
LEANDRO COUTO MEDEIROS

LEARNING SKETCHES FOR PROGRAMMATIC STRATEGIES

Dissertation submitted to the Computer Sci-
ence Graduate Program of Universidade Fe-
deral de Viçosa in partial fulfillment of the
requirements for the degree of Magister Sci-
entiae.

Advisor: Levi Henrique Santana de Lelis

VIÇOSA - MINAS GERAIS

2021

Ficha catalográfica elaborada pela Biblioteca Central da Universidade
Federal de Viçosa - Campus Viçosa

T

 Medeiros, Leandro Couto, 1993-

M488L
2021

 Learning sketches for programmatic strategies / Leandro
Couto Medeiros. – Viçosa, MG, 2021.

 1 dissertação eletrônica (51 f.): il. (algumas color.).

 Inclui apêndice.

 Orientador: Levi Henrique Santana de Lelis.

 Dissertação (mestrado) - Universidade Federal de Viçosa,
Departamento de Informática, 2021.

 Referências bibliográficas: f.43-45.

 DOI: https://doi.org/10.47328/ufvbbt.2022.076

 Modo de acesso: World Wide Web.

 1. Inteligência artificial. 2. Aprendizado do computador.
3. Jogos. I. Lelis, Levi Henrique Santana de, 1984-.
II. Universidade Federal de Viçosa. Departamento de
Informática. Programa de Pós-Graduação em Ciência da
Computação. III. Título.

CDD 22. ed. 006.3

Bibliotecário(a) responsável: Renata de Fátima Alves CRB6/2578

Acknowledgements

I would like to thank my advisor, Dr. Levi Lelis, for agreeing to mentor me and for the

guidance throughout this work. Your advices, teachings and dedication were crucial to

me to become the researcher and the person I am today. Thank you!

To all the professors I have met throughout my academic journey, all of you con-

tributed for me to be where I am now.

To my long time friends Igor and Fábio, I appreciate all the support. You two have

consistently inspired me to always move forward.

To the friends I made at DPI. I’ll always remember the banter in the labs, the late

night group studies before a test and the occasional jogging groups “na reta”. In special,

I would like to thank David, Rubens and Julian for all the important insights and help in

this study.

To my parents Vanilda and Sérgio and my brothers Túlio and Artur, your conti-

nuous support was fundamental to me. Thank you for always believing in me.

This study was financed in part by the Fundação de Amparo à Pesquisa de Minas

Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

– Brasil (CAPES).

Abstract

MEDEIROS, Leandro Couto, M.Sc., Universidade Federal de Viçosa, November, 2021.
Learning Sketches for Programmatic Strategies. Adviser: Levi Henrique Santana
de Lelis.

Program synthesis has been a major focus of research in recent years due to its innate

capability of generating interpretable programs. By contrast, neural network models are

implemented as opaque models and are thus hard to interpret. Neural networks are eas-

ier to train because gradient information is available while program synthesis tasks are

not differentiable, making the optimization task challenging. In this work we show that

behavioral cloning can be used to learn effective sketches of programmatic strategies, fa-

cilitating the optimization task. We show that even the sketches learned by cloning the

behavior of weak players can help the synthesis of programmatic strategies. This is be-

cause even weak players can provide helpful information, e.g., that a player must choose

an action in their turn of the game. If behavioral cloning is not employed, the synthesizer

needs to learn even the most basic information by playing the game, which can be compu-

tationally expensive. We demonstrate empirically the advantages of our sketch-learning

approach with synthesizers based on simulated annealing and with synthesizers based

on UCT. We evaluate our synthesizers in the games of Can’t Stop and MicroRTS. The

sketch-based synthesizers are able to learn stronger programmatic strategies than their

original counterparts. Our synthesizers generate strategies of Can’t Stop that defeat a tra-

ditional programmatic strategy for the game. They also synthesize strategies that defeat

the best performing method from the latest MicroRTS competition.

Keywords: Artificial Intelligence. Program Synthesis. Search. Games.

Resumo

MEDEIROS, Leandro Couto, M.Sc., Universidade Federal de Viçosa, novembro de 2021.
Aprendendo rascunhos para estratégias programáticas. Orientador: Levi Henrique
Santana de Lelis.

Síntese de programas tem sido um grande foco de pesquisa nos últimos anos devido à

sua inata capacidade de gerar programas interpretáveis. Em contraste com modelos de

redes neurais, que são implementados como modelos opacos e portanto são difíceis de

interpretar. Redes neurais são mais fáceis de treinar devido à informação do gradiente

estar disponível, enquanto que tarefas de síntese de programas não são diferenciáveis,

tornando a tarefa de otimização desafiante. Nesta dissertação é mostrado que a clonagem

comportamental pode ser usada para aprender rascunhos de estratégias programáticas,

facilitando a tarefa de otimização. Foi observado que até rascunhos aprendidos ao clonar o

comportamento de jogadores fracos podem ajudar na síntese de estratégias programáticas.

Isto ocorre porque até mesmo jogadores fracos conseguem prover informações úteis, e.g.,

que um jogador deve escolher uma ação em sua rodada do jogo. Caso clonagem compor-

tamental não seja usada, o sintetizador precisa aprender até mesmo as informações mais

básicas jogando o jogo, o que pode ser computacionalmente custoso. É empiricamente de-

monstrado as vantagens da abordagem de aprendizado por rascunhos com sintetizadores

baseados na têmpera simulada e com sintetizadores baseados no algoritmo UCT. Os sin-

tetizadores foram avaliados nos jogos Can’t Stop e MicroRTS. Os sintetizadores baseados

em rascunhos são capazes de aprender estratégias programáticas mais fortes do que as

abordagens originais. Os sintetizadores geraram estratégias de Can’t Stop que derrotaram

uma estratégia programática tradicional do jogo. Também foram sintetizadas estratégias

que derrotaram o método com a melhor performance da última competição de MicroRTS.

Palavras-chave: Inteligência Artificial. Síntese de Programas. Busca. Jogos.

List of figures

Figure 1 – Overview of the Monte-Carlo Tree Search Algorithm 14

Figure 2 – DSL (left) and AST for “if b1 then c1” (right). 19

Figure 3 – Example of SA’s mutation step . 20

Figure 4 – Example of an iteration of the UCT algorithm 21

Figure 5 – Transition from sketch-search to BR-search in UCT 23

Figure 6 – Can’t Stop board game. Different collors represent different players. . . 26

Figure 7 – MicroRTS match. Different outline colors represent different players. . 27

Figure 8 – Maps used in the experiments. 28

Figure 9 – Winning rate of SA (left) and UCT (right) variants. 31

Figure 10 – Winning rate of strategies SA variants synthesize; the maps increase in

size from top to bottom. 33

Figure 11 – Winning rate of strategies UCT variants synthesize; the maps increase

in size from top to bottom. 34

Figure 12 – Winning rate and cloning score value of the best program encountered

during synthesis. 34

Figure 13 – Distribution of programs according to their winning score and cloning

score. 35

Figure 14 – Methods of initialization of the BR-search tree 37

List of tables

Table 1 – Comparison of the winning rate against GA between the sketch-search-

only approach (WR - Sketch-only) and sketch-search along with BR-

search (WR - Sketch & BR) using different datasets L for cloning . . . 36

Table of Contents

1 Introduction . 10

1.1 The Problem and its Importance . 10

1.2 Hypothesis . 11

2 Background . 12

2.1 Behavioral Cloning . 12

2.2 Simulated Annealing . 12

2.3 Monte-Carlo Tree Search . 13

3 Related Work . 16

4 Problem Definition . 18

4.1 Synthesis of Programmatic Strategies . 18

4.1.1 Domain-Specific Languages . 18

4.1.2 Simulated Annealing for Synthesis of Strategies 19

4.1.3 UCT for Synthesis of Strategies . 20

4.2 Learning Sketches with Behavioral Cloning 22

4.2.1 Sketch Learning with UCT . 22

4.2.2 Sketch Learning with Simulated Annealing 24

4.2.3 Score Functions for Behavioral Cloning 24

5 Results and Discussion . 25

5.1 Problem Domains . 25

5.1.1 Can’t Stop . 25

5.1.2 MicroRTS . 27

5.2 Score Functions . 29

5.2.1 Can’t Stop & MicroRTS Action-Based Cloning Score 29

5.2.2 Can’t Stop Observation-Based Cloning Score 29

5.2.3 MicroRTS Observation-Based Cloning Score 29

5.3 Strategies to Clone . 30

5.3.1 Can’t Stop . 30

5.3.2 MicroRTS . 30

5.4 Empirical Results: Can’t Stop . 31

5.5 Empirical Results: MicroRTS . 32

5.6 Winning Rate and Cloning Score Correlation 34

5.7 Sketch-Search-Only Results . 35

5.8 BR-search UCT Tree Initialization . 36

5.9 Sample of Programmatic Strategy . 37

5.9.1 Programs Synthesized for MicroRTS 37

5.9.2 Programs Synthesized for Can’t Stop 39

6 Conclusions . 42

References . 43

Appendix 46

APPENDIX A Domain-Specific Languages used for Can’t Stop and MicroRTS 47

A.1 Domain-Specific Language for Can’t Stop 47

A.2 Domain-Specific Language for MicroRTS 48

10

1 Introduction

1.1 The Problem and its Importance

GULWANI et al. (2017) define program synthesis as the task to find programs that

satisfy users intent expressed in the form of a specification. Program synthesis tasks can

be used in a myriad of distinct problems. SINGH (2014) developed a system where the

synthesizer adopted a programming teacher role, assisting students to develop programs

by providing feedback to its user. AHMED; GULWANI; KARKARE (2013)’s applica-

tion is able to solve programming problems and generate similar problems. CHEUNG;

SOLAR-LEZAMA; MADDEN (2012) combined program synthesis with machine learning

algorithms for a recommendation system.

