiespa@miamioh.edu

Index Terms—Parallel Processor, Hardware Accelerator, Com-
puter Architecture, Collision Detection

Abstract—Collision detection algorithms are used to detect
when virtual objects collide with one another and calculate the
results of these collisions. These types of algorithms are, typically,
critical real-time calculations needed for applications such as
simulation, tolerance checking, and video games. In this work,
we present an implementation of the smallest piece of a collision
detection pipeline implemented on Intel’s Heterogeneous CPU-
FPGA Platform. This platform includes both an FPGA and CPU
that allows real-time processing of fine grained applications such
as collision detection. We present a heterogeneous implemen-
tation that uses the FPGA to accelerate a particular collision
detection stage as an accelerated part of a complete collision
detection pipeline on a real system to demonstrate how collision
detection can benefit from co-processing even in its worst-case
implementation. We believe as Intel continues to integrate FPGAs
with processors on a single die that algorithms like these need
to be both optimized and open sourced to the general computing
community1 so that they can be included and studied as part of
a full simulation system where the GPU is dedicated to graphics
and the CPU cores to world management. In our case, our results
show a speedup of 14.81% with the FPGA as compared to a
CPU only implementation. The importance of this result is that
it demonstrates that even the worst implementation in terms of
data communication to computation ratio for collision detection
on a real heterogeneous system can be used as an accelerator,
and more importantly, this is the starting point for researchers
to investigate where these algorithms should be located in the
system whether on the traditional CPU cores, the GPU, or a
co-processing FPGA.

I. INTRODUCTION

Hardware accelerators or co-processors are being used as

alternatives for high-performance computing [1], [2]. Recently,

industry vendors such as Microsoft, Intel, Xilinx, and IBM

have released heterogeneous CPU-FPGA platforms that show

promising results in terms of performance and energy effi-

ciency. Intel is working on a commercial CPU-FPGA platform

that integrates both CPU and FPGA on the same die increasing

the bandwidth available for these devices. Because of these

trends, various algorithms that, typically, would run on a CPU

should be examined in terms of being accelerated and included

as pieces of larger computation systems. At the least, system

designers need to understand the trade-offs of putting these

1https://github.com/fredyamalves/Collision-detection-for-a-CPU-FPGA-
heterogeneous-System

algorithms on the ever increasing heterogeneous computing

choices that include CPUs, Graphics Processing Units (GPUs),

and FPGAs.

One domain, video games, has pushed capabilities of PCs

including the invention of the GPU and the performance of

CPUs and memory. This suggests that algorithms used in

games should be explored as viable implementations on a co-

processing FPGA as these new computation units become a

part of modern systems. For this reason, our work looks at

accelerating collision detection algorithms that detect when

virtual objects collide and then calculate the result of these

collisions implemented on a real system. These algorithms

are not only employed in games, which are virtual simula-

tions of game worlds, but are used in other areas such as

general physics simulation, manufacturing simulators, medical

procedures training applications, virtual reality, etc [3]. For

instance, General Electric continues to develop technologies

to implement virtual twins where a real product has a virtual

twin that can be used to observe, test, diagnose, and help in

design. These “Mirror Worlds” require sophisticated compu-

tation including collision detection [4].

In this work, we present a hardware accelerator for spheres

collision detection on an FPGA as part of the Intel CPU-

FPGA platform. We use the Open Dynamics Environment

(ODE) [5] as the open-source engine that includes a collision

detection pipeline (CDP), and this tool is used by a wide

variety of games and simulators. Our FPGA implementation

uses a many-processing units approach to process collisions in

parallel in order to improve the efficiency of these calculations

and implements the finest grained piece of the CDP. We tested

our design on the Intel CPU-FPGA platform and collected

results showing a speedup of 14.81%. Though this number

is not large or comparable to other implementations, the

importance of this result is, one, it represents the finest grain

of a CDP meaning we can expect improvements as we coarsen

this, and two, this is the first implementation of collision

detection on a heterogeneous system where shared memory

and synchronization are considered.

The contribution of this work is twofold: First, we imple-

ment a heterogeneous implementation to perform fine-grained

sphere collision detection in parallel using the Intel CPU-

FPGA platform. Second, we analyze the memory/processing

bottlenecks of our implementation in terms of performance.

Paper1 12

Moreover, we have made our accelerator source code available

for the community to reproduce the results and use our design

as a starting point to implement similar applications and decide

where these calculations should be done. Our results suggest

that the FPGA will suffice as a useful co-processor for even

the finest-grained collision detection calculations, and these

results will only improve as both the CPU-FPGA system

is more tightly integrated in terms of memory access and

communication and more course-grained calculations in the

collision detection are moved onto the FPGA.

II. RELATED WORK

Many researchers have implemented collision detection al-

gorithms. For a good introductory review of collision detection

and the collision detection pipeline (CDP), we suggest chapter

2 of Weller’s book [6]. The CDP consists of two major

steps called a “broad phase” and a “narrow phase” where the

narrow phase can be further split into finer detailed calculation

steps. The purpose of the CDP is to filter out non-collisions

between objects with coarse calculations that save computation

resources, and finer more costly calculations are done after

filtering out non collisions leaving only objects that have a

high potential to collide. In this work, we look at implementing

the finest-grained portion of the CDP as implemented in the

ODE software.

Some example work of improvements to collision detection

on various computational devices include the following. Wu

et al. [7] created an algorithm on an FPGA to solve linear

programs and used it to improve the speed of collision

detection algorithms, this work pre-loads data with memory

initialization files to generate results meaning all of the data

needed for the calculations is already stored in memory before

experimental timing is started. In Raabe et al. [8], a collision

detection design for FPGAs uses fixed-point arithmetic and

bounded error, and the focus is on saving space in order to

improve area overhead. Their results have a speedup, and again

the data is pre-loaded. Works such as [9], [10] use a GPU-CPU

based system to improve collision detection algorithms. More,

recently, a paper by Zhang et. al. showed an 8x improvement

in speed to collision detection on an FPGA where the entire

system is implemented on the FPGA [11].

We note that our work differs, significantly, from this

literature in the following key ways: 1) We do not make use

of pre-loaded data and take into account the shared memory

access time in our speedup results, which is left out in

all existing FPGA implementations and sometimes in GPU

implementations; 2) We implement the most fine-grained piece

of the CDP on a CPU-FPGA platform as a demonstration

that even the finest calculations in the CDP will provide some

benefit when co-processed by the FPGA. In addition to these

key differences, our system is compared to a single core CPU

implementation and not to a GPU implementation. The reason

for this is we are looking at the benefit of implementing

collision detection on a co-processor where in applications

such as video games the GPU is not available for significant

computations as it is already dedicated to its’ primary purpose.

Therefore, our goal is not just acceleration of the application,

but evidence that the FPGA co-processor is a viable target for

these algorithms and there is room for significant improvement

of collision detection in these real-systems. This type of

work is needed on a larger scale so that system designers

can determine where various computation activities should be

executed according to trade-offs in speed and power.

III. COLLISION DETECTION HARDWARE ACCELERATOR

In this Section we provide details of our collision detection

hardware accelerator.

A. Collision Detection Algorithms

The ODE software includes a collision detection engine

that allows for re-implementation of its calculating methods.

This engine uses information about the shape and position of

each object in the world. The collision detection algorithm is

divided in 3 steps as seen in Figure 1 including where the

calculations are performed in our system:

• AABB collision detection: The ODE on the CPU exe-

cutes the Axis-Aligned Bounding Box (AABB) collision

detection algorithm, an AABB is basically a box which

describes one or a set of geometric figures, in the case of

a sphere, the AABB is a cube inside it as seen in figure

2, this step only identifies which objects are potentially

colliding and then it sends the objects to their specialized

collision detection algorithms, in our case it sends the

spheres which are likely to collide to the Spheres collision

detection accelerator on the FPGA.

• Sphere collision detection: The spheres are processed

on the FPGA and the collision results are sent back to

the CPU, it is important to point out that this is a fine

grain step, the processing time is low when compared

to the amount of data needed to compute it, the whole

collision detection algorithm is considered coarse grain

as it generates a big amount of intermediate data when

compared to the inputs, the number of collision tests

could go up to 2N where N is the amount of spheres

on the virtual world.

• Virtual world state update: This step is processed on the

CPU and it is responsible for fetching all the collision

results and, through physics computations based on the

collision vector resultants, it updates the virtual objects

positions for the next simulation step.

Algorithm 1 starts by calculating the collision depth and

storing it in d, based on the result three different possible

cases occur: 1) Fake collision: Collision does not happen; 2)

Grazing collision: bodies barely contact each other; 3) Real

collision: Bodies collide with each other and the collision has

a depth. Note that grazing collisions almost never happen and

we focus our attention on the real collisions.

In our design, we have re-implemented the method for

collision detection between spheres - (Real Collision). The

inputs are the position of two spheres in a space and their

respective radius. The output is a contact point. The spheres

Paper1 13

AABB Collision
processing

Sphere collision detection
(Fine Grain)

Positions
update

Spheres
likely to
collide.

Collisions
results.

CPU

FPGA

Fig. 1. Collision detection algorithm steps.

Fig. 2. Sphere AABB.

representation and the resulting contact points use, respec-

tively, 4 and 7 32-bit IEEE 754 floating points numbers. We

identify parallelizable calculations, dividing these calculations

into 5 stages as seen in Algorithm 2, where each stage is

executed sequentially but for multiple possible collisions in

parallel. We call the parallelized version of this the Accelerator

Function Unit (AFU), which we implement on the FPGA. For

the real collision execution flow, we execute 26 floating point

operations per collision.

B. Accelerator Datapath

The AFU is implemented as the co-processor on the FPGA

to calculate collision detections as one piece of the entire

system. Figure 3 shows the larger system in which the ODE

software is executed on the CPU, and data is transferred

Algorithm 1 Spheres collision detection algorithm.

d← DCALCPOINTSDISTANCE3(p1,p2)
Case 1: Fake Collision

if d > (r1 + r2) then return 0

end if

Case 2: Grazing Collision

if d ≤ 0 then

cPos← p1
cNormal← (1, 0, 0)
cDepth← r1 + r2
Case 3: Real Collision

else

d1← DRECIP(d)
cNormal← (p1− p2) ∗ d1
k ← 0.5 ∗ (r2− r1− d)
cPos← p1 + cNormal ∗ k
cDepth← r1 + r2− d

end if

Algorithm 2 Parallel FPGA collision detection algorithm.

Stage 1 :

d← DCALCPOINTSDISTANCE3(p1,p2)
rsum← r1 + r2
psub← p1− p2
rsub← r2− r1
Stage 2 :

d1← DRECIP(d)
d > rsum

r2− r1− d

r1 + r2− d

Stage 3 :

cNormal← (psub) ∗ d1
k ← 0.5 ∗ (rsub− d)
Stage 4 :

cnk ← cNormal ∗ k
Stage 5 :

cPos← p1 + cnk

in real-time to the AFU on the FPGA for the collision

calculations via shared-memory. Note that the CPU can access

the systems main memory, which the FPGA cannot, and the

shared memory is accessible via a QPI bus.

The AFU is divided into two main components as seen in

Figure 3. First, a Processing Units Controller (PUC) is respon-

sible for handling communication of data between the CPU

and the FPGA via the shared memory as well as synchronizing

when the local FPGA processing units can perform their fine-

grained calculations. Second, the Sphere Collision Processing

Units (SCPUs) can access the loaded data to perform their

respective collision detection calculations.

A handshaking control protocol is implemented on the CPU

and PUC as follows:

1) The simulation step starts with the CPU sending all

the virtual world information to a Source (Src) buffer,

Paper1 14

where a collector fetches all the spheres and collision

information that composes the virtual world from this

buffer and stores it in local FPGA memory, which we

call the Virtual World info RAM block (VWIRB). This

is done at each simulation step. The collision information

stored on the VWIRB is used to tell each of the SCPUs

which pair of spheres participates in a collision. The

collision information is stored in 512 bit lines with 32

sphere addresses each, each pair of addresses tells a

SCPU which spheres on the local RAM block are used

on the collision it is supposed to process.

2) The sphere’s information on the VWIRB is replicated

to local RAM blocks which are connected as inputs to

each of the SCPUs, this replication is done once every

simulation step in parallel.

3) Each SCPUs processes its respective collision and indi-

cates when it has completed the collision detection.

4) The PUC collects all the collision information to the

SCPUs and when it is done processing all of them, it sets

a ”done” signal, that the CPU reads, and then, fetches the

results from the destination (Dst) buffer.

5) The CPU can then update the virtual world state, take

new inputs, and start the next simulation step.

FPGA

Processing Units Controller (PUC)

SCPU SCPU SCPU SCPU

Dispatcher CollectorHandshake Controller

Shared memory

Dst Buffer Src Buffer
CPU

Main memory

Fig. 3. Collision detection accelerator system.

C. Intel Heterogeneous CPU-FPGA Platform

We have implemented the collision detection accelerator

using the first version of the Intel CPU-FPGA Platform [12].

The computer used for communication with the FPGA consists

of Xeon Processors E5-2680 v2, its specifications can be seen

in Table I. The CPU is connected to an Altera Stratix V

model 5SGXEA7N1F45C1 FPGA by a 6.4 GT/s Intel QPI

bus, the FPGA specifications are included in Table II. We have

used the Accelerator Abstraction Layer (AAL) framework to

develop our accelerator. AAL allows C/C++ implementations

to manage transactions between the CPU and the FPGA

hardware accelerator.

TABLE I
XEON E5-2680 V2 SPECIFICATIONS

Clock Cache RAM SSD

2.8 GHz 25 mb 96 gb 120 gb

TABLE II
ALTERA STRATIX V MODEL 5SGXEA7N1F45C1 SPECIFICATIONS

Clock DSP Blocks Logic Elements Memory bits

200 MHz 256 234,720 52,428,000

. The system CPU side is composed of the ODE software

and the AAL application used to communicate with the AFU.