With the advent of deep neural networks (DNN), one could argue that DNNs are

the master key for computational problems given the large number of hard problems it was

able to solve. However, DNNs as they are currently designed, have one major disadvantage

which is their lack of interpretability. Because they are implemented as an opaque model,

it is often not possible for a human to fully understand how the solution actually works.

The problem of lacking interpretability can be solved with program synthesis. A solution

a synthesizer writes can be easier for a human to understand how it works.

Search algorithms are used to navigate through the program space allowed by a

domain-specific language (DSL) (DEURSEN; KLINT; VISSER, 2000). In cases where the

problem is hard to solve or the size of the program space induced by the grammar is huge,

search algorithms presumably will struggle to find a solution that has a good performance

in a timely manner.

In addition to dealing with large spaces, synthesizers often lack effective functions

for guiding the search. This is in contrast with neural methods, where gradient information

is available to guide the learning process. In order to overcome this hurdle, we study

the use of behavioral cloning (BAIN; SAMMUT, 1996), a field under the umbrella of

imitation learning, as such a function to guide the search algorithm to learn a sketch.

A sketch is a “partial program that encodes the structure of a solution while leaving

its low-level details unspecified” (SOLAR-LEZAMA, 2009). By learning a sketch, we are

simplifying the optimization task by allowing the search algorithm to look for programs

with a predetermined program structure, hence reducing the original substantial search

space.

In this work, we show that using behavioral cloning to learn sketches can be used

to speed up the synthesis of programmatic strategies. We investigate the use of this

Chapter 1. Introduction 11

sketch learning approach with synthesizers employing Simulated Annealing (SA) (KIRK-

PATRICK; GELATT; VECCHI, 1983) and UCT (KOCSIS; SZEPESVÁRI, 2006) as se-

arch algorithms and evaluate them in the context of computing a best response for a target

strategy in two-player zero-sum games. Specifically, we evaluate our methods in the bo-

ard game of Can’t Stop and in the real-time strategy (RTS) game of MicroRTS. We

show that our methods can be effective even when cloning the behavior of weak players,

such as a player that chooses their actions at random for the game of Can’t Stop. Our

sketch learning method can be effective when the cloned strategy is weak because even

such strategies might convey information that is helpful for the synthesis of programmatic

strategies, such as the program structure required to decide when to stop playing in Can’t

Stop or when to build a specific structure in MicroRTS.

We evaluate our sketch-based SA and UCT methods by synthesizing approximated

best responses to a known programmatic strategy for Can’t Stop (GLENN; ALOI, 2009)

and to COAC, the winner of the latest MicroRTS Competition (ONTAÑÓN, 2020), on

four maps. Our sketch-based SA synthesized strong strategies in all settings tested. As a

highlight, it synthesized a strategy that defeats COAC on large maps of MicroRTS; none

of the strategies synthesized by the baselines were able to defeat COAC on large maps.

1.2 Hypothesis

The use of behavioral cloning for learning program sketches can speed up the

synthesis process of programs encoding strong strategies for playing zero-sum games.

12

2 Background

2.1 Behavioral Cloning

Given an oracle to generate a list of state-action pairs, a Behavioral Cloning (BC)

agent will learn a policy based only on the data generated by an oracle. If L = {(si, ai)}m
i=1

is the data set of state-actions pairs produced by the oracle, a BC agent tries to learn a

policy π that maps each si in L to the action ai the oracle takes at si.

Behavioral Cloning has been used successfully in distinct applications. SAMMUT

et al. (1992) experiment logged human data using a flight simulation program as the oracle

and used a decision tree to learn a policy based on the oracle data. ROSS; GORDON;

BAGNELL (2011) observed a weakness on the classical BC setting that the learned policy

struggles when the agent faces a state that it has never seen before during the learning

stage. They proposed an algorithm called DAgger, that iteratively adds unseen states

to the original dataset. The oracle labels all newly collected states sj and the imitation

learning step is repeated.

TORABI; WARNELL; STONE (2018a) proposes a variation of the BC setting

called Behavioral Cloning from Observation (BCO), in which the agent learns a policy only

from observations, i.e., the data set used is L = {(si)}m
i=1. They then proposed a variation

called BCO(α) which is a two-step algorithm: first the proposed BCO implementation is

executed to learn a policy π. In the second step, the policy π is executed in the environment

to collect a new dataset Lπ = {(sj, aj)}n
j=1 and the learned policy π is updated using the

classical BC implementation using the new dataset Lπ, where newly collected pairs action-

observation are imitated.

2.2 Simulated Annealing

Simulated Annealing (SA) is a local search algorithm initially proposed by KIRK-

PATRICK; GELATT; VECCHI (1983) that searches for a global minimum/maximum

given a evaluation function Ψ. This algorithm overcomes a big disadvantage of the Hill

Climbing algorithm: it might escape local minima/maxima in case Ψ is non-convex.

SA uses a temperature scheduling approach to control the greediness of the search.

Instead of always choosing a neighbor state that minimizes/maximizes Ψ as it is done

in the Hill Climbing algorithm, SA uses an acceptance function that uses the current

temperature to decide if the neighbor sample will be accepted.

The SA pseudocode is shown below:

Chapter 2. Background 13

1 def simulated_annealing():

2 s = random_sample()

3 for i in range(MAX_ITE):

4 current_temperature = update_temperature(i)

5 s′ = choose_neighbor(s)

6 if acceptance_function(s, s′, current_temperature, Ψ):

7 s = s′

8 return s

In line 2, SA starts with a random sample s and it then loops for MAX_ITE

iterations (line 3). SA updates the temperature according to a temperature scheduling

function (line 4) and it generates a neighbor s′ of s (line 5). At line 6, SA accepts or rejects

s′ according to an acceptance function. If it accepts, then s′ is assigned to s (line 7) and

the process is repeated. If it rejects, SA repeats the procedure by generating another

neighbor of s.

The way the temperature schedule is implemented is generally problem-specific

and it is widely studied, see HAJEK (1988) and NOURANI; ANDRESEN (1998). With

regards to the acceptance function, the expression below developed by KIRKPATRICK;

GELATT; VECCHI (1983) is still often used in the literature:

min

(

1, exp

(

β · (Ψ(s′) − Ψ(s))
Ti

))

.

Here, Ti is the temperature at iteration i, and Ψ is an evaluation function. If

Ψ(s′) ≥ Ψ(s), then SA accepts s′ with probability 1.0. Otherwise, the probability of

acceptance depends on Ti and β. β is an input parameter that allows the adjustment on

how greedy SA is; larger values of β result in a greedier search by more often rejecting

samples with small Ψ-values. Larger values of Ti make the search less greedy since large

T -values increase the chances of accepting s′.

2.3 Monte-Carlo Tree Search

The Monte-Carlo Tree Search (MCTS) developed by COULOM (2006) combines

Monte-Carlo evaluations (where it plays several simulations of a Markov Decision Process

(MDP) and calculates the average outcome returned by the MDP) and tree search. Given

enough simulations, MCTS will store information about the utility value of an action

applied to a state. A low utility value means that applying this action in that state is

probable to yield a low score by an evaluation function Ψ.

The MCTS algorithm can be separated in four main routines:

Chapter 2. Background 14

1. Selection: The selection step starts at the root of the tree and it chooses the

i-th child that maximizes a selectivity formula. COULOM (2006) indicates that an

ideal selectivity formula should allocate more iterations, and therefore be searched

deeper, for promising nodes. If the child selected is a leaf node, it then moves to

the expansion routine. If not, it calls the selection routine again until a leaf node is

reached.

2. Expansion: Given the leaf node retrieved in the selection stage, it then expands

a random child (in order to reduce bias) by adding this node to the tree.

3. Simulation: With the node just expanded from the expansion stage, a simulation

is applied from that node until the game ends. The simulation follows a policy

applied to this node until a terminal node is reached and then a function Ψ is used

to evaluate this state, returning the utility value Ψ of that state.

4. Backpropagation: The backpropagation step updates the Xi-values of all nodes

visited in the selection step with the Ψ-value from the simulation step.

Figure 1 shows the overall iterative pipeline of the MCTS algorithm. Because

it is an iterative process, the more time the algorithm is given, the more accurate the

estimation will be regarding which action to choose from a state. After a certain time

limit imposed by the user or any other stopping criteria, the algorithm will return the

action relating to which child node had the most number of visits during the iterative

process.

Figure 1 – Overview of the Monte-Carlo Tree Search Algorithm

Source: (CHASLOT et al., 2008)

KOCSIS; SZEPESVÁRI (2006) developed a MCTS-based algorithm called Upper

Confidence Bound applied to Trees (UCT). The utility of a state s based on this heuristic is

Chapter 2. Background 15

called UCB1 (Upper Confidence Bounds) by AUER; CESA-BIANCHI; FISCHER (2002)

and it is calculated as follows:

UCB1(s) = X̄i + C

√

√

√

√

ln (N(s))
ni(s)

Here, X̄j is the average Ψ-value of the i-th child of s, N is the number of times

node s was visited in previous selection steps, ni is the number of times s was visited

and the i-th child was selected, and C is an exploration constant. The first term of the

equation is an exploitation term as it favors the child with highest average evaluation

value; the second term is the exploration term. The UCB1 formula is used in the selection

stage as the selectivity formula in the UCT algorithm.

16

3 Related Work

This work is related to methods for synthesizing programmatic policies, in particu-

lar those that use some form of behavioral cloning such as imitation learning (SCHAAL,

1999). BASTANI; PU; SOLAR-LEZAMA (2018) present an algorithm called VIPER that

uses a variant of the imitation learning algorithm DAgger (ROSS; GORDON; BAGNELL,

2011) to distill a high-performing neural policy into an interpretable decision tree. VIPER

uses a deep neural network as an oracle to generate labeled data for DAgger-like queries

in order to train the aforementioned decision tree.

VERMA et al. (2018) use DAgger and a neural policy to help with the synthesis

of programmatic policies. The actions the neural policy chooses on a set of states are

used in a Bayesian optimization procedure for finding suitable constant values for the

programmatic policies. VERMA et al. (2019) use a similar approach, but the neural

model is trained so that it is not too different from the synthesized policies, with the goal

of easing the optimization task.

We differ from previous work in that we do not assume the oracle is available for

queries as in DAgger-like methods. We also do not assume that the oracle is a neural

network as VERMA et al. (2019) and BASTANI; PU; SOLAR-LEZAMA (2018) do. For

example, in our experiments we use a data set from a human oracle. We also do not

require the strategy to be cloned to be high performing; we are able to learn effective

sketches even from weak strategies.

MARIÑO et al. (2021) introduced Lasi, a method that uses behavioral cloning to

simplify the language used for synthesis. Lasi removes from the language the instructions

that are not needed to clone a strategy. Lasi can be used with our sketch-learning methods

by simplifying the language to only then learn a sketch. Lasi is not as general as our

methods because it cannot be applied to domains in which all symbols in the language

are needed, such as Can’t Stop.

Others have synthesized programs to serve as evaluation functions (BENBASSAT;

SIPPER, 2011), but not to serve as complete strategies. Others explored the synthesis of

strategies for cooperative games (CANAAN et al., 2018) and single-agent problems (BU-

TLER; TORLAK; POPOVIĆ, 2017; FREITAS; SOUZA; BERNARDINO, 2018). These

methods can potentially benefit from our sketch-learning methods.

While most previous work assume that the user provides the program sketch

(SOLAR-LEZAMA, 2009), NYE et al. (2019) use a neural model to generate sketches.

Their approach is designed to solve program synthesis tasks, where one synthesizes a pro-

gram mapping a set of input values to the desired output values; we synthesize strategies.

Chapter 3. Related Work 17

Also, we are unable to train a neural model for sketch generation because the amount of

data we consider is insufficient for training (we use data sets with state-actions of as few

as 3 matches).

18

4 Problem Definition

Let G be a two-player sequential zero-sum game defined by a set S of states, a pair

of players P = {i, −i}, an initial state sinit in S, a function Ai(s) that receives a state s

and returns the set of actions player i can perform at s, and a function Ui(s) that returns

the utility of player i at s. Since G is zero sum, Ui(s) = −U−i(s). A strategy for player i

is a function σi : S → Ai mapping a state s to an action a. A programmatic strategy is

a computer program encoding a strategy σ. The value of the game for state s is denoted

by U(s, σi, σ−i) which returns the utility of player i if i and −i follow the strategies given

by σi and σ−i. We also call a match a game played between two strategies.

We consider programmatic strategies written in a DSL. Let D be a DSL and JDK

be the set of programs written in D. The best response for a strategy σ−i in JDK is

a strategy that maximizes player i’s utility against σ−i, i.e., maxσi∈JDK U(sinit, σi, σ−i).

The computation of a best response for a fixed strategy is a basic operation in game

theory methods such as iterated best response for approximating a Nash equilibrium

profile (LANCTOT et al., 2017).

In this work we evaluate different search methods for synthesizing a best response

to a strategy. We provide a game G, a DSL D and a strategy σ−i and the synthesizer

searches in JDK and returns an approximated best response σi to σ−i. We also consider the

setting in which a data set generated by an oracle with state-action pairs L = {(sj, aj)}m
j=1

with the actions aj the oracle takes at states sj is available.

4.1 Synthesis of Programmatic Strategies

In this section we review DSLs and explain how SA and UCT can be used to

synthesize programmatic strategies. While SA and UCT have been applied to program

synthesis tasks, e.g., (HUSIEN; SCHEWE, 2016; CAZENAVE, 2013), this is the first time

these approaches are applied to synthesize programmatic strategies, so we describe them

in detail.

4.1.1 Domain-Specific Languages

A DSL is defined as a context-free grammar (V, Σ, R, I), where V , Σ, and R are

sets of non-terminals, terminals, relations defining the production rules of the grammar,

respectively. I is the grammar’s start symbol. Figure 2 shows a DSL where V = {I, C, B},

Σ = {c1, c2, b1, b2 if, then}, R are the relations (e.g., C → c1).

The DSL allows programs with a single command (c1 or c2) and programs with

Chapter 4. Problem Definition 19

I → C | if(B) then C

C → c1 | c2

B → b1 | b2

I

if B

b1

then C

c1

<latexit sha1_base64="BBYVqifeP5VrjPrDLSdHgT/RxW4=">AAAGJnicnVNNb9NAEJ0EAiV8tCnHcohIkYpURXE4gKgqVa2Q4FYEaSslUWSvN8kqaztdbyiJlSP/hR/CmRtC3PgB8B94u3ZR05IQWMu747dv5s3Mer2hFLGu1b7l8teuF27cXLlVvH3n7r3VtdL6URyNFOMNFslInXhuzKUIeUMLLfnJUHE38CQ/9gYHZv/4HVexiMK3ejzk7cDthaIrmKsBdUq5Dy2P90SYaDGYDAXTI8WnxTJGyyCxHkuehJHPp7tNJhSTfNtX7ll7B5yWwbdqj5tm3Q5EKIJRUI7FhO86LGgnr9JArC+kb2PMI4rudFnqfkpchrrpdZzNLPCy4XWfh0vncvAPubALuewUWzz0ZzreWavUqjU7ylcNJzMqlI3DqJT7RC3yKSJGIwqIU0gatiSXYjxNcqhGQ2BtSoApWMLuc5pSEb4jsDgYLtAB5h6+mhka4tvEjK03g4rEq+BZpkcZx4fdtWi6Gv3yBe48jcTGNjmOsXpZzACopj7Qv/mdM5f1MzVpZPjM1iKQ59Aipko2U1EXq8S3Rv5mHoPJYfnwUrAYMAk0RYyGwpr21VTet312LY/DWpRTCA2TgZ+djwQeZfH6qErY3Bb14rKHYRu+snE5ndmzCGyHjE6CvT/rGI9T6KRVTi3TVPAes4euJPTCnq6pzcf7HJzpf2oZfgyteUpv4PdzRmV+D05tTnzhH53Y8xnQZIZzjkmsnq1L4VyT3/HihRHTv96wtOHh7jqXb+pV46hedZ5U66/rlb397Bav0AY9pC3c1Ke0Ry/pkBrEcj/y6/mN/IPCx8LnwpfC15Saz2U+92lmFL7/AvwneIo=</latexit>

Figure 2 – DSL (left) and AST for “if b1 then c1” (right).

branching. We represent programs as abstract syntax trees (AST), where the root of the

tree is I, the internal nodes are non-terminals and leaf nodes are terminals. Figure 2

shows an example of an AST, where leaves are terminal symbols and internal nodes are

non-terminals.