The FPGA side includes the AFU to perform the collision

detection calculations which is implemented via the System

Protocol Layer 2 (SPL2) provided by Intel, which is responsi-

ble for memory address translation since the FPGA uses virtual

addressing.

IV. BENCHMARKS AND MEASUREMENT METHODOLOGY

The AAL framework is service-oriented working with the

concept of transactions. A transaction must be initiated, pro-

cessed and finished. Our speedup results compare the cost of

this transaction with the FPGA as compared to the same trans-

action executed only on a single CPU with the specifications

described in the previous section.

The application processes each set of collision on the AFU

10 times, computing the average execution time. As the path

for executing a specific type of collision is always the same,

we expect that the execution time for a certain amount of

collisions is always similar and the growth in execution time

is linear and proportional to the number of collisions.

Fig. 4. Benchmarks examples.

Paper1 15

In order to generate results, we use a set of parameterizable

benchmarks with spheres organized in the form of a diamond.

We define our benchmarks based on the distance between

spheres (dSph) and the maximum height (hMax) for the

diamond in terms of number of spheres. Figure 4 presents two

of these examples. After we create the simulation environment

a force is applied to each sphere in the direction to the center

of the diamond so that they will collide with each other.

V. RESULTS AND DISCUSSION

Our experiments were conducted by executing sets of real

collisions for both ODE and the AFU. We generated 10

benchmark sets varying hMax from 1 to 10 and keeping

dSph equal to 0. For the AFU, we used 16 SCPUs. Table

III shows the FPGA usage to implement both the PUC and 16

SCPUs in terms of logic elements, DSPs, and memory bits.

The design uses almost all the logic fabric and DSPs available

on the FPGA.

0 62
370

1,140
2,568

4,812
0

50

100

150

200
ODEODE CPU-FPGA platformCPU-FPGA platform

Collisions

E
x
e
c
u

ti
o

n
 t

im
e
 (

µ
s
)

Fig. 5. Execution time for ODE and Intel CPU-FPGA platform.

TABLE III
DESIGN FPGA RESOURCES CONSUMPTION

DSP Blocks Logic Elements Memory bits

224 (88%) 200,844 (86%) 13,600,474 (26%)

Figure 5 presents the execution time for the number of

collisions generated by each benchmark set. The Intel CPU-

FPGA platform is faster than the single CPU when the colli-

sion numbers are greater than 1,000. We reached the highest

speedup of 14.81% when the number of collisions is 4,812

(hMax=10). The average execution time for one collision on

the Intel CPU-FPGA platform platform is 36 ns while for the

ODE running on the CPU is 41 ns. It is important to note

that the Intel CPU-FPGA platform execution time includes a

5 µs overhead due to configuration time. This speedup may

not seem significant, but our heterogeneous implementation is

only performing the finest-grained calculations of the CDP in

this case, and therefore, the cost of transferring all of this data

versus the amount of computation needed is very expensive.

However, this does prove that in a real CPU-FPGA system that

fine-grained CDP implementation can provide a co-processing

speedup, and courser grained implementations of the CDP

should shift the data to computation ratio even further towards

benefiting these systems further even in situations with less

collisions. Similarly, as the communication latency and band-

width between FPGA, CPU, and shared-memory improves as

their dies become more integrated, we should see additional

speedups. Finally, if the FPGA had direct access to the main

memory, we would expect better results.

 0

 200

0 13 62 171 370 683 1140 1763 2568 3579 4812

E
x
e
c
u
ti

o
n
 t

im
e
 (

µ
s
)

Collisions

Memory access
Processing

Fig. 6. Memory access and processing times for the Intel CPU-FPGA
platform.

0 62
370

1,140
2,568

4,812
0

50

100

150

200
ODEODE CPU-FPGA platformCPU-FPGA platform

Collisions

E
x

e
c

u
ti

o
n

 t
im

e
 (

µ
s

)

Fig. 7. Execution time for ODE and Intel CPU-FPGA platform without
memory access time.

In order to perform a more in-depth study of the Intel

CPU-FPGA platform execution time components, we have

instrumented the design with counters. Figure 6 presents the

memory access and processing times for each benchmark set.

The memory access time is responsible for approximately 48%

Paper1 16

of the total execution time while the collision processing is

responsible for 52%. For this Intel CPU-FPGA architecture,

the communication overhead is still a significant computation

cost. It is common in FPGA accelerator papers to consider

that data is pre-loaded in memory and not take in account

the memory access time. In this case, our speedup would

be 43%, for 4,812 collisions. Figure 7 shows the execution

time comparison when the memory access time is considered

instantaneous.

The value of these results and work is a deeper understand-

ing of these heterogeneous systems (which include FPGAs)

and the importance of the computation-to-communication ra-

tio. For the finest grained portion of the CDP, the communica-

tion costs are just, barely, smaller than the parallel computation

benefit, hence the small speedup results. However, as the

granularity of computation is increased for what the FPGA co-

processor does in terms of the CDP, the computation increases

for less or equivalent communication. The question remains

what is the area/resource cost for this additional computation?

One could imagine a scenario where the FPGA maintains

data on the state of the world and only communications are

made between CPU and FPGA on a “miss” scenario or (a

relevant change in the virtual-world) where the communication

is only needed in a cache-like model. In these heterogeneous

systems that include FPGAs, we, the FPGA designers, will

need to leverage lessons learned from the parallel research

community on data distribution and optimization techniques

that have been explored for the last 60 years to maximize the

computation-to-communication ratio while optimizing compu-

tation in terms of resource usage on the FPGA.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a hardware accelerator imple-

mentation of the most fine-grained part of a CDP. We imple-

mented a case of study with sphere collision detection reaching

a speedup of 14.81% with FPGA proven design running on a

real system that includes shared-memory transfers. The results

show that our design is faster when compared to a high-end

CPU and the FPGA is a realistic accelerator. Our design is

available released as open source. An important general idea

drawn from this work is that even small computational kernels

can get speed improvements as the FPGA and CPU are more

closely integrated, but the quality these results are highly

dependent on the communication-to-computation ratio.

Our results do not approach some of the previous re-

searchers’ results, but we highlight the importance of this

work as it demonstrates a CDP implementation at the finest-

grain can be speed up, and this implementation is on a real

heterogeneous system where memory access and synchroniza-

tion must be considered. Even under these restrictions, our

implementation still improves results, and this suggests that

further pursuits in implementing the courser stages of the CDP

will provide even more benefit. Additionally, this works helps

provide system designers an understanding of what trade-offs

they can expect when implementing algorithms on these types

of heterogeneous systems.

As for future work, we intend to expand our AFU imple-

mentation to other types of collisions detection algorithms and

more course grain portions of the CDP in order to produce a

more efficient accelerated engine. We will also execute the

design in a newer Intel CPU-FPGA platform with increased

integration of FPGA and CPU. We expect with the increased

improvements of these platforms that our implementation will

only become better. Finally, we plan on looking at the energy

consumption of our design as this is another important metric

to consider in the system. At present, our speedup suggests

that the FPGA will consume more energy than the processor,

but as speedup increases we would expect energy to be equal

or even less when collisions are executed on the co-processing

FPGA.

ACKNOWLEDGMENTS

We would like to thank UFV and the research agencies

FAPEMIG, CAPES, CNPq for their financial support. We

would also like to acknowledge Connor Blandford and Oakley

Katterheinrich for participating in early development at Miami

University.

REFERENCES

[1] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in 2016

49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), Oct 2016, pp. 1–13.
[2] Y. k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A quan-

titative analysis on microarchitectures of modern cpu-fpga platforms,”
in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2016, pp. 1–6.

[3] H. Wei and W. W. Gen, “A comprehensive fpga implementation of
collision detection,” in IET International Communication Conference

on Wireless Mobile and Computing (CCWMC 2011), Nov 2011, pp.
341–346.

[4] N. Carriero and D. Gelernter, “A computational model of everything,”
Commun. ACM, vol. 44, no. 11, pp. 77–81, Nov. 2001. [Online].
Available: http://doi.acm.org/10.1145/384150.384165

[5] R. Smith. Open dynamics engine. [Online]. Available: http://www.ode.
org/

[6] R. Weller, New geometric data structures for collision detection and

haptics. Springer Science & Business Media, 2013.
[7] C. H. Wu, S. O. Memik, and S. Mehrotra, “Fpga implementation of

the interior-point algorithm with applications to collision detection,” in
2009 17th IEEE Symposium on Field Programmable Custom Computing

Machines, April 2009, pp. 295–298.
[8] A. Raabe, S. Hochgurtel, J. Anlauf, and G. Zachmann, “Space-efficient

fpga-accelerated collision detection for virtual prototyping,” in Proceed-

ings of the Design Automation Test in Europe Conference, vol. 2, March
2006, pp. 6 pp.–.

[9] A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, and R. Dill-
mann, “Unified gpu voxel collision detection for mobile manipulation
planning,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sept 2014, pp. 4154–4160.
[10] A. Hermann, F. Mauch, K. Fischnaller, S. Klemm, A. Roennau, and

R. Dillmann, “Anticipate your surroundings: Predictive collision detec-
tion between dynamic obstacles and planned robot trajectories on the
gpu,” in 2015 European Conference on Mobile Robots (ECMR), Sept
2015, pp. 1–8.

[11] Z. Zhang, Y. Xin, B. Liu, W. X. Y. Li, K.-H. Lee, C.-F. Ng, D. Stoyanov,
R. C. C. Cheung, and K.-W. Kwok, “Fpga-based high-performance
collision detection: An enabling technique for image-guided robotic
surgery,” Frontiers in Robotics and AI, vol. 3, p. 51, 2016. [Online].
Available: http://journal.frontiersin.org/article/10.3389/frobt.2016.00051

[12] P. K. Gupta. (2015) Intel xeon+fpga platform for the data center.
[Online]. Available: https://www.ece.cmu.edu/∼calcm/carl/lib/exe/fetch.
php?media=carl15-gupta.pdf

Paper1 17

18

PAPER 2: LESSONS LEARNED ON WHICH APPLICATIONS
BENEFIT WHEN IMPLEMENTED ON CPU-FPGA

HETEROGENEOUS SYSTEM

Lessons Learned on which Applications Benefit when
Implemented on CPU-FPGA Heterogeneous System

Fredy Alves
Science and Technology Institute,
Universidade Federal de Viçosa
Florestal, Minas Gerais, Brazil

fredy.maciel@ufv.br

Peter Jamieson
Department of Electrical and
Computer Engineering, Miami

University
Oxford, OHIO, USA

jamiespa@miamioh.edu

Lucas Bragança
Science and Technology Institute,
Universidade Federal de Viçosa
Florestal, Minas Gerais, Brazil

lucas.braganca@ufv.br

Ricardo Ferreira
Departament of Informatics,

Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

ricardo@ufv.br

José Augusto M. Nacif
Science and Technology Institute,
Universidade Federal de Viçosa
Florestal, Minas Gerais, Brazil

jnacif@ufv.br

ABSTRACT

In this work, we provide łlessons learnedž from implement-
ing two applications, collision detection and Boolean Gene
Regulatory Networks (GRNs) simulation, on a CPU-FPGA
heterogeneous platform. Both of these applications have, pre-
viously, been implemented and accelerated on FPGA-only
devices, but when implemented on a more complete host
and co-processor system the additional system factors, such
as input and output data communication, impact the results.
Using our two applications, we illustrate a set of lessons that
need to be considered when porting applications to these
emerging heterogeneous systems.

CCS CONCEPTS

·Hardware→Hardware accelerators; Reconfigurable
logic applications;

KEYWORDS

Hardware,CollisionDetection,Accelarator,Xeon+FPGA,Verilog

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6494-2/18/07. . . $15.00

https://doi.org/10.1145/3229631.3229648

ACM Reference Format:

Fredy Alves, Peter Jamieson, Lucas Bragança, Ricardo Ferreira,

and José Augusto M. Nacif. 2018. Lessons Learned on which Appli-

cations Benefit when Implemented on CPU-FPGA Heterogeneous

System. In SAMOS XVIII: 2018 International Conference on Embed-

ded Computer Systems: Architectures, Modeling, and Simulation, July

15–19, 2018, Pythagorion, Samos Island, Greece. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3229631.3229648

1 INTRODUCTION

More andmore heterogeneous computing systems are emerg-
ing including single chips that include a heterogeneous set of
cores (including CPUs, GPUs, and FPGAs) to larger systems
composed of multiple heterogeneous nodes. In these larger
systems, the computation chips are connected to numerous
types of communication technologies and topologies, and
memories are integrated in these systems in a variety of ways.
A number of questions emerge with these systems, including
the ones we focus on - what algorithms are accelerated on
these new systems, and how should they be designed for the
new architecture?

In particular, this work focuses on looking at implement-
ing two algorithms on Intel’s Heterogeneous CPU-FPGA
Platform - collision detection and Boolean Gene Regulatory
Networks (GRN) simulation. These two applications have
been, previously, implemented on FPGAs with demonstrated
speedups, and therefore, many would assume that a hetero-
geneous system should have similar benefits when imple-
menting these algorithms. This is not always the case since
system-level limitations such as CPU to FPGA communica-
tion introduce additional factors in the overall success of
implementing these applications efficiently. The question
is, which factors should be considered when implementing
applications on these emerging architectures?

Paper2 19

We look at how the two implementations of these algo-
rithms on the CPU-FPGA platform have varying success.
Boolean GRN simulation can be implemented with similar
speedups to FPGA-only implementations (which is GOOD),
and collision detection does not get significant speedup re-
sults compared to FPGA-only implementations (which is
BAD). We use these two cases to provide a łlessons learnedž
about these types of CPU-FPGA systems, which is very use-
ful as we expect more and more systems to include both of
these cores. There is an expectation that soon we will see
both FPGAs and CPUs on the same die.
Our main lesson is a reminder that the co-computation,

performed on the FPGA, needs to be significant in computa-
tion cost as compared to the FPGA communication of both
input and output data. What’s interesting is this communi-
cation process (data to co-processor) is constantly changing,
meaning that depending on how the system connects the
memories, CPUs, and co-processors has significant impact
on the application. Understanding this architecture and its
capabilities is a necessity in porting applications to these
devices.