4.1.2 Simulated Annealing for Synthesis of Strategies

For synthesis of strategies, we use SA to approximate a programmatic best response

to a target strategy σ−i, i.e., SA approximates a solution to arg maxσi∈JDK U(sinit, σi, σ−i).

SA starts with a program that is randomly generated as follows. We start with I

and we replace it with a randomly chosen production rule for I; we then repeatedly replace

a non-terminal symbol in the generated program with a random and valid production rule;

we stop when the program contains only terminals. For example, the production rules used

to obtain program “if b1 then c1” are: I → if(B) then C else C; B → b1; C → c1.

Once the initial program p is defined, SA generates a neighbor p′ of p by changing

a subtree in p’s AST. For example, consider the AST representation of the program “if

(b1) then c2” in Figure 3, (a). We randomly choose a non-terminal node in the AST,

represented by the indexed nodes {0, 1, 2}. If the B node is chosen for mutation as shown

in (b), we replace the subtree rooted at B with a subtree that is generated with the same

procedure used to generate the initial program. For example, the terminal node b1 node

can become b2 as seen in (c). SA decides if it accepts or rejects “if (b2) then c2”. If it

accepts, then this program is assigned to p and the process is repeated. If it rejects, SA

repeats the procedure by generating another neighbor of “if (b1) then c2”. The probability

in which SA accepts the mutated program is given by

min

(

1, exp

(

β · (Ψ(p′) − Ψ(p))
Tj

))

.

Here, Tj is the temperature at iteration j, and Ψ is an evaluation function. In program

Chapter 4. Problem Definition 20

I

0

if B

1

b1

then C

2

c2

(a) AST of the program “if (b1) then c2”

I

0

if B

1

b1

then C

2

c2

(b) Subtree to be mutated

I

0

if B

1

b2

then C

2

c2

(c) Mutated program “if (b2) then c2”

Figure 3 – Example of SA’s mutation step

synthesis tasks, Ψ(p) counts the number of input examples that p correctly maps to the

desired output (ALUR et al., 2013). In the context of games, Ψ(p) returns the utility of

p against the opponent σ−i. The initial temperature, T1, is an input parameter and Tj is

computed according to the schedule Tj = T1

(1+α·j)
. Once the temperature becomes smaller

than ǫ, we stop searching and the program with largest Ψ-value encountered in search

is returned as the SA’s approximated best response to σ−i. In our experiments we run

SA multiple times, while we have not exhausted the time allowed for synthesis, and we

initialize the search with the program returned in the latest run as it often allows the

search to start in a more promising region of the space.

4.1.3 UCT for Synthesis of Strategies

UCT grows a search tree while exploring the space. Each node in the tree represents

a program, which can be complete or incomplete. We say that a program is complete if

all leaves in its AST are terminals. Figure 4 shows an example of a UCT iteration using

the DSL shown in Figure 2. The root of the UCT tree represents the incomplete program

of the DSL’s initial symbol I. The children of a node n in the UCT tree are the programs

that can be generated by applying a production rule to the leftmost non-terminal symbol

of the program n represents. For example, consider the UCT tree as shown in (a). The

selection step will choose between the two children of the root according to the UCB1

Chapter 4. Problem Definition 21

?

?

c1 c2

if(?) then ?
C

c1 c2

if(B) then C

(a) Current UCT tree

?

?

c1 c2

if(?) then ?
C

c1 c2

if(B) then C

(b) Selection step

?

?

c1 c2

if(?) then ?

if(b1) then ?

C

c1 c2

if(B) then C

b1

(c) Expansion step

?

?

c1 c2

if(?) then ?

if(b1) then ?

+1

C

c1 c2

if(B) then C

b1

(d) Simulation step

?

?

c1 c2

if(?) then ?

if(b1) then ?

+1

C

c1 c2

if(B) then C

b1

(e) Backpropagation step

Figure 4 – Example of an iteration of the UCT algorithm

value of each child. If the sketch “if(?) then ?” has a higher UCB1 value, it is then

chosen to be expanded in the expansion step, as shown in (b). In (c), the expanded node

is generated by applying a production rule to the leftmost non-terminal symbol of the

program “if(?) then ?”, in this case, B. After expansion, in (c) the simulation step is

demonstrated, where the current sketch “if(b1) then ?” is randomly filled in until it is a

complete program, for example, “if(b1) then c2”. This program will be evaluated according

to an evaluation function and return a value, for example +1, as shown in (d). Finally,

the value +1 will be backpropagated all the way up to the root, as shown in (e).

The four steps of UCT are repeated multiple times and it returns the program

with largest Ψ-value, among all programs evaluated during search, when it reaches a user-

specified time limit. UCT caches the Ψ-values of programs that were evaluated in previous

iterations of the algorithm. The UCT tree might grow to include complete programs (i.e.,

nodes with no children). If the selection step ends at a complete program, it performs no

expansion and returns the cached Ψ-value of n in the backpropagation step.

We use a single run of SA as UCT’s simulation policy. When running SA as

simulation policy for an incomplete program p, the neighbors of a program can only be

obtained by changing the subtrees of the AST that are rooted at a non-terminal leaf node.

For example, if p is “if(B) then C”, then the neighbors of p can be obtained by changing

only B and C, but not the root of the AST, I, because I is not a leaf in the AST. This

constraint ensures that the simulation policy does not change the structure of p, which is

defined by the production rules along the path in the UCT tree.

Chapter 4. Problem Definition 22

4.2 Learning Sketches with Behavioral Cloning

We consider the setting in which the synthesizer receives as input a data set of

state-action pairs L = {(sj, aj)}m
j=1 with actions chosen by strategy σo for states of one

or more matches of the game. We use this data set to learn a sketch to speed up the

synthesis of a programmatic strategy.

SA and UCT can be used to clone the behavior of σo by replacing Ψ with an

evaluation function C(L, p) that receives the data set L and a program p and returns a

score of how well p clones σo. Note, however, that cloning the behavior of σo can result in

weak strategies. This is because σo might not be represented in JDK. Or the data set L

is limited and one needs to perform DAgger-like queries (ROSS; GORDON; BAGNELL,

2011) to augment it and σo might not be available for such queries (e.g., σo is a human

player who is unavailable). Or σo is a weak strategy and exactly cloning its behavior would

result in a weak strategy. Instead of learning a strategy directly with behavioral cloning,

we use it to learn a sketch that helps the synthesis process of a strong strategy.

Sketch-learning methods can be more effective than those that optimize for Ψ

directly for two reasons. First, Ψ can be computationally more expensive than C. Using

C to learn parts of the programmatic strategy will tend to be more efficient than to learn

the entire strategy with Ψ. Second, the function C can offer a denser signal for search

(e.g., the neighbor p′ of p might not defeat σ−i, but it might have a higher C-score, which

can be helpful to guide the search).

4.2.1 Sketch Learning with UCT

We run UCT with the evaluation function C(L, p) for a number of iterations and,

whenever we find a complete program p with a C-value larger than the current best

solution, we evaluate it with Ψ. We call this search the sketch-search. Once we reach a

time limit, we use the program found in the sketch-search with the largest Ψ-value to

initialize a second UCT search, which we call best response (BR)-search.

Let p be the program with largest Ψ-value encountered in the sketch-search. The

program is defined by a sequence of production rules that replace the leftmost non-

terminal symbol in the sequence of partial programs, starting with the initial symbol

of the DSL. We start the UCT tree of the BR-search with a branch that represents

the production rules of p. For example, consider the example shown in Figure 5 where

“if(b2) then c2” is the program with the largest Ψ-value from the sketch-search, where

it achieved a Ψ-value of 0.29 and a C-value of 0.87. The UCT tree of the BR-search is

initialized with the branch with nodes representing the programs: “I”, “if(B) then C”,

“if(b2) then C” and “if(b2) then c2” as shown in (b). We then perform a backpropagation

step on the added branch with Ψ-value of 0.29, which was computed in the sketch-search.

Chapter 4. Problem Definition 23

?