2 BACKGROUND - CPU-FPGA
PLATFORM

The recent acquisition of Altera by Intel is an indicator that
reconfigurable architectures such as FPGAs are becoming
interesting computation chips in mainstream computing. As
a result of this new reality, Intel has developed heterogeneous
CPU-FPGA platforms for researching purposes. Some recent
papers that used this platform are [1, 3].
This specific heterogenous CPU-FPGA platform consists

of an Intel Xeon E5-2680v2@2.80GHz processor and an Al-
tera Stratix V@200MHz FPGA. These are connected through
a QPI Bus capable of a bandwidth of 8GT/s. In order to make
the most out of the bandwidth, two sockets are used on the
motherboard, where one is used by the Xeon and the other
by the Stratix V. All the communication between the CPU
and the FPGA is done through a 64KB cache. A new version
for this platform is already available for researches and it
can reach up to 28GB/s.
This drastic improvement in communication bandwidth

allows the use of FPGAs for accelerating algorithms with
a potential for parallelism, even when these are considered
fine grain applications. CPU-GPU heterogeneous platforms
are the main option for parallelizing and accelerating appli-
cations, but it only allows parallelism through SIMD where
all of its cores perform the same operation at the same time.
FPGAs are fully configurable logic devices, which allows
them to better address problems such as execution and data
divergence, and FPGAs are a low power device compared to
GPUs for many applications.

3 APPLICATIONS

In this section, we briefly introduce both algorithms used
in our case study - collision detection and Boolean GRN
simulation.

3.1 Collision Detection

3.1.1 The algorithm: Whenever a simulation is com-
posed of many bodies interacting with each other through
forces, one important algorithm is collision detection. These
algorithms detect when virtual objects collide, and they cal-
culate the result of these collisions.
The collision detection algorithm is composed of 3 main

steps. The first is the Bounding volume collision detec-

tion (BVCD): during this phase, bounding volumes which
were attributed to the bodies on the simulation are tested
against each other. In the case of the algorithm used in Alves
et al. [1], the bounding volume is a box, called the AABB
(Axis Aligned Bounding Box). The second step executes Spe-
cialized collision detection methods (SCDM). This step
uses the two bodies of two specific types and computes if they
collide or not by returning the normal vector and position
for the collision. In our implementation, we [1] accelerate
this step on an FPGA. The last step is the Virtual world

state update (VWSU). VWSU uses the collision results and
physics calculations to update the position for each virtual
object.

3.1.2 The implementation: Our [1] implementation of
SCDM is for collision detection between spheres. The input
is the 3D coordinates for two spheres and their respective
radii, and the output is a structure named contact point,
which is composed of the normal vector for the collision and
its position on the space. Another output is one bit which
specifies the collision type. The algorithm has been trans-
lated to an FPGA accelerator where the high level software
implementation is from an open source engine called Open
Dynamics Environment [12]. In that software framework, it
is possible to re-implement all of its SCDM directly on user
code without the need to recompile the whole engine.
The algorithm starts by computing the collision depth d ,

and based on the result, it classifies the collision as one of
three types. A Fake Collision happens when d is greater
than the sum of the spheres radii and means they are not
touching each other. A Grazing Collision exists when d ≤

and the spheres are barely touching. The focus of this work
is on Real Collisions, which occur when d > 0 and the
spheres are hitting each other with a depth d .

We divide the sequential algorithm into 5 stages, executing
all the operations in each stage in parallel, although we exe-
cute each stage sequentially. The parallelized version of the
algorithm is written in Verilog, implemented on the FPGA,
and is called the Accelerator Function Unit (AFU).

Paper2 20

Figure 1: Collision detection accelerator system.

The AFU works as a co-processor on the FPGA that re-
ceives the spheres which are likely to collide from the BVCD
step and sends the results back to the CPU for the VWSU
step. Figure 1 shows the complete system. The ODE applica-
tion is executed on the CPU while the AFU executes on the
FPGA, and data is transferred between these two through a
shared memory accessed via a QPI bus.
As seen on Figure 1 the AFU is divided into two parts.

The Spheres collision processing unit (SCPU) implements
the parallelized sphere collision detection algorithm, and
it is replicated many times in order to be able to process
more than one collision in parallel. The Processing Units
Controller (PUC) is responsible to dispatch the data fetched
from the source buffer on the shared memory to the SCPUs,
and then collects the results in order to send them to the
destiny buffer where the CPU can use the data for the VWSU
step.

We have implemented this system on the Intel CPU-FPGA
research platform [7] as described in the background. The
CPU is a Xeon Processor E5-2680v2 which is connected to
an Altera Stratix V model 5SGXEA7N1F45C1 through a QPI
bus. For more details on both the algorithm and its imple-
mentation as an AFU, refer to [1].

3.2 Gene Regulatory Networks

3.2.1 The algorithm: The DNA in a cell composes its
genome where a short region of DNA is called, a gene. Genes
go through the a process called łgene expressionž where they
act as a template for producing protein molecules which the
cell uses to adapt to its environment. There is a type of pro-
tein which acts as a molecular regulator known as Transcrip-
tion Factors (TFs), and these TFs modulate the frequency
with which genes are expressed. TFs can also regulate the

expression of genes that code for other TFs. These group
of connections between TFs and genes are known as Gene
Regulatory Networks (GRNs).

A GRN can be modeled as graph where:

• Each node vi represents a gene.
• The state for each gene is a logic value that indicates
if the gene is active or not.

• Each node is connected to ki nodes, where ki >0
• At each timestep t each node state is updated according
to a Boolean function Fi .

Figure 2: GRN example.

The new value of a nodevi isvi(t+1) = f i(vi1(t), ...vik (t))

where k is the number of adjacent nodes of vi . In Fig. 2 the
functions are inside the nodes. A network state (Si) is a
vector of all the node states on it, and in the example seen on
Fig. 2 the initial state Si = v1v2v3v4 = 0010. After a certain
number of timesteps the network converges to a set of stable
steady states. An example can be seen on the network on
Fig. 2 where the network performs the transactions 0010
→1001 →0110 →0001 →0100 →1000 and then it keeps
updating from 0100 to 1000 and back to 0100 in a loop. This
set of stable steady states is called an attractor.
Since the amount of possible states for a network is ex-

ponential, the solution space is too large to optimize. If the
state update is synchronous for all nodes, then it is possible
to partition the space into fully connected disjointed graphs,
and these are composed each by an attractor and the group
of states that converge into it, called its basin. Silva et al. [3]
implement a framework that computes the basin histograms
for the dynamics of the network, the length of all attractors,
and the average number of steps to reach an attractor from
a random initial state.

3.2.2 The implementation: Our design consists of an
interface unit, a thread control unit, and a set of processing
elements (PEs). Each PE is composed by a control unit and

Paper2 21

two functional units. The functional unit is the Boolean func-
tion implementation for each node in the network, and it
is implemented as Boolean expressions with a one-bit reg-
ister to compute and store the node state. Since the state
computations for each node are independent, they can all be
computed at the same time in one clock cycle.
A network state Si will converge to an attractor after Ti

timesteps whereTi is the size of the transient associated to Si .
A PE is composed by two copies of the GRNwith all its nodes
and connections. If we consider a state Sa as the first inside
a cyclic attractor, the PE will return to Sa after L steps where
L is the size of the attractor. The strategy used in this work
is to use two copies of a network N 1 and N 2, that is, one PE.
Every time N1 performs one simulation step, N2 performs
2, an attractor is identified when Sn1 == Sn2. This approach
is O(1) in memory usage, and this is important because the
solution space is exponential meaning it is too large to fit in
memory. The PE is composed by two FUs (FUp1 and FUp2),
FUp1 performs one clock cycle while FUp2 performs two.
The PE computes the attractor length by keeping P2 stopped,
while P1 performs L clock cycles until P1 is equal to P2 again.

Each PE receives a state for its FUs as an input which they
use to compute the attractor and the transient length in a few
cycles. The design proposed on this work can manage light
and irregular thread loads by using asynchronous FIFOs and
PEs. The thread control unit feeds the FIFO buffers with a
sequence of states to be computed. The PE gets a state from
the input FIFO and computes the transient and the attractor
length and writes them to an output FIFO.

4 APPLICATION IMPLEMENTATION
COMPARISONS

In this section, we present implemenation details of the Col-
lision Detection and Gene Regulatory Network applications.

4.1 Collision Detection Implementation
Comparison

Table 1 shows collision detection implementations across
a set of platforms. We report the platform, CPU, and FP-
GA/GPU in columns 2, 3, and 4, and include communication
method, parts of the collision detection pipeline, data format,
data width, platform, and finally speedup in the remaining
columns. Our implementation is at the top and is in bold.
The key ideas we want to show is first that FPGA imple-

mentations of collision detection tend to show their results
on data sets that are either pre-loaded or fit entirely on the
device. This is not the reality if collision detection FPGA
implementations are to exist in real applications. Second,
one criticism of our work is that why would we put collision
detection onto an FPGA. Even though the algorithm can be
implemented on many platforms, in the key two instances

collision detection is used (simulation and video games) these
other computation devices are usually in use and the algo-
rithm is interleaved with other work. For example in a video
game, the GPU is used for its main purpose, graphics, and
the CPU is used in all sorts of other aspects of maintaining
the virtual world. This means that the FPGA could be used
for offloading collision detection.
There are many ways to implement collision detection

on FPGAs, and our model described in 3.1.1 uses a strategy
based on the structure of the bodies using common physics
and geometry computations. Wu et al. [15] treat the same
problem with a mathematical approach where the interior-
point algorithm is used, and this is a typical algorithm used
for optimization and it needs a mathematical model, which
can be adapted for multiple problems. But even when the
strategy changes, the idea of the three collision detection
steps is kept. Their works use of pre-loaded data, which
allows them to reach orders of magnitude of speedup, and
they do not compare their results to other systems.

The data format and width representing the objects is also
an important part of design performance. Specifically, this
impacts memory usage efficiency, communication through-
put, and the cost for arithmetic operations. Raabe et al. [11]
use fixed point in order to implement the BVCD step, and
the reason why most implementations use this data format
for implementing hardware accelerators is so an arithmetic
operation can fit inside a DSP block on an FPGA, which is
usually 18 bit wide for each input. In our work, the data is
single precision floating point, and the DSPs are 18 bit, and
therefore, more than one DSP is used to create a 32 bit DSP,
which causes an overhead due to the need for programmable
routing, which impacts the maximum clocking frequency of
our design. Raabe et al. [11] presents a speedup of 4x, but it
does not specify how data is transferred to the FPGA, and if
this transfer time was taken into account.

Whenmore parts of the collision pipeline are implemented
on the FPGA, the speedup is better since the ratio of data to
processing changes in favor of computation. Zhang et al. [5]
is a great example of this since both the BVCD and the SCDM
are calculated on the FPGA, and a speedup of 8x is achieved.
This work does not specify the communication method be-
tween host and FPGA, or if the time for data transfer is taken
into account. Our work only implemented the SCDM and
the ratio of data to processing is higher.

Both works ([4, 8]) that use GPUs are applied to robotics.
It does not always make sense to use a GPU for collision de-
tection since the GPU could be busy processing the graphics.
However, in robotics the GPU can be used to optimize robot
movement through a physical space modeled as a collision
detection problem. Their implementations do not compare
to CPUs, and A. Hermann et al. [4] provide no details about

Paper2 22

Table 1: Collision Detection Implementations on Various Platforms.

Research

Group
Platform CPU FPGA/GPU

Comm

method
Steps

Data

format

Data

size

Speedup

CPU

Hybrid

Collision [1]
CPU-FPGA

Xeon Processors

E5-2680 v2

2.8 GHz

Altera Stratix V

5SGXEA7N1F45C1

Shared

Memory
SCDM

Floating

Point
32-bits 0.14x

Linear

Solution [15]

Altera DE2

board
-

Cyclone II EP2

2C35F672C6

Pre-loaded

RAMs
SCDM

Floating

Point
- -

Fixed

point [11]

Alpha Data

ADM-XRC-II

board
Pentium III 1 Ghz

Xilinx Virtex II

(XC 2V6000,

speed grade -4)
- BVCD

Fixed

point

11

-

44-bits
4x

Robot

FPGA [5]
-

Intel Core TM i7

CPU 860 2.8 GHz

Xilinx Virtex-6

XC6VHX565T
-

BVCD

SCDM

Floating

Point
32-bits 8x

Mobile

GPU [8]
CPU-GPU Core i7, 3.4 GHz

NVIDIA Titan GTX

6 GB GDDR5 RAM

Shared

Memory
All - 64-bits -

Robot

GPU [4]
- -

NVIDIA GeForce

GTX TITAN

Shared

Memory
All - - -

Table 2: GRN Implementations on Various Platforms.