?

c1 c2

if(?) then ?

if(b1) then ? if(b2) then ?

if(b2) then c2

C = 0.87
Ψ = 0.29

if(?) then c1

C

c1 c2

if(B) then C

b1 b2
c1

(a) UCT tree after sketch-search

?

if(?) then ?

if(b2) then ?

if(b2) then c2

if(B) then C

b2

c2

(b) UCT tree at the start of BR-search

?

if(?) then ?

if(b2) then ?

if(b2) then c2

Ψ = 0.29

if(B) then C

b2

c2

(c) Backpropagation using Ψ-value

Figure 5 – Transition from sketch-search to BR-search in UCT

By adding the branch leading to “if(b2) then c2” to the tree of the BR-search and ap-

plying a backpropagation step with the program’s Ψ-value we are biasing it to explore

programs that share the structure of “if(b2) then c2”. This is because the nodes along the

added branch will likely have higher X̄-values than other branches, specially in the first

iterations of search.

The branch added to the UCT tree of the BR-search acts as a sketch as defined in

the literature (SOLAR-LEZAMA, 2009) because it represents a program with “holes” that

are filled by the BR-search. In our example, assuming that the Ψ-value of p is somewhat

large, the BR-search will be biased to explore the sketches that share the structure of

p, such as “if(?) then c1” and “if(?) then ?”, where each question mark represents a hole

that needs to be filled. Sketch learning provides a set of sketches with varied levels of

detail (deeper nodes in the branch represent sketches with more information) that the

BR-search explores while optimizing for Ψ.

Chapter 4. Problem Definition 24

4.2.2 Sketch Learning with Simulated Annealing

Like with UCT, we run SA to clone σo by using C(L, p) as evaluation function.

During search, every time we find a solution with better C-value, we also evaluate it with

Ψ. Once we reach a time limit, SA returns the program p with largest Ψ-value. We also

call this search the sketch-search. We then use p as the initial program of another SA

search that optimizes for Ψ directly, which we also refer to as the BR-search. We reckon

that the program p allows the BR-search to start in a more promising part of the program

space, because p might have a structure that is similar to the structure of a program that

approximates a best response to σ−i.

While the branch added to the UCT tree of the BR-search can be seen as a set of

sketches that are explored according to the prioritization defined by UCT, the connection

between using program p to initialize the SA BR-search and sketches is not as clear. We see

the program p as a soft sketch, because it provides an initial structure to the synthesizer,

but it does not explicitly specify a set of holes. Since SA can change any subtree of p’s

AST, any subtree can be seen as a soft hole of p. Some subtrees are more likely to be

replaced than others due to SA’s acceptance function, i.e., SA prefers to change subtrees

that will result in an increase in Ψ-value.

4.2.3 Score Functions for Behavioral Cloning

We use domain dependent functions C(L, p) and describe them in the empirical

section. We consider score functions that use both the state and actions in the data set

L = {(sj, aj)}m
j=1 and functions that use only the states in L, as in recent approaches on

imitation learning from observations (TORABI; WARNELL; STONE, 2018b).

25

5 Results and Discussion

The primary goal of our empirical evaluation is to verify if synthesizers that learn

a sketch with behavioral cloning generate stronger approximated best responses to σ−i

than their counterparts, that optimize directly for Ψ. We describe the domains of Can’t

Stop and MicroRTS, the DSLs, the score functions, and the target strategies σ−i. All

experiments were run on a single 2.4 GHz CPU with a limit of 8 GB of RAM and a time

limit of 2 days.

5.1 Problem Domains

We use the two-player versions of Can’t Stop and MicroRTS. We chose these games

because they have different features that add to a diversity of scenarios. While Can’t Stop

is a stochastic game, MicroRTS is a deterministic game played with real-time constraints.

The branching factor of Can’t Stop is small (2 or 3 actions per state), while MicroRTS has

an action space that grows exponentially with the number of game components (LELIS,

2020). Finally, there exist strong human-written programmatic strategies for these games

that we can use as σ−i.

5.1.1 Can’t Stop

The game of Can’t Stop is played with 2-4 players on a board with 11 columns,

numbered from 2 to 12. The column 2 has 3 rows and the number of columns increases

in size by 2 for every column until column 7, which has 13 rows. The number of rows

decreases by 2, starting at column 8 until column 12, which also has 3 rows. The player

who first conquers 3 columns wins the game. Figure 6 presents an example of a Can’t

Stop board.

In each round of the game the player has 3 neutral tokens and they roll 4 six-sided

dice. The player can place a neutral token in any column that is given by the combination

of a pair of dice. A neutral token is then placed on the board, initially at the first row of

the chosen column and later immediately above a permanent marker. The player can then

decide to stop playing or to roll the dice again. If the player chooses the former, the neutral

tokens are replaced by permanent tokens, thus securing that position on the board. If the

player decides to roll the dice again, they are able to use the remaining neutral tokens, if

there are any, or advance in columns in which they already have a neutral token placed.

If the player does not have neutral tokens and the combinations of dice only result in

column numbers for which the player does not have a neutral token on, the player loses

Chapter 5. Results and Discussion 28

16×16 (TwoBasesBarracks) 24×24 (BasesWorkers)

32×32 (BasesWorkers) 64×64 (BloodBath-B)

Figure 8 – Maps used in the experiments.

We use four maps of different sizes, where the names in parenthesis are the maps names

in the MicroRTS code base:1 16×16 (TwoBasesBarracks), 24×24 (BasesWorkers), 32×32

(BasesWorkers), and 64×64 (BloodBath-B).The smallest and largest maps are from the

2020 MicroRTS Competition. Figure 8 shows the MicroRTS maps used in our experiments.

We use the winner of the latest MicroRTS Competition, COAC, as σ−i (ONTAÑÓN,

2020). COAC is a deterministic programmatic strategy written by human programmers.

We have implemented a DSL similar to the one presented by MARIÑO et al.

(2021). The DSL includes loops, conditionals, and a set of domain-specific functions that

assign actions to units (e.g., build a barracks) and a set of Boolean functions. We describe

the DSL in the appendix.

The Ψ function for MicroRTS is the average number of victories of p against σ−i in
1 <https://github.com/santiontanon/microrts>

Chapter 5. Results and Discussion 29

two matches. Each map has two starting locations, so we run two matches alternating the

players’ starting location for fairness. MicroRTS does not require an explicit time schedule

for splitting the time between the sketch-search and the BR-search. This is because both Ψ

and C(L, p) are computed by having p play 2 matches against σ−i. The transition between

sketch-search and BR-search occurs naturally if we define the evaluation function of the

search algorithms as the Ψ function with ties being broken according to C(L, p). In the

beginning of the synthesis the Ψ-value will be zero for all programs evaluated in search,

but C(L, p) quickly provides different values for different programs, which will guide the

search toward helpful sketches.

5.2 Score Functions

5.2.1 Can’t Stop & MicroRTS Action-Based Cloning Score

We consider an action-based cloning function where the score of p is the fraction

of actions that p chooses at states in pairs (sj, aj) of L that match the action in the pair,

i.e.,
∑

(sj ,aj)∈L ✶[aj = p(sj)]/|L|, where ✶ is the indicator function. We denote SA and

UCT learning sketches with this score function as Sketch-SA(A) and Sketch-UCT(A).

5.2.2 Can’t Stop Observation-Based Cloning Score

We use an observation-based cloning function that measures the percentage of

permanent markers on the end-game state of a match that overlaps with the permanent

markers obtained by a program p on the match’s end-game state if p had played it. This

score is computed by iterating through each state sj of a match in L and applying the

effects of actions p(sj) to an initially empty board of the game; once an end-game state

sf is reached, we compute the percentage of overlapping permanent markers between

sf and the end-game state in L. For example, if the player in the end-game state of

a match in L conquered columns 2, 3, and 7, and had one marker on column 12, and

program p conquered columns 2, 3, and had one marker on column 8, then the score

is (3 + 5)/(3 + 5 + 13 + 1 + 1) = 0.34. Here, (3 + 5) is the number of positions in the

intersection of the end-game states and (3+5+13+1+1) is the union of the positions. If

p and σo return the same actions for all states in L, then the score is 1.0. If L has multiple

matches, we return the average score across all matches. We denote SA and UCT using

this score function as Sketch-SA(O) and Sketch-UCT(O).

5.2.3 MicroRTS Observation-Based Cloning Score

We use an observation-based cloning function that computes a normalized absolute

difference between (i) the number of units and resources the strategy p trains and collects

in a match of p against σ−i and (ii) the number of units and resources the strategy σo

Chapter 5. Results and Discussion 30

trains and collects in a match in the data set L. Let nu and n′
u be the number of units

of type u that p and σo have trained in their matches, respectively. The score related to

units of type u is given by 1 − |nu−n′

u|
max(nu,n′

u)
. For example, if the number of Ranged units

the strategy p trained is 4 and if the number of Ranged units the strategy σo trained is

10, then the score for Ranged units is 1 − 6/10 = 0.4. The value returned is the average

scores of all types of units and resources. The score is 1.0 if both p and σo train the same

number of units of each type and collect the same number of resources. We denote SA

and UCT using this function as Sketch-SA(O) and Sketch-UCT(O).

5.3 Strategies to Clone

We use weak and strong strategies σo for generating the data sets L. L is composed

of state-action pairs from matches in which σo plays the game with either itself or another

strategy, which is specified below. For self-play matches, we include in L only the state-

action pairs of the winner player.

5.3.1 Can’t Stop

We consider 3 data sets L, each generated with a different σo. The first σo randomly

chooses one of the available actions at each state of the game. The data set is composed

of three self-play matches of this strategy, which only wins approximately 2.8% of the

matches it plays against σ−i. We call this strategy “Random”. We use a data set composed

of 3 self-play matches of the GA strategy and a data set composed of three matches a

human played with GA; the human won all matches.

5.3.2 MicroRTS

We also consider three data sets L for MicroRTS. The first L is composed of two

matches (one in each starting location of the map) of Ranged Rush (RR), which is a simple

programmatic strategy (STANESCU et al., 2016), against COAC. We also use a data set

composed of two matches of A3N, a Monte Carlo tree search algorithm (MORAES et al.,

2018), against COAC. A3N considers low-level actions of units (e.g., move one square to

the right) while planning their actions. We chose A3N because we reckon it would be hard

for the synthesizer to clone its behavior as the strategies derived with A3N are unlikely

to be in the space of strategies defined by the DSL (the DSL does not allow for a fine

control of the units, as A3N does). Both RR and A3N are unable to win any matches

against COAC, our σ−i, in all maps evaluated. We also consider a data set composed of

states from two self-play matches of COAC.

Chapter 5. Results and Discussion 32

method for approximating a best response for σ−i. We conjecture SA synthesizes stronger

strategies than UCT because it explores the space more quickly than UCT. The time

complexity of UCT’s selection step is quadratic on the program’s length. This is because,

in each selection step, the search traverses all production rules of the current incomplete

program for each production rule applied to it. By contrast, SA can synthesize a large

number of instructions with a single neighborhood operation.

Although Sketch-SA(O) performs better by cloning the behavior of the human

player, the method performs surprisingly well when it learns sketches by cloning the

behavior of a random strategy. One of the key aspects for playing Can’t Stop is to decide

when to stop playing so that the neutral markers become permanent markers. The pro-

gram must have a specific structure for computing the score that leads to a stop action,

similar to sum(map(λ.f, neutrals)). Here, neutrals is a list with the neutral markers

and f is a score function for individual markers. The sum and map operators return the

sum of the scores of all markers. While the structure of this program is not trivial, the

random strategy has a 50% chance of choosing the stop action, and its effects are reflected

on the states in L (i.e., neutral markers become permanent markers). The synthesizers

discover sketches like the program above because such programs place permanent mar-

kers on the board, as the random strategy does. The BR-search modifies the sketch to

maximize the player’s utility, but most of program’s structure is maintained.

The sketch-based methods perform worse with the action-based function. This is

because the observation-based function captures the effects of even rare actions. A good

player of Can’t Stop chooses to continue playing in most states, but at crucial states

they choose to stop. A player that never stops has a high action-based score because the

stop action is rare. As a result, the sketch-based methods often fail to learn the program

structure needed to correctly decide when to stop.

5.5 Empirical Results: MicroRTS

Figure 10 shows the results of the SA variants on MicroRTS. Like in Can’t Stop, the

sketch-based methods are superior to the baseline, with Sketch-SA(O) achieving winning

rates near 1.0 even when learning sketches from A3N, which is a strategy unable to defeat

σ−i. There is also a gap between the action and the observation-based functions and the

gap seems to increase with the map size. Sketch-SA(A) did not synthesize strategies that

defeated σ−i for L generated with A3N and COAC on the 64×64 map. The explanation

for the poor performance of Sketch-SA(A) is similar to that on Can’t Stop: some actions

are rare but play an important role in the game (e.g., one can train Ranged units after

building a barracks, which might happen only once in a match). The plots for maps of

size 16×16 and 24×24 in Figure 10 show a reduced running time (approximately 6 hours

for the former and 24 hours for the latter) so we can better visualize the curves. Each

Chapter 5. Results and Discussion 36

Observation Type L WR - Sketch only WR - Sketch & BR

A
Human 0.352 ± 0.199 0.491 ± 0.117

Glenn and Aloi 0.424 ± 0.070 0.516 ± 0.092
Random 0.182 ± 0.058 0.507 ± 0.085

O
Human 0.212 ± 0.216 0.555 ± 0.017

Glenn and Aloi 0.368 ± 0.088 0.543 ± 0.024
Random 0.244 ± 0.114 0.518 ± 0.058

Table 1 – Comparison of the winning rate against GA between the sketch-search-only approach
(WR - Sketch-only) and sketch-search along with BR-search (WR - Sketch & BR)
using different datasets L for cloning

(action-based (A) and observation-based (O)). This likely happens because the signal the

algorithm receives from the sketch-search is only a signal representing if the algorithm is

cloning the action chosen by the oracle. Therefore, the search algorithm will optimize the

search towards this signal, and not towards the winning rate against Glenn and Aloi’s

strategy, that is, the signal given by Ψ. The BR-search with the Ψ evaluation function

optimizes for programs that yield a better Ψ signal, and by the end of the execution, the

synthesized program will better approximate a best response to the GA strategy.

An interesting result is that with this approach, better programs were synthesized

when cloning the behavior of the data set generated by the Glenn and Aloi’s strategy.

We conjecture that because the DSL we used allows Glenn and Aloi’s strategy to be

synthesized exactly, it can then be able to synthesize scripts that clones accurately their

strategy if given enough time, as opposed to the human’s strategy, which is unlikely to

be representable in our DSL.

5.8 BR-search UCT Tree Initialization

We experimented with two approaches to initialize the UCT tree of the BR-search:

we can use the complete program p or the incomplete program given by the production

rules represented by nodes in the UCT tree of the sketch-search. We empirically observed

that initializing the program with the complete program sped up the synthesis step during

the BR-search, as one can observe in Figure 14.

Even though both approaches are much faster than the baseline UCT, we hypothe-

size that initializing the BR-search by using p will bias the search towards programs that

have a similar program structure to p. On the other hand, while it is true that the same

applies if we initialize it by using an incomplete program, when compared to the former

approach the bias is not as strong; therefore, UCT will take longer to explore the program

space.

Chapter 5. Results and Discussion 38

Ranged units (line 5) once a barracks is built (line 8); a single barracks is built because

all resources are spent training Ranged units once the barracks is available. The Ranged

units cluster together (line 4) and attack enemy units within their range of attack (line

7). If there are no enemy units within their range, they attack the enemy’s units that

are close to being removed from the game (line 11). The strategy assigns 4 Workers to

collect resources (line 10). This strategy is representative of the strategies our methods

synthesize for both domains.

Next, we present below the programs Sketch-SA(O) synthesized for the maps used

in our experiments. The programs presented below are not simplified to improve reada-

bility.

1 def Sketch-SA-O-16x16(state s):

2 for u in s:

3 u.train(Ranged, Right, 4)

4 u.harvest(9)

5 u.attack(Closest)

6 u.train(Worker, Up, 1)

7

8 def Sketch-SA-O-24x24(state s):

9 for u in s:

10 if not u.isBuilder():

11 u.moveToUnit(Ally, LessHealthy)

12 u.train(Ranged,Left,15)

13 for u in s:

14 u.idle()

15 u.build(Barracks, EnemyDir, 100)

16 for u in s:

17 u.harvest(4)

18 u.attack(LessHealthy)

19

20

21 def Sketch-SA-O-32x32(state s):

22 for u in s:

23 for u in s:

24 for u in s:

25 u.harvest(2)

26 for u in s:

27 u.train(Ranged,EnemyDir,6)

28 u.train(Worker,Left,7)

29 for u in s:

Chapter 5. Results and Discussion 39

30 u.build(Barracks,Right,1)

31 u.idle()

32 u.harvest(5)

33 u.attack(Strongest)

34

35 def Sketch-SA-O-64x64(state s):

36 for u in s:

37 u.attack(Weakest)

38 for u in s:

39 u.train(Worker, Right, 6)

40 u.harvest(7)

41 for u in s:

42 u.build(Barracks, Left, 10)

43 if HaveUnitsAttacking(4):

44 u.attack(Farthest)

45 else:

46 u.idle()

47 u.train(Ranged, Down, 50)

5.9.2 Programs Synthesized for Can’t Stop

We use the structure of GLENN; ALOI (2009)’s strategy and the synthesizers

need to generate a program that fill the holes responsible for the yes-no and column

decisions. The program with holes is shown below, with the two question marks denoting

the instructions that need to be generated.