Research Group Platform CPU
FPGA/

GPU

Comm

method
Model

Speedup

CPU

Net

Type
Attractor

Reconfig

2017

FPGA [3]
CPU-FPGA

Xeon

E5-2680v2

2.8 GHz
Stratix V

Shared

memory
Sync 349.4 Real yes

FPL
2017
FPGA [10]

CPU-FPGA
IBM
POWER8

Xilinx Kintex
UltraScale
KU060

Shared
memory

Sync/
Async

11.7 Real no

FPL
2010
FPGA [6]

CPU-FPGA
Intel Core
2 duo
(2.8GHz)

Virtex-6 Serial Sync 1300 Synth yes

FPL
2005
FPGA [13]

FPGA
Pentium 4
2.4GHz

Xilinx
Virtex II

Pre-
loaded

Sync 76 Synth no

MWSCAS
2004
FPGA [17]

ARM-FPGA
Pentium
I.3GHz

Virtex
2000

Shared
memory

Sync 1285 Synth yes

PLOSONE
2014
GPU [14]

CPU-GPU
Intel Core2
Quad
Q9400 2.66

NVIDIA
GeForce
GTX 680

Shared
memory

Sync 453 Synth yes

the CPUs in their system. Also, max performance is not nec-
essarily the main concern in robotics. For example, a robot
responsible for moving boxes in a factory does not need to
process at a rate of 200 Km/h if the maximum mechanical
speed of the system is 30 Km/h. We provide the GPU results
for completeness.

4.2 Gene Regulatory Network
Implementation Comparison

Table 2 shows the Boolean GRN across a set of platforms
structured similar to Table 1 above.

GRNs are synchronous when all genes are updated at the
same time, and asynchronous when only a subset of these
nodes are updated at the same time. Just a few of the works
for GRN acceleration on FPGAs implement the asynchro-
nous model. One example in this direction is [10] where a

Paper2 23

framework for generating both synchronous and asynchro-
nous designs from Boolean network models was created, but
as we can see on Table 2 it has the smallest speedup. Their
designs are compared to an implementation on a high per-
formance server, and the more generic the design is the less
speedup you get since it is supposed to cover several possible
setups, and this makes it hard to optimize the design for all
instances. Additionally, synchronous designs broadcast their
clock and reset signals to all genes, while asynchronous de-
signs have to create networks in order to be able to control
each gene separately. These large networks tend to create
many switches, which are one of the main causes for creating
a slow down (because of slacks and pipeline bubbles) in their
design.
As expected and seen on Table 2, all the other works

other than [10] present significant speedups. Since these
are all synchronous designs, this is expected. Among these
works [6, 13, 17], Tagkopoulos et al. [13] has the lowest
speedup because their system uses the Jtag communication
to pre-load the data to the FPGA. The designs, which do not
compute the attractor for the GRN, have the lowest speedups,
and this happens because the reuse of a GRN initial state
is lower for these designs. In order to find an attractor, a
design can execute many iterations for a single initial state,
which makes the ratio data to processing lower than a design
which, for example, only checks genes of interest.

The speedups for Ferreira et al. [6] and Zerarka et al. [17]
are almost the same, but Zerarka et al. [17] embed an ARM
processor to communicate with the FPGA, which is a higher
level of integration than a general purpose CPU, and this de-
creases the time to transfer data. The communication on [6]
is through a serial port, which is a slow communication chan-
nel and is not accounted for when computing the speedup.
Our implementation, Silva et al. [3], takes into account all the
data transfer time for the speedup calculation, and it uses real
literature based networks as benchmarks. We can see that,
even when the transfer time is fully considered, the speedup
is still close to a CPU-GPU system as in [14]. Additionally,
our implementation is more efficient in power consumption,
because FPGAs, typically, have a power consumption as great
as 10 times lower than GPUs.

5 LESSONS LEARNED ABOUT
HETEROGENEOUS ARCHITECTURES

In this section, we use the comparison breakdown to provide
our łlessons learnedž for the CPU-FPGA platform based on
our GOOD - Boolean GRN algorithm and BAD - collision
detection results. Note that our designs are the bold entries
in tables 1 and 2.

5.1 Lesson 1 - It’s all about ratios

In the CPU-FPGA coupling systems the communication of
data is fundamental. The reason that the FPGA is becoming
closer and closer to an on die core is the same reason that
memories and communication of data is improved as the
distance between them physically decreases. The data tends
to be the limiting factor in high performance computation.
In our case the ratio of time spent communicating data

as compared to the computation on that data is a major
factor in our results. Our collision detection only performs a
portion of the collision detection pipeline, which results in a
small speedup. In Boolean GRN, however, the computation
is significant compared to the data communication.
The key is understanding your application in terms of a

ratio of this data communication to computation cost as it
applies to the CPU-FPGA platform.

5.2 Lesson 2 - Simplification matters

If you can simplify the FPGA computation in terms of data
representation as compared to software implementations,
then there is potential for benefit. Mainly, the idea is to use
approximations of the data that still work with the problem.

For example, in collision detection the collision detection
pipeline is used as a filtering system to determine which
objects need to be compared with one another. Early in this
pipeline objects tend not to be colliding, and therefore, rough
calculations can be used to determine if this is the case. The
question is can the implementation take advantage of this.

The Boolean GRN application does take advantage of this
by using bitwise calculations (very efficient on an FPGA
as that’s the fundamental building block of the device) to
determine gene expression.

5.3 Lesson 3 - Don’t Forget Amdahl and
Remember Design Time

Amdahl’s law [2] is very useful for a quick way to estimate
speedup before spending significant time to speedup the
application. On the CPU-FPGA system you can use both
Amdahl’s law and an estimate of the ratio of communication
to computation to have a quick estimate of speedup.
This estimate, however, is a best case estimation where

you are assuming that you can parallelize a certain aspect
of your application very efficiently. Xilinx’s technical report
on creating FPGA designs [16] has a diagram on page 7 that
reminds us that there is a significant design time cost to
optimizing acceleration on any platform (especially FPGAs).
This should be highlighted in research papers like ours to
make non-experts aware of the time spent to get any speedup
on reconfigurable fabrics, which is hard to design for.

Paper2 24

5.4 Lesson 4 - How well does application
map to the acceleration architecture?

One aspect to consider is how well does the application map
to the computing architecture. In our examples, Boolean GRN
maps very well to an FPGA which smallest components are
designed as Lookup Tables (LUTs) that implement Boolean
functions. Collision detection, on the other hand, does not
map as easily to the architecture since the main focus is com-
paring Cartesian points and a number of DSPs are needed for
various calculations in this process. This doesn’t mean that
if the algorithmic version of a problem doesn’t easily map
that it shouldn’t be converted, but it may take significant
time to figure out how to do the mapping efficiently.

In this case, parallel design patterns [9] may allow an un-
derstanding of how to map to particular architectures. Unfor-
tunately, nobody has done this work yet for reconfigurable
fabrics.

6 CONCLUSION AND FUTUREWORK

In this work, we presented two applications mapped to a
CPU-FPGA platform where one application (Collision De-
tection) got very little speedup, and the other application
(Boolean GRN) got significant speedup. These two applica-
tions allowed us to look at some łLessons Learnedž with
respect to porting applications to this type of system. The
key lesson is to understand the communication to compu-
tation ratio with respect to the parallelizable parts of the
algorithm. In these host to co-processor systems, just like
the data to CPU problem, can be the key limiting factor on
how much benefit we will gain by porting the application.

In the future, we are interested in looking at applications
on CPU-FPGA systems, since we expect the two to be more
tightly coupled until the day when the FPGA is just one of
the cores on a die. Understanding how the communication
technology impacts these systems will be key to determining
which applications to map to these. Additionally, we are
interested in improving our applications by finding ways to
improve the computation. For example, in collision detection
this is possible by implementing more of the pipeline on the
FPGA.

7 ACKNOWLEDGEMENTS

The authors thank CAPES, FAPEMIG and CNPQ for the
financial support. We also thank Intel Altera and Synopsys
for the software licenses and the hardware used during this
work.

REFERENCES
[1] F. A. M. Alves, P. Jamieson, L. B. da Silva, R. S. Ferreira, and J. A. M.

Nacif. 2017. Designing a collision detection accelerator on a het-

erogeneous CPU-FPGA platform. In 2017 International Conference

on ReConFigurable Computing and FPGAs (ReConFig). 1ś6. DOI:

http://dx.doi.org/10.1109/RECONFIG.2017.8279786

[2] Gene M Amdahl. 1967. Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings of the April

18-20, 1967, spring joint computer conference. ACM, 483ś485.

[3] L. B. da Silva, D. Almeida, J. A. M. Nacif, I. Sánchez-Osorio, C. A.

Hernández-Martínez, and R. Ferreira. 2017. Exploring the dynamics of

large-scale gene regulatory networks using hardware acceleration on

a heterogeneous CPU-FPGA platform. In 2017 International Conference

on ReConFigurable Computing and FPGAs (ReConFig). 1ś7. DOI:http:

//dx.doi.org/10.1109/RECONFIG.2017.8279791

[4] A. Hermann et al. 2015. Anticipate your surroundings: Predictive

collision detection between dynamic obstacles and planned robot tra-

jectories on the GPU. In 2015 European Conference on Mobile Robots

(ECMR). 1ś8.

[5] Zhang et al. 2016. FPGA-Based High-Performance Collision Detection:

An Enabling Technique for Image-Guided Robotic Surgery. Frontiers

in Robotics and AI 3 (2016), 51. http://journal.frontiersin.org/article/10.

3389/frobt.2016.00051

[6] R. Ferreira and J. C. G. Vendramini. 2010. FPGA-accelerated Attrac-

tor Computation of Scale Free Gene Regulatory Networks. In 2010

International Conference on Field Programmable Logic and Applications.

550ś555. DOI:http://dx.doi.org/10.1109/FPL.2010.108

[7] P K Gupta. 2015. Intel Xeon+FPGA Platform for the Data Cen-

ter. (2015). https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?

media=carl15-gupta.pdf

[8] A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, and R. Dill-

mann. 2014. Unified GPU voxel collision detection for mobile manipu-

lation planning. In 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems. 4154ś4160. DOI:http://dx.doi.org/10.1109/IROS.

2014.6943148

[9] Timothy G Mattson, Beverly Sanders, and Berna Massingill. 2004.

Patterns for parallel programming. Pearson Education.

[10] M. Purandare, R. Polig, and C. Hagleitner. 2017. Accelerated analysis

of Boolean gene regulatory networks. In 2017 27th International Con-

ference on Field Programmable Logic and Applications (FPL). 1ś6. DOI:

http://dx.doi.org/10.23919/FPL.2017.8056778

[11] A. Raabe, S. Hochgurtel, J. Anlauf, and G. Zachmann. 2006. Space-

efficient FPGA-accelerated collision detection for virtual prototyping.

In Proceedings of the Design Automation Test in Europe Conference,

Vol. 2. 6 pp.ś. DOI:http://dx.doi.org/10.1109/DATE.2006.243875

[12] Russell Smith. Open Dynamics Engine. (????). http://www.ode.org/

[13] Ilias Tagkopoulos, Charles Zukowski, German Cavelier, and Dimitris

Anastassiou. 2003. A Custom FPGA for the Simulation of Gene Regula-

tory Networks. In Proceedings of the 13th ACM Great Lakes Symposium

on VLSI (GLSVLSI ’03). ACM, New York, NY, USA, 132ś135. DOI:

http://dx.doi.org/10.1145/764808.764843

[14] Hung-Cuong Trinh, Duc-Hau Le, and Yung-Keun Kwon. 2014. PANET:

A GPU-Based Tool for Fast Parallel Analysis of Robustness Dynamics

and Feed-Forward/Feedback Loop Structures in Large-Scale Biological

Networks. PLOS ONE 9, 7 (07 2014), 1ś9. DOI:http://dx.doi.org/10.

1371/journal.pone.0103010

[15] C. H.Wu, S. O. Memik, and S. Mehrotra. 2009. FPGA Implementation of

the Interior-Point Algorithm with Applications to Collision Detection.

In 2009 17th IEEE Symposium on Field Programmable Custom Computing

Machines. 295ś298. DOI:http://dx.doi.org/10.1109/FCCM.2009.38

[16] Xilinx. 2013. Introduction to FPGA Design with Vivado High-Level

Synthesis. Technical Report. Xilinx Inc.

[17] M. T. Zerarka, J. P. David, and E. M. Aboulhamid. 2004. High speed

emulation of gene regulatory networks using FPGAs. In Circuits and

Systems, 2004. MWSCAS ’04. The 2004 47th Midwest Symposium on,

Vol. 1. Iś545ś8 vol.1. DOI:http://dx.doi.org/10.1109/MWSCAS.2004.

1354048

Paper2 25

26

PAPER 3: MEMORY-BASED VECTOR INSTRUCTION SET
ARCHITECTURES

Memory-based Vector Instruction Set Architectures

Fredy Alves

Fed. Univ. of Viçosa, Brazil

José Nacif

Fed. Univ. of Viçosa, Brazil

Aaron Severance

VectorBlox

Guy Lemieux

The Univ. of British Columbia

Abstract—Modern computer systems demand both high per-
formance and ease of programming. In this paper, we demon-
strate that these can be achieved with a vector instruction set
that operates on data stored in addressable on-chip memory
rather than a register file. Known as a vector-memory (VM)
architecture, this is in contrast to traditional vector-register (VR)
architectures, an approach similar to RISC where data is first
placed into named vector registers using vector-load and vector-
store instructions. The main advantages of VM over VR are a
reduction in unnecessary data movement, better utilization of
the vector data store by allowing longer vectors or more vectors,
elimination of vector data spill code when one vectorized function
calls another, simplified compiler support, simplified prefetching
to hide memory latency, and an extendable framework for plug-
ging in custom accelerators. We demonstrate these advantages
with diagrams, code fragments and performance results using
exemplary VM and VR instruction sets implemented in a Xilinx
Zynq-series FPGA.

I. INTRODUCTION

Early CISC instruction set architectures (ISAs) allowed the

use of memory-based operands. However, this held back

CPU performance as on-chip logic and registers exceeded the

speed of external memory. In contrast, RISC ISAs use faster

register-based operands for arithmetic instructions and access

slower memory only through load/store instructions. As a

result, RISC is sometimes called a load/store or register-based

architecture. This decoupled the slow memory speed from

pipeline processing and paved the way for caches, register

renaming, and out-of-order execution to keep the arithmetic

units as busy as possible.