1 def get_action(self, state):

2 actions = state.available_moves()

3 if actions == [‘y’, ‘n’]:

4 score = ?

5 if win_after_n(state):

6 return ‘n’

7 elif available_columns(state):

8 return ‘y’

9 else:

10 if score >= 29:

11 return ‘n’

12 else:

13 return ‘y’

14 else:

Chapter 5. Results and Discussion 40

15 index = ?

16 return actions[index]

The method win_after_n(state) checks if the player will win in case they choose

to end their turn and the method available_columns(state) checks if there are available

columns for the player to choose given the current board and dice configuration. The

pseudocode below presents Glenn and Aloi’s strategy written with our DSL.

1 def get_action(self, state):

2 actions = state.available_moves()

3 if actions == [‘y’, ‘n’]:

4 score = sum(map(lambda x: (NumberAdvancedThisRound+1)*

progress_value, neutrals)) + DifficultyScore

5 if win_after_n(state):

6 return ‘n’

7 elif available_columns(state):

8 return ‘y’

9 else:

10 if score >= 29:

11 return ‘n’

12 else:

13 return ‘y’

14 else:

15 index = argmax(map(lambda x: sum(map(lambda x:

NumberAdvancedByAction * move_value - 6 * IsNewNeutral,

locallist)), actions))

16 return actions[index]

The following program was synthesized by Sketch-SA(O) and achieved the winning

rate of 59.64% against Glenn and Aloi’s strategy in 5, 000 matches of the game.

1 yes-no: ((DifficultyScore * DifficultyScore) - (sum(map((lambda x :

sum(neutrals)), neutrals)) - (DifficultyScore + sum(map((lambda

x : (progress_value * (NumberAdvancedThisRound *

PositionsPlayerHasSecuredInColumn))), neutrals)))))

2 column: argmax(map((lambda x : sum(map((lambda x : (

PositionsPlayerHasSecuredInColumn + move_value)), locallist))),

actions))

For the yes-no decision, the synthesized program has a similar structure to Glenn and

Aloi’s strategy. Namely, it accounts for the columns in which the neutral tokens are

Chapter 5. Results and Discussion 41

positioned and the position of the neutral tokens in each column. This strategy differs

from Glenn and Aloi’s because it places a higher weight on the difficulty of a state when

deciding whether to continue or to stop playing (DifficultyScore appears as a qua-

dratic term in the synthesized program, while it is linear in Glenn and Aloi’s strategy).

The synthesized strategy accounts for the number of rows conquered in previous rounds

(PositionsPlayerHasSecuredInColumn is used in the synthesized strategy, but not in

Glenn and Aloi’s).

The synthesized strategy for the column decisions fixes a weakness in Glenn

and Aloi’s strategy. Namely, their strategy ignores the rows the player has conquered

in previous rounds of the game. By contrast, the synthesized strategy uses function

PositionsPlayerHasSecuredInColumn in the argmax operator. While both strategies

prefer even-numbered columns, in some games, depending on the dice roll, the player

might have to play on odd-numbered columns. Glenn and Aloi’s strategy continues to

prefer even-numbered columns, even if they have achieved a promising position on odd-

numbered ones. The synthesized strategy eventually prefers to continue play on odd-

numbered columns if they have conquered a “sufficiently large” number of rows.

42

6 Conclusions

In this work we showed that behavioral cloning can be used to learn effective sket-

ches for speeding up the synthesis of programmatic strategies. We presented Sketch-UCT

and Sketch-SA, two synthesizers based on UCT and SA that learn a sketch for a program

encoding an approximated best response to a target strategy by cloning the behavior of

an existing strategy. The synthesizers use the sketch as a starting point in the search

for an approximated best response. Experimental results on Can’t Stop and MicroRTS

showed that Sketch-SA can synthesize strategies able to defeat programmatic strategies

written by human programmers in all settings tested, even when learning sketches from

weak strategies. In particular, Sketch-SA synthesized strategies that defeated the winner

of the latest MicroRTS competition on all maps used in our experiments, while baseline

synthesizers failed to generate good strategies in these settings.

For future experiments, it would be interesting to analyze if the number of instances

used by the sketch-search has any effects on the resulting cloning score and winrate of

the strategies synthesized. A more thorough experiment on different search algorithms

besides SA and UCT could bring insightful remarks on how these search algorithms behave

with different grammars and domains that they are applied to when using the algorithm

discussed in this work.

A more comprehensive study on the variations of the SA algorithm could bring

new insights on its behavior on program synthesis, such as an extensive study on different

temperature schedules and cost function implementations. The same could be done with

the UCT algorithm, as it has many variations in the literature.

43

References

AHMED, U. Z.; GULWANI, S.; KARKARE, A. Automatically generating problems and
solutions for natural deduction. In: Twenty-Third International Joint Conference
on Artificial Intelligence. [S.l.: s.n.], 2013.

ALUR, R. et al. Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design (FMCAD). [S.l.]: IEEE, 2013. p. 1–8.

AUER, P.; CESA-BIANCHI, N.; FISCHER, P. Finite-time analysis of the multiarmed
bandit problem. Machine learning, Springer, v. 47, n. 2-3, p. 235–256, 2002.

BAIN, M.; SAMMUT, C. A framework for behavioural cloning. In: Machine
Intelligence 15. [S.l.]: Oxford University Press, 1996. p. 103–129.

BASTANI, O.; PU, Y.; SOLAR-LEZAMA, A. Verifiable reinforcement learning via
policy extraction. In: Advances in Neural Information Processing Systems. [S.l.:
s.n.], 2018. p. 2499–2509.

BENBASSAT, A.; SIPPER, M. Evolving board-game players with genetic programming.
In: Genetic and Evolutionary Computation Conference. [S.l.: s.n.], 2011. p.
739–742.

BUTLER, E.; TORLAK, E.; POPOVIĆ, Z. Synthesizing interpretable strategies for
solving puzzle games. In: Proceedings of the 12th International Conference on
the Foundations of Digital Games. [S.l.: s.n.], 2017. p. 1–10.

CANAAN, R. et al. Evolving agents for the hanabi 2018 cig competition. In: IEEE. 2018
IEEE Conference on Computational Intelligence and Games. [S.l.], 2018. p. 1–8.

CAZENAVE, T. Monte-carlo expression discovery. International Journal on
Artificial Intelligence Tools, v. 22, n. 01, p. 1250035, 2013.

CHASLOT, G. et al. Monte-carlo tree search: A new framework for game ai. In: . [S.l.:
s.n.], 2008.

CHEUNG, A.; SOLAR-LEZAMA, A.; MADDEN, S. Using program synthesis for social
recommendations. In: Proceedings of the 21st ACM international conference on
Information and knowledge management. [S.l.: s.n.], 2012. p. 1732–1736.

COULOM, R. Efficient selectivity and backup operators in monte-carlo tree search. In:
SPRINGER. International conference on computers and games. [S.l.], 2006. p.
72–83.

DEURSEN, A. V.; KLINT, P.; VISSER, J. Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, ACM New York, NY, USA, v. 35, n. 6, p. 26–36,
2000.

FREITAS, J. M. D.; SOUZA, F. R. de; BERNARDINO, H. S. Evolving controllers for
mario ai using grammar-based genetic programming. In: IEEE. 2018 IEEE Congress
on Evolutionary Computation (CEC). [S.l.], 2018. p. 1–8.

References 44

GLENN, J. R.; ALOI, C. J. A generalized heuristic for can’t stop. In: FLAIRS
Conference. [S.l.: s.n.], 2009.

GULWANI, S. et al. Program synthesis. Foundations and Trends® in Programming
Languages, Now Publishers, Inc., v. 4, n. 1-2, p. 1–119, 2017.

HAJEK, B. Cooling schedules for optimal annealing. Mathematics of operations
research, INFORMS, v. 13, n. 2, p. 311–329, 1988.

HUSIEN, I.; SCHEWE, S. Program generation using simulated annealing and model
checking. In: NICOLA, R. D.; KÜHN, E. (Ed.). Software Engineering and
Formal Methods. [S.l.]: Springer International Publishing, 2016. p. 155–171. ISBN
978-3-319-41591-8.