Memory-based operands were also used in the earliest

vector supercomputers [1], [2], but these were trumped by the

Cray-1 [3], which had a RISC-like design that used register-

based operands for data and decoupled load/store instructions.

The Cray-1’s eight named vector registers were built from

discrete chips, each containing 16×4 flip-flops with a 6ns cycle

time. In contrast, main memory chips had higher capacity

(1Kb) and a much slower 50ns cycle time. Since the Cray-1,

vector architectures have generally continued to be register-

based. Like scalar processors, aggressive vector architectures

need out-of-order execution and vector register renaming to

keep the vector ALUs busy. However, due to large amounts

of vector data, vector register renaming can be quite expensive.

The main purpose of this paper is to question whether

vector architectures should continue to use a named register

file as the primary storage mechanism for vector data? In our

investigation, we have found many reasons why a memory-

based approach might be considered superior. A VM approach

provides advantages such as easier programming, improved

flexibility with vector sizes and data sizes, improved data

reuse (locality), better prefetching, less data movement and

higher performance. As will be shown, traditional register-

based vectors also lack flexibility in how data is presented

to the ALUs, so they suffer primarily from excessive data

movement, which not only constrains performance but also

leads to the use of costly hardware-centric design techniques

like register renaming to help recover lost performance.

A. What’s Different?

Obviously, scalar processors continue to use a register file

for scalar data storage because of its ultra-small size and speed.

However, a vector processor needs a much larger primary

data store. For example, an aggressive scalar CPU design

may have up to 256 physical 64-bit registers, resulting in a

total of 2KB of data per CPU core. In contrast, the NEC SX

Aurora has 128kB of vector data storage per CPU core [4].

Due to their large capacity, the vector data store should not

be as heavily multi-ported as scalar register files. Instead, data

ports can be made wider and multi-banked.1 This is important

because multi-porting leads to quadratic growth per bit of

storage, whereas widening and multi-banking are closer to

linear growth. Because of this difference, the vector data store

should not be automatically built and used in the same way

as the scalar register file.

Modern technology places billions of transistors on a chip.

As a result, large on-chip memories are faster and far less

costly to implement than they were in the Cray-1 era. They

rival the speed and offer higher capacity than register files,

and they fully integrated next to the arithmetic logic without

any slow and power-hungry die-to-die communication. At

some point, the speed differential that originally motivated the

load/store architecture of the Cray-1 disappears. For example,

the 16nm NEC SX-Aurora vector processor has eight cores

running at 1.6GHz, with each core containing 32 vector lanes

and 64 named vector registers holding 2048 bytes each (128kB

per core) [4]. It can compute 768 double-precision MACs per

cycle. In contrast, 14nm Intel Stratix 10 FPGAs have up to

11,721 embedded M20K memories (30MB total) running up

to 1.0GHz [5]. While the FPGA has a lower clock speed,

it offers more parallelism (5,760 single-precision MACs per

cycle) and more on-chip memory. It is unclear how the NEC

SX-Aurora implements its vector data store, but the large

number of higher capacity, high speed of FPGA block RAMs

suggest it is feasible to memory-based rather than register-file

1It will be important to avoid bank conflicts to achieve performance.

1

Paper3 27

Algorithm 1
VECTOR-REGISTER (VR) VERSUS VECTOR-MEMORY (VM) BASED ISA.

VR−based ISA :
v s e t v l x4
vlw v1 , 0 (x1)
vlw v2 , 0 (x2)
vadd v3 , v1 , v2
vsw v3 , 0 (x3)

VM−based ISA :
vdmardw x1 , 0 (x5) , x4
vdmardw x2 , 0 (x6) , x4
v s e t v l x4
vadd x3 , x1 , x2
vdmawrw x3 , 0 (x7) , x4

based. Despite this, the NEC SX-Aurora still uses a traditional

named vector register file like the Cray-1. Because of these

shifts in technology since the Cray-1, we believe it is important

to re-evaluate the load/store architectural approach to vector

processors in a modern context.

II. BACKGROUND

In this this paper, our goal is to compare a newer vector-

memory (VM) architecture based upon addressable on-chip

memories rather than a traditional vector-register (VR) ap-

proach. The key distinction behind these two approaches is

illustrated in Algorithm 1. In this code, the v1, v2 etc are

vector register names that hold vector data, while x1, x2,

etc are scalar register names that hold either scalar data or

scalar pointers to vector data. Each of the VR and VM code

fragments adds two vectors, reading data starting at addresses

stored in scalar registers x1 and x2, while writing data starting

in x3. The vector length, or number of elements (words) to be

added, is stored in x4. In a VR architecture, vector load-word

instructions (vlw) must first transfer data from memory into

the vector registers named v1 and v2, the vector add writes

the result to v3, and the vector store-word (vsw) transfers data

back to memory. In a VM architecture, there is no need for

load and store instructions, as the vector add is presented with

scalar pointers directly as operands x1, x2 and x3. However,

there may be restrictions on which addresses may be used as

scalar pointers. If the data originally resides at a restricted

address, it must be moved to a valid scratchpad address using

DMA instructions. It is possible to verify if data is already

on the scratchpad by comparing its address to the scratchpad

range of addresses. The vadd and vdmawrw are overllaped in

time since the DMA Engine and the Vector Engine execute in

paralell. When hardware detects a hazard, e.g. when a vector

instruction attempts to read a value currently in the pipeline,

pipeline bubbles are inserted until the values are written back

to the scratchpad.

A. VM Variations

In the VM architecture model considered by this paper,

we require all vector data to be stored in a specific address

region, called the vector scratchpad, or scratchpad for short.

This region is finite in size because it must be located in fast

on-chip memory, but it could be hundreds of KB to tens of

MB in size. If data is located outside of this region, explicit

vector DMA operations (like vdmardw for reading words, and

vdmawrw for writing words) are required to exchange data

between the scratchpad and main memory. In Algorithm 1,

scratchpad addresses are held in x1, x2 and x3 while main

memory addresses are x5, x6 and x7.

An alternative VM architecture, not considered by this

paper, uses an automatically managed cache instead of a

scratchpad. In such a cached architecture, explicit vector DMA

operations are not needed. Instead, vector data is always stored

in main memory, but a cache retains a copy for future data re-

use. For example, such an architecture is used by LAcore [6].

While it is a valid concept, we do not consider it in this

paper because it requires highly effective caching policies;

vector operations tend to be applied to large data structures,

making it difficult to optimize for locality. In our experience,

we have found the DMA-based scratchpad approach naturally

encourages the programmer to think about data-reuse by

making memory accesses explicit, thereby achieving higher

performance with lower external memory bandwidth. In future

work, it may be possible to automate the insertion of DMA

operations at the compiler level, or to provide automated

caching policies at the microarchitectural level.

B. Fixed-width SIMD

Register-based SIMD instructions have been added to prac-

tically all active CPU instruction sets. For example, the IA-32

instruction set has been augmented with several generations

of register-based SIMD instructions including MMX, SSE,

and AVX, with several sub-generations within each. Each

(sub)generation adds more registers, or wider registers, to

improve performance, making the previous generation ob-

solete. For this and other reasons, one article claims that

SIMD instructions are “considered harmful”, suggesting that

variable-length vector instructions are better [7]. All fixed-

width SIMD instruction set designs are treated as a natural

extension of the RISC load/store architecture, so they are all

register based. Some offer access to wider data, but a key

aspect to all of these approaches is the general expectation

that these SIMD instructions execute in 1 clock cycle. This

makes these extensions fundamentally different from true

vector architectures, so they will not be considered any further.

C. Variable-length Vector

True vector architectures have variable-length vectors,

where executing an instruction can take several, if not dozens

or even thousands, of clock cycles. As a result, the vector

execution stage needs to be decoupled from the instruction

issuing pipeline. These architectures have a special vector-

length register which holds the current number of data el-

ements to operate on; this number is a constant value like

4 in the case of fixed-width SIMD instructions. Before any

instruction executes, it must check the vector-length and run to

completion. As a result, a vector engine can have any number

2

Paper3 28

Main Memory
256 bits wide

bit 0

bit 255

b0

b95

b96

b127

b96

b95

b127

b0

regfile bank 0

regfile bank 1

regfile bank 2

regfile bank 3

bank 0

bank 1

bank 2

bank 3

alu0

alu1

alu2

alu3data
aligner

D

data
move-
ment

2:1
mux

256b-to-128b

128b-to-128b

2x128b-to-128b

Load/store Side Compute Side

(a) Vector-Register (VR) Microarchitecture

Main Memory
256 bits wide

bit 0

bit 255

b0

b95

b96

b127

b0

b127

b96

b31

b32

b95

scratchpad bank 0

scratchpad bank 1

scratchpad bank 2

scratchpad bank 3

bank 0

bank 1

bank 2

bank 3

alu0

alu1

alu2

alu3

data
aligner

D

data
aligner

A

data
aligner

B

data
aligner

C

256b-to-128b

128b-to-128b

128b-to-128b

128b-to-128b

DMA Side Compute Side

(b) Vector-Memory (VM) Microarchitecture

Fig. 1. Vector-register (VR) and Vector-memory (VM) microarchitectures.

of vector lanes, or parallel ALUs, which determines how

many elements are executed in parallel every cycle. Portable

software doesn’t need to know the number of lanes, only the

vector length. Since the only observable difference is execution

time, this allows better portability of the vector instruction

set to many differently sized vector engines, enabling forward

portability or many available cost/performance points.

III. VM AND VR ARCHITECTURE DESCRIPTION

We know of only three modern memory-based vector ar-

chitectures. One, VectorBlox MXP [8], is designed to accel-

erate image processing and computer vision tasks, and it is

implemented on Intel and Xilinx FPGAs. Two, Cambricon [9],

is designed to accelerate deep learning workloads, and a

silicon prototype exists. The Cambricon architecture may have

been used as a basis for Huawei’s Kirin 970 processor [10].

Three, LAcore [6], is primarily designed to accelerate double-

precision matrix arithmetic, but it only exists as within a

software-based architectural simulator.

To facilitate a study between VM and VR, we have chosen

to use the VectorBlox MXP2 as a basis for VM, and the RISC-

V Vector Extension3 as a basis for VR.

We say ‘as a basis’ because we have actually modified

both MXP and RISC-V to make them as similar as possible,

while retaining only the VM/VR aspect as a difference.

For example, we have added an absolute-difference vector

instruction to RISC-V, and min/max vector instructions to

MXP. This removes performance differences that are simply

due to inclusion of selected ALU operations, for example, and

not due to having register-based or memory-based operands.

The key microarchitectural differences between VR and VM

is shown in Figure 1. In these figures, we show how four 32-

bit vector lanes might be organized with a 256-bit wide main

2LAcore and Cambricon are unsuitable; LAcore is cache-based and has no
logic implementation, whereas few details are available about Cambricon.

3As it is under heavy revision, the RISC-V Vector Extension Specification
draft 0.6 is used for this study. The current version is 0.7; we expect to use
the latest version possible in the final version of the paper.

3

Paper3 29

memory. These microarchitectures differ in how the vector

store connects with memory, and also how the vector store

connects with the ALUS. To simplify the diagrams, only the

vector and memory datapaths are shown. Also, the banked

outputs on the far-right in both figures represent the vector

data writeback stage.

In the VR microarchitecture, vector registers are filled with

instructions like vlw for loading a vector of words. The vector-

length register determines how many words to read, and the

vlw instruction provides the starting address which must be

word aligned (bytes and halfwords will be discussed later).

Since the loading address may not be aligned to the vector

engine width or memory subsystem width, a data aligner D is

needed to rearrange the words such that the starting address,

which holds the first element, is always aligned with regfile

bank 0. Vector data is stored in a banked register file, where

elements 0, 1, 2, 3, and 4 are written to banks 0, 1, 2, 3

and 0, respectively. In other words, data elements are striped

across the banks. The bank sizes for VM is defined by the

amount of vector lanes, while on VR they are defined by the

amount of vector registers, the scratchpad is divided equally

between the banks. During computation, these elements are

read out, starting at element 0, and provided to the parallel

ALUs before being written back to the register file. Here,

four elements per cycle would be read out for each ALU

operand, until the entire vector length has been read out and

the result written back. Even if source and destination vector

registers are the same, the source is read one or more cycles

before the destination is written, so no hazard exists. In a

VR architecture, operations are done element-wise between

vectors, and they retain the same ordinal position throughout.

Since this does not suit all applications, the VR architecture

has data movement instructions to rearrange elements within a

vector. For example, vslideup will copy elements from position

i to positions i + N , where N is the amount of the slide.

To perform this, a special data movement block is needed

in parallel with the ALUs. In the benchmarks written for

this paper, we only used vslideup and vslidedown, but other

operations like gather are possible.

Since the ALUs require two operands (eg, add) or three (eg,

multiply-add), this register file can either be multi-ported or

multi-banked. Although multi-ported is shown, it can also be

multi-banked as in Hwacha [11]; in that case, at least 8 or 12

banks are needed to supply two or three operands, respectively.

Although only words are shown, these microarchitectures

must be implemented down to the byte level. As a sim-

plification, memory addresses can still be aligned to word

boundaries, but anything more restrictive than that would be

difficult to program, inefficient and not very portable. In a

scalar CPU, when a byte is loaded into a register, it is zero-

extended or sign-extended to the entire register width. This

allows the ALU to do operations on the whole word, until the

final result is written back with a store-byte instruction. In VR,

we have support for vector load-byte and load-half (vlb and

vlh), where the smaller data size is extended to fill the native

word size; this is done by the data aligner D. For example,

if the native word size is 32-bits and we perform a vlb, the

bytes would be extended to 32-bits and the operations would

be in 32 bit words, not bytes. The ALUs for both VM and VR

support 8 8-bit, 4 16-bit or 2 32-bit inputs. Since it is very

wasteful to store and operate on bytes that are held in word-

sized elements, VR also supports subword-SIMD. This means

element sizes can be byte, half or word, and the vector-length

register always specifies the number of elements. Operations

specify the required element size, hence requiring at least 2

bits of encoding in the instruction. An important question is

how to convert between element sizes without going through

the memory subsystem with loads and stores. In VR and RISC-

V, the default element size can be set, and most operations

have a widening mode that generates data elements twice the

default size. In addition, a set of narrowing instructions reduce

data element sizes. The ALUs and the data movement block

must all support bytes and half-words, as well as widening and

narrowing operations. When widening or narrowing, there are

obvious restrictions on the read/write bandwidth of the register

file which must be maintained.

One of the drawbacks of the VR architecture is the com-

plexity in ISA design that is created in order to handle all

of the element sizes, widening, and narrowing. The RISC-V

Vector Specification committee is currently wrestling with the

best way to handle this issue – data element layout of the

register file is presently exposed, and this makes non-portable

code possible (perhaps even required, when attempting to solve

certain problems).

In the VM microarchitecture, a scratchpad is filled or emp-

tied with DMA instructions that read or write main memory.

Main memory and scratchpad are both byte addressable and

are demarcated by distinct address ranges. VM is scalable, the

number of lanes is only limited by the platform resources. To

further decouple memory from the compute side, the DMA

length is specified in bytes and is independent of the current

vector length. Vector elements are striped across the scratchpad

banks just like the VR architecture. However, there are no

alignment restrictions, so data at any main memory address

can be copied to/from any scratchpad address. The maximum

vector length is defined by the amount of free space on

the scratchpad. Similarly, the source operands for any vector

operation can start at any scratchpad address; before these can

be presented to the ALUs, they must be re-aligned using data

aligners A and B such that element i from both operands are

presented to the same ALU. Likewise, the destination operand

can start at any address, so data aligner C ensures it is written

to the correct bank. Unlike the VR architecture, the memory

side does not do zero/sign-extending of bytes or half-words

into larger element sizes. Instead, this is done on the fly for

each operand by data aligners A and B, and aligner C can

write narrower results by truncating.

Custom compute accelerators can be attached to MXP

by augmenting the original arithmetic ALUs with a parallel

structure [12]. Up to 16 accelerators can be attached, each

with its own custom engine width (up to the MXP width),

and each with its own static pipeline latency. Memory-based

4

Paper3 30

data in the scratchpad is streamed to each accelerator. A

2-input and 1-output structure is the simplest, but strided

addressing modes enable other combinations. The scratchpad

address generators in MXP support single-stream (1D vectors)

as well as strided modes. The strided modes can iterate over

a 2D or 3D dense matrix/volume or sub-matrix/sub-volume,

or they can also perform sliding window readout (stride ¡ data

width) or repeated readout (stride=0) of data. While register-

based vector architectures can stream a vector of data to an

accelerator, they do not provide the same level of flexibliity

in data read-out.

IV. ADVANTAGES OF MEMORY-BASED OPERANDS

In this section, examples are given to illustrate the advantages

of memory-based operands for vector computing.

A. Scratchpad Advantages

The VM architecture scratchpad with varying element sizes

is much more efficient and flexible. First, it stores subword

data at its natural size, and only extends to a larger size

during computation. Second, it has no predefined boundaries,

alignment restrictions, or vector length restrictions. Hence,

any number of vectors can be created, and a vector can start

at any address and be of any length up to the scratchpad

capacity. Third, it naturally allows operations that support

all combinations of mixed, narrowing, or widening element

sizes. Fourth, it simplifies the data aligner D, since it does

not need to do zero/sign extending. Fifth, a large swath of

opcodes are eliminated, eg vlb, vlh, vlw, vlbu, vlhu, vlwu

are all replaced with a simple vector DMA read (vdmard).

Also, strided versions of all of these loads can be replaced by

a strided version of vdmard.Sixth, element readout of vector

data is no longer restricted to always start at element position

0; a sliding window can be achieved simply by incrementing

the scratchpad pointer (i.e., vslideup or vslidedn instructions

are redundant).

To gain some of this flexibility, the RISC-V Vector Speci-

fication goes to great lengths to allow its 32 vector registers

to be regrouped into 16 or 8 or 4 larger vector registers.

Other advantages related to the scratchpad, such as simpli-

fied prefetching, will be described below.

B. Compiler, Portability, and Flexibility

The VM scratchpad holds an unlimited number of vectors,

each with arbitrary and unlimited length, which are only

limited by the total capacity of the scratchpad. Since vectors

are merely a scalar quantity (the starting address), they can

be manipulated in C like pointers to a buffer – they can be

incremented, added to, or swapped with other pointers, without

resulting in any actual vector data movement. This simplifies

many operations that require sliding windows or sub-vectors

to be extracted from larger vectors, and even allows vectors

to overlap. This yields higher storage efficiency as well.

With VM, there are no vector register numbers to encode

into an instruction. Instead, register numbers of the scalar host

CPU are specified. Unlike vector registers, scalar registers

DCT RGBA2CMYK Autocorr Sobel Median Filter Matrix 2D FIR Geom Mean

Kernels

0

2

4

6

8

10

12

Sp
ee

du
p

VM and VR speedups
VR VM

Fig. 2. Benchmark speedups for VR and VM.

DCT RGB2CMYK Autocorr Sobel Median Filter Matrix 2D FIR

1920x1088 800x800
Lags: 128
Data size: 1024

800x800 800x800 1600x1600
400x400
Taps: 4x4

TABLE I
DATA SIZES FOR KERNELS

can be very quickly loaded, and do not require extensive

time or bandwidth to spill to main memory. Likewise, the

compiler is simplified as no vector register allocation pass

is needed. No compiler specialization makes the VM vector

engine easier to port to multiple hosts. With a RISC-V host,

for example, frequently used instructions can be 32b in size,

while more advanced instructions use 64b. When used with

an ARM core on the Zynq device, where the host ISA cannot

be extended/modified, VM instruction issue uses memory-

mapped stores to an instruction FIFO. One VM instruction

copies three scalar register values and an opcode into the FIFO.

Instruction issue overhead remains low because the ARM core

runs over 6 times faster and VM instructions are usually multi-

cycle.

C. Performance Comparison

To show the performance differences of VM versus VR,

we have hand-coded several benchmarks for both architectures

and ARM, and will run them on an FPGA-based system. The

inner loops for these benchmarks are included as an appendix.

1) Experimental Setup: For experimentation, we use a Xil-

nix ZedBoard with 28nm Xilinx Zynq 7020 device and a hard

Arm Cortex-A9. The VectorBlox MXP is implemented with

16 vector lanes which means 16 ALUs with their respective

banks. This board has a single bank 32-bit DDR3-1600 DRAM

with a peak bandwidth of 6400MB/s. All scalar C code is

executed at 667MHz on the ARM A9; the MXP is fully

decoupled and configured to run at 100MHz in logic within

the FPGA. Vector instructions, which are almost always multi-

cycle, are issued by the ARM writing opcodes and operands to

5

Paper3 31

an FPGA-based vector instruction FIFO; a series of about 10

or so instructions, including four 32-bit store-word operations

are needed to issue each vector instruction. The A9 will stall

if the FIFO is full, but it will eventually proceed as the FIFO

is drained. Before checking any vector results, the A9 must

poll a busy bit on the MXP which indicates when the FIFO

has been completely executed. The VectorBlox MXP accesses

memory through an 800MB/s, 64-bit AXI link to the ARM

processor complex. This is slower than the peak bandwidth of

the memory, but it is sufficient to show acceleration because

all of the benchmarks have high compute intensity. It can

perform DMA accesses concurrently with vector compute

operations, making it possible to hide memory latency through

prefetching.

For benchmarking, we manually optimized all benchmarks

separately for MXP and RISC-V Vector Extensions. Bench-

marks were written using vector intrinsics for both platforms.

This gives the performance of assembly language, but enables

the full use of C for function calls, loops, conditionals, and

so forth. Next, we narrowed the performance differences that

were due to missing instructions by modifying both versions of

the benchmarks to ensure only memory-based versus register-

based differences remain, producing VM and VR versions.

To measure the runtime of VM, we remapped VM intrinsics

into MXP intrinsics. This remapping is done by a simple

header file with #defines. In doing this, we did not have to

actually change the logic of MXP to add the new instructions

needed by VM. Instead, we substituted VM instructions with

something that would be timing-equivalent in MXP (but yields

the wrong functional result). Since the run-time of all bench-

marks is data-independent, this does not affect performance.

To measure the runtime of VR, we remapped VR intrinsics

into RISC-V Vector intrinsics. However, we do not have

a full logic implementation of the RISC-V Vector (RVV)

specification. Instead, because of its generality, MXP can

actually mimic the RISC-V Vector instruction set using a

simple software translation layer as another simple header file

with #defines. We designed two such translation layers – one

to implement correct functionality of the RVV instructions

(but at a penalty in run-time), and one to implement accurate

timing of RVV instructions (to measure benchmark perfor-

mance). Again, since run-time is data-independent, this does

not affect our measurements. Note that the functionally correct

translation layer was crucial for debugging and verifying that

our benchmark code is correct, but it serves no purpose for

timing measurements.

Note the ARM processor already has a 128-bit wide SIMD

accelerator, named NEON, that runs at the full CPU clock

speed of 667MHz. However, we do not use NEON in any of

these experiments.4

4Note to reviewers: despite having peak operations-per-cycle and memory
bandwidth advantage, NEON is slower than both VM and VR architectures
discussed here. We don’t have the space to add this comparison, and we don’t
find it conducive to the central thesis; it may be the subject of a future paper.
This footnote will be deleted in the final version of the paper.

2) Performance Results: To compare performance, several

microkernels shown in Table IV are run on the A9, setting the

baseline. The speedups of VM and VR architectures are shown

in Figure 2 and the data sizes used are shown in Table IV-B.

VR is fastest for RGBA2CMYK and Median Filter, whereas

VM is fastest for the other 5 benchmarks. For DCT, VM is

almost 4× faster than VR. According to the geometric mean

of all benchmarks, VM is about 1.5× faster than vR.

VM is faster than VR, despite similar peak execution

capacity, because VR needs to do excessive data movement

in autocorr, 2Dfir, dct, and sobel. In VR, autocorr and 2Dfir

use vslide instructions to implement sliding windows, which

takes time to actually move the data; in VM this is simply done

by incrementing a scalar pointer. With sobel, VR uses 3 vslide

instructions and must rotate 6 data buffers using several vector

assignment operations to perform a data copy, whereas VR

uses scalar assignments to slide or move the buffer pointers. In

these cases, the memory-based architecture of VR contributes

to less data movement and faster execution times for these

three benchmarks.

D. Prefetching

Data prefetching is essential to hide memory latency. Algo-

rithm 2 shows one way to implement software-based prefetch-

ing in VR: the loop body is unrolled twice, and the algorithm

alternates between using two sets of registers. Algorithm 3

shows the same thing in VM, where scalar assignment op-

erations are used to swap data buffers and no unrolling is

needed. Unrolling results in code duplication and fringe code

to handle leftover iterations, making VR code harder to main-

tain. Although out-of-order execution and register renaming

can sometimes provide the same benefits as prefetching in

VR, this presents many new microarchitectural challenges

for implementation and likely requires additional register file

storage that cannot be used by the programmer (as the number

of physical vector registers would exceed the number of

architectural registers).

When prefetching requires rotating more than 2 buffers, the

VR code becomes even more complex and slower as it requires

more data movement. With VM, one more scalar assignment

is needed for each additional buffer.

A further advantage for VM is that the prefetch buffer sizes

can be allocated exactly according to need, as long as they fit

in the scratchpad. With VR, an advanced mode being discussed

is the ability to merge 2, 4 or 8 registers into a single longer

register, but there are restrictions on its use.

E. Function Composition

Function composition is one function calling another. Most

applications and libraries are compiled separately and used as

binaries. If a vector-accelerated function in an application calls

a vector-accelerated function in a library, a collision results

when the same named vector registers are used. To solve this,

regular scalar functions spill registers on the stack. In VR, the

compiler must spill entire vector data registers on the stack,

6

Paper3 32

Algorithm 2
EXPLICIT PREFETCHING EXAMPLE FOR VR.

vr vlwu (v1 , pArray) ;
f o r (i n t i =W; i < H∗W; i += W∗2) {

vr vlwu (v2 , pArray + i) ; / / even

vr vadd vv (v3 , v3 , v1) ;
vr v lwu (v1 , pArray + i +W) ; / / odd

vr vadd vv (v3 , v3 , v2) ;
}
vr vsw (v3 , pRowOut) ;

Algorithm 3
EXPLICIT PREFETCHING EXAMPLE FOR VM.

vm dma read (v a1 , pArray , W∗4) ;
f o r (i n t i =W; i < H∗W; i += W) {

vm dma read (v a2 , pArray + i , W∗4) ;
vm vadd vv32 (v accum , v accum , v a2) ;
t =v a1 ; v a1=v a2 ; v a2= t ; / / p t r swap

}
vm dma write (pRowOut , v accum , W∗4) ;

causing significant data movement; library acceleration will be

eroded by spill overhead.

In VM architectures, the scratchpad can be used like a stack

to avoid data movement. Here, scratchpad vectors are allocated

in a stack-like fashion, with the most recent vector placed at

the top of the stack. At any point, typically the beginning of

a function, a user starts a new stack frame using the function

vm_push(). This saves the current high water mark of the

scratchpad, creating a new local scope for further allocations.

At the end of the function/scope, all local allocations are

removed using vm_pop(). When done, all stack frames and

allocations from the scratchpad can be removed by calling

vm_free().

One concern is how to handle a scratchpad out-of-space

event. Typically, if we are calling other vector-accelerated

functions, we restrict the code to use only half of the scratch-

pad. This can be applied recursively, but at some point spilling

Algorithm 4
FUNCTION COMPOSITION EXAMPLE FOR VM.

void B(v8 t ∗ v r r , v 8 t ∗v b1 , v 8 t ∗v b2)
{

v8 t ∗v tmp1=vm vmalloc (N) ; / / l o c a l a l l o c

v8 t ∗v tmp2=vm vmalloc (N) ; / / l o c a l a l l o c

vm vmul vs8 (v tmp1 , v b1 , 255) ;
vm vmul vs8 (v tmp2 , v b2 , 166) ;
vm vadd vv8 (v r r , v tmp1 , v tmp2) ;

}
void A(i 8 t ∗pX , i 8 t ∗pY , i 8 t ∗pZ , i n t N)
{

v8 t ∗v a1=vm vmalloc (N) ;
v8 t ∗v a2=vm vmalloc (N) ;
v8 t∗ v r e s u l t = vbx vmal loc (N) ;
vm dma read (v a1 , pX , N) ;
vm dma read (v a2 , pY , N) ;
B(v r e s u l t , v a1 , v a2) ;
vm dma write (pZ , v r e s u l t , N) ;

}

may be required. This occurs far less frequently than register-

based spilling (we haven’t encountered this situation).

This method allows functions to be composed as shown

in Algorithm 4. This cannot be done with VR architectures

without excessive data movement.

F. Context Switching

When multiple threads try to use the vector unit, contention

may arise. Within a VR system, the entire vector register

file must be saved/restored upon a context switch. Within

a VM system, it is possible to partition the scratchpad into

smaller regions, as long as applications are well-behaved and

the number of regions is small/known. If desired, this can be

enforced with the virtual memory system.

G. Drawbacks

With a memory-based architecture, hazard detection for in-

order execution requires more than comparing vector register

numbers, but instruction dispatch usually has multiple cycles

before issue. Similarly, out-of-order execution is more com-

plicated, but static scheduling usually works well enough.

V. CONCLUSION

Modern on-chip memories are almost as fast and offer more

capacity than register files, diminishing the historic justifica-

tion against memory-based architectures for vector architec-

tures. In this paper, we show that a vector-memory instruction

set architecture is faster due to flexibility that reduces data

movement: subvector extraction, sliding windows, double-

buffering and rotating prefetch buffers require only pointer

manipulation. Improved storage efficiency results from custom

vector lengths and overlapping vectors. Code duplication from

loop unrolling is reduced. Spilling vector data to main memory

is reduced under function composition and context switching.

Compiler register allocation is not needed. All of this makes

VM architectures very compelling.

REFERENCES

[1] H. G. Cragon and W. J. Watson, “The TI Advanced Scientific Computer,”
Computer, vol. 22, no. 1, pp. 55–64, Jan. 1989.

[2] C. J. Purcell, “The Control Data STAR-100: Performance measure-
ments,” in National Computer Conference and Exposition, 1974, pp.
385–387.

[3] R. M. Russell, “The CRAY-1 computer system,” Communications of the

ACM, vol. 21, no. 1, pp. 63–72, 1978.
[4] K. Komatsu et al., “Performance evaluation of a vector supercomputer

SX-Aurora TSUBASA,” in Int’l Conf. for High Performance Computing,

Networking, Storage, and Analysis, 2018, pp. 54:1–54:12.
[5] Intel, “Intel Stratix 10 embedded memory user guide,” https:

//www.intel.com/content/www/us/en/programmable/documentation/
vgo1439451000304.html, 12 2018, (Accessed on 01/14/2019).

[6] S. Steffl and S. Reda, “LACore: A supercomputing-like linear algebra
accelerator for SoC-based designs,” in IEEE International Conference

on Computer Design (ICCD), Nov 2017, pp. 137–144.
[7] D. Patterson and A. Waterman, “SIMD instructions considered harmful,”

ACM SIGARCH Computer Architecture Today, 09 2017.
[8] A. Severance and G. Lemieux, “Embedded supercomputing in FPGAs

with the vectorblox MXP matrix processor,” in CODES+ISSS, Sep.
2013.

[9] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in
ACM/IEEE International Symposium on Computer Architecture (ISCA),
June 2016, pp. 393–405.

7

Paper3 33

TABLE II
MATRIX MULTIPLY AND MEDIAN FILTER CODES.

VR VM

Matrix

v r v s e t v l (N1) ;

f o r (i n t i = 0 ; i < M1∗N1 ; i +=N1) {
vr vlwu (v1 , addr m1) ;
vr v lwu (v2 , addr mout) ;

vr v lwu (v3 , addr m2) ;
vr v lwu (v4 , addr m2+N1) ;

f o r (i n t j = 0 ; j < N1 ; j +=4) {
vr vlwu (v5 , addr m2 +2∗N1) ;
vr vlwu (v6 , addr m2 +3∗N1) ;

vr vmv sv32 (v7 , v1 , j) ;
vr vmadd vvs32 (v2 , v3 , v7) ;

vr vmv sv32 (v7 , v1 , j + 1) ;
vr vmadd vvs32 (v2 , v4 , v7) ;

addr m2 = addr m2 +4∗N1 ;

vr vlwu (v3 , addr m2) ;
vr v lwu (v4 , addr m2+N1) ;

vr vmv sv32 (v7 , v1 , j + 2) ;
vr vmadd vvs32 (v2 , v5 , v7) ;

vr vmv sv32 (v7 , v1 , j + 3) ;
vr vmadd vvs32 (v2 , v6 , v7) ;

}

vr vsw vv32 (v2 , addr mout) ;

/ / Addr u p d a t e s
addr m2 = m in2 ;
addr m1 = addr m1+N1 ;
addr mout = addr mout +N1 ;

}

f o r (i n t i = 0 ; i < M1∗N1 ; i +=N1) {
vm dma read (out v , addr mout ,

N1∗ s i z e o f (u i n t 3 2 t)) ;
vm dma read (m2 v0 , addr m2 ,

N1∗ s i z e o f (u i n t 3 2 t)) ;
f o r (i n t j = 0 ; j < N1 ; j ++) {

addr m2 = addr m2 +N1 ;
vm dma read (m2 v1 , addr m2 ,

N1∗ s i z e o f (u i n t 3 2 t)) ;
vm vmul vs32 (mul v , m2 v0 ,

addr m1 [j]) ;
vm vadd vv32 (out v , out v , mul v) ;
m2 tmp = m2 v0 ;
m2 v0 = m2 v1 ;
m2 v1 = m2 tmp ;

}
vm dma write (addr mout , out v ,

N1∗ s i z e o f (u i n t 3 2 t)) ;
/ / Addr u p d a t e s
addr m2 = m in2 ;
addr m1 = addr m1 +N1 ;
addr mout = addr mout +N1 ;

}

Median

s t a t i c i n l i n e vo id vminmaxdwn vr (r v r e g vmin ,
r v r e g vmax){

vr vmerge vv32 (v15 , v15 , vmin , V0 T) ;
vr vmin vv32 (vmin , vmin , vmax) ;
vr vmax vv32 (vmax , v15 , vmax) ;

}

/ / Median code
vr vlwu (v0 , i m g p t r) ;
vr v lwu (v1 , i m g p t r + 1) ;
vr v lwu (v2 , i m g p t r + 2) ;
. . .

v r vxor vv32 (v0 , v0 , v0) ;

f o r (i n t j = 0 ; j < i m a g e h e i g h t − 2 ; j ++) {

vr vmerge vv32 (v9 , v9 , v3 , V0 T) ;
vr vmerge vv32 (v10 , v10 , v4 , V0 T) ;
vr vmerge vv32 (v11 , v11 , v5 , V0 T) ;

vr vmerge vv32 (v12 , v12 , v6 , V0 T) ;
vr vmerge vv32 (v13 , v13 , v7 , V0 T) ;
vr vmerge vv32 (v14 , v14 , v8 , V0 T) ;

s o r t w i n d o w s v r (image width , i m a g e h e i g h t) ;

i m g p t r 2 = i m g p t r +(j +3)∗ image wid th ;

vr vsw (v4 , o u t p u t +(j ∗ image wid th)) ;

v r v s e t v l (image wid th) ;
vr v lwu (v6 , i m g p t r 2) ;

v r v s e t v l (image width −2);
v r v s l i d e d n v v 3 2 (v7 , v6 , 1) ;
v r v s l i d e d n v v 3 2 (v8 , v6 , 2) ;

vr vmerge vv32 (v0 , v0 , v9 , V0 T) ;
vr vmerge vv32 (v1 , v1 , v10 , V0 T) ;
vr vmerge vv32 (v2 , v2 , v11 , V0 T) ;

vr vmerge vv32 (v3 , v3 , v12 , V0 T) ;
vr vmerge vv32 (v4 , v4 , v13 , V0 T) ;
vr vmerge vv32 (v5 , v5 , v14 , V0 T) ;

s t a t i c i n l i n e vo id vminmaxdwn vm
(u i n t 8 t ∗ qmin , u i n t 8 t ∗ qmax ,

u i n t 8 t ∗ q sub , u i n t 8 t ∗ q tmp){
vm vmov vv8 (q tmp , qmin , 0) ;
vm vsub vv8 (q sub , qmax , qmin) ;
vm vcmv ltz vv8 (qmin , qmax , q sub) ;
vm vcmv ltz vv8 (qmax , q tmp , q sub) ;

}

/ / Median code

u i n t 3 2 t ∗ i m g p t r = i n p u t ;
vm dma read (q0 , img pt r ,

(image width −2)∗ s i z e o f (u i n t 3 2 t)) ;
vm dma read (q1 , i m g p t r +1 ,

(image width −2)∗ s i z e o f (u i n t 3 2 t)) ;
vm dma read (q2 , i m g p t r +2 ,

(image width −2)∗ s i z e o f (u i n t 3 2 t)) ;
v b x s e t v l (image width −2);
f o r (i n t j = 0 ; j < i m a g e h e i g h t − 2 ; j ++) {
vm vmov vv32 (q3 tmp , q3 , 0) ;
vm vmov vv32 (q4 tmp , q4 , 0) ;
vm vmov vv32 (q5 tmp , q5 , 0) ;

vm vmov vv32 (q6 tmp , q6 , 0) ;
vm vmov vv32 (q7 tmp , q7 , 0) ;
vm vmov vv32 (q8 tmp , q8 , 0) ;

sor t windows vm
(q0 , q1 , q2 , q3 ,
q4 , q5 , q6 , q7 , q8 ,
q sub , q tmp , image width ,
i m a g e h e i g h t) ;

i m g p t r 2 = i m g p t r +(j +3)∗ image wid th ;

vm dma write (o u t p u t +(j ∗ image wid th) ,
q4 , (image width −2)∗ s i z e o f (u i n t 3 2 t)) ;

vm dma read (q6 , img pt r2 ,
(image wid th)∗ s i z e o f (u i n t 3 2 t)) ;

vm vmov vv32 (q7 , q6 + 1 , 0) ;
vm vmov vv32 (q8 , q6 + 2 , 0) ;

q0 = q3 tmp ;
q1 = q4 tmp ;
q2 = q5 tmp ;
. . .

8

Paper3 34

TABLE III
DCT AND RGB2CMYK CODES.

VR VM

DCT

v r v s e t v l (BLOCK SIZE) ;
v r vxor vv16 (v0 , v0 , v0) ;

f o r (y = 0 ; y < n u m t i l e y ; y ++) {
f o r (x = 0 ; x < n u m t i l e x ; x ++) {
imgco l = (x+ s t a r t x)∗BLOCK SIZE ;

f o r (i = 0 ; i < BLOCK SIZE ; i ++) {
imgrow = i + (y+ s t a r t y)∗BLOCK SIZE ;
index img = imgrow ∗

IMAGE WIDTH + imgco l ;
v r v l h (v5 , image+ index img) ;

vr accmul vv16 (v6 , v1 , v5) ;

v r v s e t v l (1) ;
v r v s l i d e u p v v 1 6 (v7 , v6 , i) ;
v r v s e t v l (BLOCK SIZE) ;

vr accmul vv16 (v6 , v2 , v5) ;

v r v s e t v l (1) ;
v r v s l i d e u p v v 1 6 (v8 , v6 , i) ;
v r v s e t v l (BLOCK SIZE) ;

vr accmul vv16 (v6 , v3 , v5) ;

v r v s e t v l (1) ;
v r v s l i d e u p v v 1 6 (v9 , v6 , i) ;
v r v s e t v l (BLOCK SIZE) ;

vr accmul vv16 (v6 , v4 , v5) ;

v r v s e t v l (1) ;
v r v s l i d e u p v v 1 6 (v10 , v6 , i) ;
v r v s e t v l (BLOCK SIZE) ;

v r v s e t v l (BLOCK SIZE) ;
v r v s r l v i 1 6 (v11 , v11 , SHIFT AMOUNT) ;
v r v s r l v i 1 6 (v12 , v12 , SHIFT AMOUNT) ;
v r v s r l v i 1 6 (v13 , v13 , SHIFT AMOUNT) ;
v r v s r l v i 1 6 (v14 , v14 , SHIFT AMOUNT) ;

v r v s e t v l (BLOCK SIZE) ;
f o r (i = 0 ; i < BLOCK SIZE ; i ++) {

b l k c o l = (x+ s t a r t x)∗BLOCK SIZE ;
blkrow = i + (y+ s t a r t y)∗BLOCK SIZE ;

i f (i ==0) v r v s h (v11 , b l o c k s + blkrow
∗ IMAGE WIDTH + b l k c o l) ;

i f (i ==1) v r v s h (v12 , b l o c k s + blkrow
∗ IMAGE WIDTH + b l k c o l) ;

i f (i ==2) v r v s h (v13 , b l o c k s + blkrow
∗ IMAGE WIDTH + b l k c o l) ;

i f (i ==3) v r v s h (v14 , b l o c k s + blkrow
∗ IMAGE WIDTH + b l k c o l) ;

vm se t v l (BLOCK SIZE) ;

f o r (y = 0 ; y < n u m t i l e y ; y ++) {
f o r (x = 0 ; x < n u m t i l e x ; x ++) {

imgco l = (x+ s t a r t x)∗BLOCK SIZE ;
f o r (i = 0 ; i < BLOCK SIZE ; i ++) {

imgrow = i + (y+ s t a r t y)∗BLOCK SIZE ;
index img = imgrow

∗ IMAGE WIDTH + imgco l ;
vm dma read (img va lues , image+ index img ,

BLOCK SIZE∗ s i z e o f (i n t 1 6 t)) ;
f o r (j = 0 ; j < BLOCK SIZE ; j ++) {

i n d e x c o e f f = j ∗BLOCK SIZE ;
vm accmul vv16 (r e s m u l t r a n +BLOCK SIZE∗ j + i ,

c o e f f v a l u e s + i n d e x c o e f f , i m g v a l u e s) ;
}

}
vm se t v l (DCT SIZE) ;
vm vshr vi16 (r e s m u l t r a n ,

r e s m u l t r a n , SHIFT AMOUNT) ;
. . .

vm se t v l (BLOCK SIZE) ;
f o r (i = 0 ; i < BLOCK SIZE ; i ++) {

b l k c o l = (x+ s t a r t x)∗BLOCK SIZE ;
blkrow = i + (y+ s t a r t y)∗BLOCK SIZE ;

vm dma write (b l o c k s + blkrow
∗ IMAGE WIDTH + b l k c o l ,
r e s mu l + i ∗BLOCK SIZE ,

BLOCK SIZE∗ s i z e o f (i n t 1 6 t)) ;
}

RGB2CMYK

vr vmv vx32 (v6 , F SUB , 0) ;
vr vmerge vs32 (v6 , v6 , v6 , V0 T) ;
. . .
rv vlwu (v1 , i n p u t a d d r) ;

f o r (i n t i = 0 ; i < i m a g e h e i g h t ; i +=2) {

i n p u t a d d r = i n p u t a d d r + i m a g e p i t c h ;
vr v lwu (v9 , i n p u t a d d r) ;
v r vsub vv32 (v2 , v6 , v1) ;
vr vand vv32 (v3 , v2 , v7) ;
v r v s r l v i 3 2 (v4 , v2 , 8) ;
vr vand vv32 (v4 , v4 , v7) ;
v r v s r l v i 3 2 (v5 , v2 , 1 6) ;
vr vand vv32 (v5 , v5 , v7) ;

vminmaxdwn vr (v3 , v4) ;
vminmaxdwn vr (v4 , v5) ;
vminmaxdwn vr (v3 , v4) ;
. . .

v r v lwu (v1 , i n p u t a d d r) ;
v r vsub vv32 (v2 , v6 , v9) ;
vr vand vv32 (v3 , v2 , v7) ;
v r v s r l v i 3 2 (v4 , v2 , 8) ;
vr vand vv32 (v4 , v4 , v7) ;
v r v s r l v i 3 2 (v5 , v2 , 1 6) ;
vr vand vv32 (v5 , v5 , v7) ;

vminmaxdwn vr (v3 , v4) ;
vminmaxdwn vr (v4 , v5) ;
vminmaxdwn vr (v3 , v4) ;

vr vmul vv32 (v5 , v3 , v8) ;

v r vsub vv32 (v2 , v2 , v5) ;
v r v s l l v i 3 2 (v3 , v3 , 2 4) ;
v r vor vv32 (v2 , v2 , v3) ;

vr vsw vv32 (v2 , o u t a d d r) ;
o u t a d d r = o u t a d d r

+ i m a g e p i t c h ;

vm dma read (v row in1 , m in+ i m a g e p i t c h ∗0 ,
i m a g e p i t c h ∗ s i z e o f (vbx uword t)) ;

f o r (i n t i = 0 ; i < i m a g e h e i g h t ; ++ i) {
vm dma read (v row in2 , m in+ i m a g e p i t c h ∗ (i + 1) ,

i m a g e p i t c h ∗ s i z e o f (vbx uword t)) ;
vm vsub vs32 (v cmyk , 0xFFFFFF , v row in1) ;
vm vand vs8 32 (v c , 0xFF , v cmyk) ;
vm vand vs8 32 (v m , 0xFF ,

(vbx uword t ∗) (((v b x u b y t e t ∗) v cmyk) + 1)) ;
vm vand vs8 32 (v y , 0xFF ,

(vbx uword t ∗) (((v b x u b y t e t ∗) v cmyk) + 2)) ;

vminmaxdwn vm (v c , v m , v sub , v tmp) ;
vminmaxdwn vm (v m , v y , v sub , v tmp) ;
vminmaxdwn vm (v c , v m , v sub , v tmp) ;

vm vmul sv32 8 (v k tmp , 0 x00010101 , v c) ;
vm vsub vv32 (v cmyk , v cmyk , v k tmp) ;
vm vor vv32 8 ((vbx uword t ∗)

(((v b x u b y t e t ∗) v cmyk) + 3) ,
(vbx uword t ∗) (((v b x u b y t e t ∗) v cmyk) + 3)
, v c) ;

vm dma write (m out+ i ∗ i m a g e p i t c h ,
v cmyk , i m a g e p i t c h ∗ s i z e o f (vbx uword t)) ;

v row in1 = v row in2 ;
v row in2 = v row in1 ;

9

Paper3 35

TABLE IV
AUTOCORR AND SOBEL CODES.

VR VM

Autocorr

v r v s e t v l (D a t a S i z e) ;
vr v lwu (v1 , I n p u t D a t a) ;
vr v lwu (v2 , I n p u t D a t a) ;

v r vxor vv32 (v0 , v0 , v0) ; / / s e t v0 = 0
vr vmv vx32 (v0 , v0 , l a g) ;

f o r (l a g = 0 ; l a g < NumberOfLags ; l a g ++){
v r v s e t v l (Da taS ize−l a g) ;
v r v s l i d e d n v s 3 2 (v5 , v2 , l a g) ;
vr vmul vv32 (v3 , v1 , v5) ;
v r a c c s r l v i 3 2 (v4 , v3 , S c a l e) ;
vr vmv xv32 (&sum , v4 , 0) ;
vr vmv vx32 (v7 , sum , l a g) ;

}

v r v s e t v l (D a t a S i z e) ;
v r v s r l v i 3 2 (v6 , v7 , 1 6) ;
vr vsw vv32 (v6 , AutoCorrData) ;

vm dma read (i n p u t , I n p u t D a t a ,
D a t a S i z e ∗ s i z e o f (vbx word t)) ;

f o r (l a g = 0 ; l a g < NumberOfLags ; l a g ++){
vm se t v l (Da taS ize−l a g) ;
vm vmul sv32 (temp , i n p u t , i n p u t + l a g) ;
vm accshr vv16 (o u t p u t + lag , temp , S c a l e) ;

}

vm se t v l (D a t a S i z e) ;
vm vshr vi16 (o u t p u t , o u t p u t , 1 6) ;

vm dma write (AutoCorrData , o u t p u t ,
NumberOfLags∗ s i z e o f (vbx word t)) ;

Sobel

v r v s e t v l (image wid th) ;
v r v l h u (v3 , v row in) ;

v r v s e t v l (image width −1);
v r v s l i d e d n v i 1 6 (v6 , v3 , 1) ;
vr vadd vv16 (v7 , v3 , v6) ;

v r v s e t v l (image width −2);
v r v s l i d e d n v i 1 6 (v8 , v7 , 1) ;
vr vadd vv16 (v5 , v7 , v8) ;
. . .
v r v s e t v l (image wid th) ;
v r v l h u (v2 , v row in) ;

vr vmv vx16 (v13 , r FF , 0) ;
vr vmv wx16 (v14 , r mul , 0) ;

f o r (i n t i = 0 ;
i < i m a g e h e i g h t −(FILTER HEIGHT−1); i ++) {
v row in = v row in + image wid th ;

/ / v luma bot

v r v s e t v l (image wid th) ;
v r v l h u (v4 , v row in) ;

/ / v s o b e l r o w b o t

v r v s e t v l (image width −1);
v r v s l i d e d n v i 1 6 (v6 , v4 , 1) ;
vr vadd vv16 (v7 , v4 , v6) ;

v r v s e t v l (image width −2);
v r v s l i d e d n v i 1 6 (v8 , v7 , 1) ;
vr vadd vv16 (v10 , v7 , v8) ;

/ / g r a d i e n t x

v r v s e t v l (image wid th) ;
v r v s l l v i 1 6 (v6 , v2 , 1) ;
vr vadd vv16 (v7 , v3 , v4) ;

vr vadd vv16 (v7 , v7 , v6) ;

v r v s e t v l (image width −2);
v r v s l i d e d n v i 1 6 (v6 , v7 , 2) ;

v r v a b s d i f f v v 1 6 (v8 , v7 , v6) ;

/ / g r a d i e n t y

v r v a b s d i f f v v 1 6 (v7 , v10 , v5) ;

/ / SUM RENORM

v r v s e t v l (image width −2);
vr vadd vv16 (v6 , v7 , v8) ;
v r v s r l v i 1 6 (v12 , v6 ,RENORM) ;

v r v s e t v l (image wid th) ;
v r vor vv16 (v11 , v3 , v3) ;
v r vor vv16 (v3 , v2 , v2) ;
v r vor vv16 (v2 , v4 , v4) ;

l u m a i n p u t = l u m a i n p u t + image wid th ;
vm dma write (v luma bot , l uma inpu t ,

image wid th∗ s i z e o f (v b x u h a l f t)) ;

/ / C a l c u l a t e edges
f o r (y = 0 ; y < i m a g e h e i g h t −(FILTER HEIGHT−1);
y ++) {

v tmp = v s o b e l r o w b o t ;

vm se t v l (image wid th) ;
v m s l l v i 1 6 (v g r a d i e n t x ,

v luma mid , 1) ;
vm vadd vv16 (v tmp ,

v luma top , v luma bot) ;
vm vadd vv16 (v tmp ,

v tmp , v g r a d i e n t x) ;

l u m a i n p u t = l u m a i n p u t + image wid th ;
vbx dma to vec to r (v luma top , luma inpu t ,

image wid th∗ s i z e o f (v b x u h a l f t)) ;

vm vabsd i f f vv16 (v g r a d i e n t x , v tmp , v tmp + 2) ;
vm vabsd i f f vv16 (v g r a d i e n t y ,

v sobe l row top , v s o b e l r o w b o t) ;

/ / Re−use v s o b e l r o w t o p as v tmp
v tmp = v s o b e l r o w t o p ;

/ / sum of a b s o u t e g r a d i e n t s
vm se t v l (image width −2);
vm vadd vv16 (v tmp , v g r a d i e n t x ,

v g r a d i e n t y) ;
v m s r l v i 1 6 (v tmp , v tmp , renorm) ;

/ / R o t a t e luma b u f f e r s
t m p p t r = (vo id ∗) v luma top ;
v luma top = v luma mid ;
v luma mid = v luma bot ;
v luma bot = (v b x u h a l f t ∗) t m p p t r ;

10

Paper3 36

[10] Synced, “Makers put their specialized ai chips
on the table,” https://syncedreview.com/2017/11/21/
makers-put-their-specialized-ai-chips-on-the-table/, (Accessed on
04/15/2019).

[11] A. Ou, Q. Nguyen, Y. Lee, and K. Asanovic, “A case for mvps : Mixed-
precision vector processors,” in International Workshop on Parallelism

in Mobile Platforms (PRISM), June 2014.
[12] A. Severance, J. Edwards, H. Omidian, and G. Lemieux, “Soft vector

processors with streaming pipelines,” in ACM/SIGDA International

Symposium on Field-programmable Gate Arrays, 2014.

11

Paper3 37

38

CONCLUSION

Despite FPGAs offering a high level of programmability, potential for parallelism

and flexibility, there are many factors to be taken into account before implementation on

this type of platform.

In this work we showed that although application specific accelerators tend to show

a higher speedup than solutions implemented for general purpose processors, these may

not have favorable characteristics for their implementation on FPGAs. One of the most

valuable lessons learned through this work is that it is important to understand the ratio

of communication over computation of the parallelizable parts of an application before

implementing an accelerator for them.

We showed that vector processors have favorable characteristics when implemented

on FPGAs. We show that the utilization of a Vector Memory (VM) ISA instead of a Vector

Register File (VR) ISA creates many advantages due to its flexibility. Modern FPGAs

offers a reasonable amount of on-chip memory which can be used to implement a VM in

order to mask the design communication time since it rivals a register file both in speed

and capacity.

39

REFERÊNCIAS

ALVES, F. A. M. et al. Designing a collision detection accelerator on a heterogeneous
cpu-fpga platform. In: 2017 International Conference on ReConFigurable Computing and
FPGAs (ReConFig). [S.l.: s.n.], 2017. p. 1–4. Citado na página 9.

ALVES, F. A. M. et al. Lessons learned on which applications benefit when implemented
on cpu-fpga heterogeneous system. In: 2018 International on Embedded Computer
Systems: Architectures, Modeling and Simulation. [S.l.: s.n.], 2018. p. 1–6. Citado 2 vezes
nas páginas 8 e 9.

ALVES, F. A. M. et al. Memory-based vector instruction set architectures. In: 2019
International Conference on Compilers, Architecture, and Synthesis for Embedded Systems.
[S.l.: s.n.], 2019. p. 1–10. Citado 2 vezes nas páginas 8 e 9.

	Dedicatória
	INTRODUCTION
	Paper 1: Designing a Collision Detection Accelerator on a Heterogeneous CPU-FPGA Platform
	Paper 2: Lessons Learned on which Applications Benefit when Implemented on CPU-FPGA Heterogeneous System
	Paper 3: Memory-based Vector Instruction Set Architectures
	CONCLUSION
	REFERÊNCIAS