KELLER, M. Can’t Stop? Try the Rule of 28. 1986. World Game Review 6.

KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization by simulated
annealing. science, American association for the advancement of science, v. 220, n. 4598,
p. 671–680, 1983.

KOCSIS, L.; SZEPESVÁRI, C. Bandit based monte-carlo planning. In: SPRINGER.
European conference on machine learning. [S.l.], 2006. p. 282–293.

LANCTOT, M. et al. A unified game-theoretic approach to multiagent reinforcement
learning. In: Proceedings of the International Conference on Neural Information
Processing Systems. [S.l.: s.n.], 2017. p. 4193–4206.

LELIS, L. H. S. Planning algorithms for zero-sum games with exponential action spaces:
A unifying perspective. In: Proceedings of the International Joint Conference on
Artificial Intelligence. [S.l.]: International Joint Conferences on Artificial Intelligence
Organization, 2020. p. 4892–4898. Survey track.

MARIÑO, J. R. H. et al. Programmatic strategies for real-time strategy games.
Proceedings of the AAAI Conference on Artificial Intelligence, v. 35, n. 1, p.
381–389, 2021.

MORAES, R. O. et al. Action abstractions for combinatorial multi-armed bandit tree
search. In: AAAI. Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment. [S.l.], 2018. p. 74–80.

NOURANI, Y.; ANDRESEN, B. A comparison of simulated annealing cooling strategies.
Journal of Physics A: Mathematical and General, IOP Publishing, v. 31, n. 41,
p. 8373, 1998.

NYE, M. et al. Learning to infer program sketches. In: CHAUDHURI, K.;
SALAKHUTDINOV, R. (Ed.). Proceedings of the 36th International Conference
on Machine Learning. [S.l.]: PMLR, 2019. (Proceedings of Machine Learning Research,
v. 97), p. 4861–4870.

ONTANÓN, S. The combinatorial multi-armed bandit problem and its application to
real-time strategy games. In: Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference. [S.l.: s.n.], 2013.

References 45

ONTAÑÓN, S. Results of the 2020 MicroRTS Competition. 2020. <https:
//sites.google.com/site/micrortsaicompetition/competition-results/2020-cog-results>.
Accessed: 2021-09-30.

ROSS, S.; GORDON, G.; BAGNELL, D. A reduction of imitation learning
and structured prediction to no-regret online learning. In: Proceedings of the
International Conference on Artificial Intelligence and Statistics. [S.l.]: PMLR,
2011. (Proceedings of Machine Learning Research, v. 15), p. 627–635.

SAMMUT, C. et al. Learning to fly. In: Machine Learning Proceedings 1992. [S.l.]:
Elsevier, 1992. p. 385–393.

SCHAAL, S. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, v. 3, p. 233–242, 1999.

SINGH, R. Accessible programming using program synthesis. Tese (Doutorado)
— Massachusetts Institute of Technology, Department of Electrical Engineering . . . ,
2014.

SOLAR-LEZAMA, A. The sketching approach to program synthesis. In: SPRINGER.
Asian Symposium on Programming Languages and Systems. [S.l.], 2009. p.
4–13.

STANESCU, M. et al. Evaluating real-time strategy game states using convolutional
neural networks. In: IEEE. Proceedings IEEE Conference on Computational
Intelligence and Games. [S.l.], 2016. p. 1–7.

TORABI, F.; WARNELL, G.; STONE, P. Behavioral cloning from observation. arXiv
preprint arXiv:1805.01954, 2018.

TORABI, F.; WARNELL, G.; STONE, P. Behavioral cloning from observation. In:
Proceedings of the International Joint Conference on Artificial Intelligence.
[S.l.: s.n.], 2018.

VERMA, A. et al. Imitation-projected programmatic reinforcement learning. In:
Advances in Neural Information Processing Systems. [S.l.]: Curran Associates,
Inc., 2019. v. 32, p. 1–12.

VERMA, A. et al. Programmatically interpretable reinforcement learning. In:
Proceedings of the International Conference on Machine Learning. [S.l.: s.n.],
2018. p. 5052–5061.

Appendix

47

APPENDIX A – Domain-Specific Languages

used for Can’t Stop and MicroRTS

A.1 Domain-Specific Language for Can’t Stop

The DSL we developed for Can’t Stop is described by the following context-free

grammar.

S → AA

A → if(B < B) then A else A | argmax(L) | sum(L)

→ E ⊗ E

B → N | E ⊗ E

E → E ⊗ E | N | sum(L) | L2 | F2

L → map(λF1, L) | L1 | locallist

λF1 → sum(L) | map(λF1, L) | E ⊗ E

F2 → NumberAdvancedThisRound

→ NumberAdvancedByAction

→ PositionsPlayerHasSecuredInColumn

→ PositionsOpponentHasSecuredInColumn

→ DifficultyScore

→ IsNewNeutral

L1 → neutrals | actions

L2 → progress_value | move_value

N → 0 | 1

⊗ → + | − | ∗

This DSL allows our system to synthesize actions for both decisions in Can’t Stop:

yes-no decision and column decision. λF1 represents lambda functions used as parameters

for the map operator and F2 is the set of domain-specific functions that provide information

about a state of the game. Next, we describe these functions:

• NumberAdvancedThisRound: Calculates the number of cells the player has advanced

APPENDIX A. Domain-Specific Languages used for Can’t Stop and MicroRTS 48

in the current round

• NumberAdvancedByAction: Calculates the number of cells the player will advance

if they take the action passed as a parameter

• PositionsPlayerHasSecuredInColumn: Calculates how many cells the player has se-

cured in a column passed as parameter

• PositionsOpponentHasSecuredInColumn: Calculates how many cells the opponent

has secured in a column passed as parameter

• DifficultyScore: Calculates a difficulty score (GLENN; ALOI, 2009) of a state, where

the value returned depends on the position of the neutral tokens; a state is considered

more difficult if the neutral tokens are on odd columns or if all tokens are either on

columns with numbers smaller than 7 or greater than 7

• IsNewNeutral: Returns 1 if the action will use a neutral token, returns 0 otherwise

Next, we describe the lists from L, L1 and L2 used in our DSL:

• locallist: The set of actions is represented as a list of lists. When used in a map

operator, we call the lists inside an action list a “locallist,” which is represented in

the DSL as l1.

• neutrals: List that represents which columns the neutral tokens are located given

the state passed as parameter

• actions: List that represents the actions available for the state passed as parameter

• progress_value: List that represents weights of the columns used in Glenn and Aloi’s

strategy. In their strategy this set of weights is used in the yes-no decision. In our

DSL, this list can be used by both actions. progress_value = [7, 7, 3, 2, 2, 1, 2, 2, 3, 7, 7]

• move_value: List that represents weights of the columns used in Glenn and Aloi’s

strategy in the column decision. In our DSL, this list can be used in both decisions.

move_value = [7, 0, 2, 0, 4, 3, 4, 0, 2, 0, 7]

A.2 Domain-Specific Language for MicroRTS

Our DSL for MicroRTS is inspired on that of MARIÑO et al. (2021). The DSL is

described by the following context-free grammar.

APPENDIX A. Domain-Specific Languages used for Can’t Stop and MicroRTS 49

S → SS | for S | if(B) then S | if(B) then S else S | C | λ

B → HasNumberOfUnits(T, N) | OpponentHasNumberOfUnits(T, N)

→ HasLessNumberOfUnits(T, N) | HaveQtdUnitsAttacking(N)

→ HasUnitWithinDistanceFromOpponent(N)

→ HasNumberOfWorkersHarvesting(N) | is_Type(T) | IsBuilder

→ CanAttack | HasUnitThatKillsInOneAttack

→ OpponentHasUnitThatKillsUnitInOneAttack

→ HasUnitInOpponentRange | OpponentHasUnitInPlayerRange

→ CanHarvest

C → Build(T, D, N) | Train(T, D, N) | moveToUnit(Tp, Op)

→ Attack(Op) | Harvest(N) | Idle | MoveAway

T → Base | Barracks | Ranged | Heavy | Light | Worker

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15

→ 20 | 25 | 50 | 100

D → EnemyDir | Up | Down | Right | Left

Op → Strongest | Weakest | Closest | Farthest

→ LessHealthy | MostHealthy | Random

Tp → Ally | Enemy

This DSL allows nested loops and conditionals. It contains several Boolean func-

tions (B) and command-oriented functions (C) that provide either information about the

current state of the game or commands for the ally units.

Next, we describe the Boolean functions used in our DSL.

• HasNumberOfUnits(T,N): Checks if the ally player has N units of type T

• OpponentHasNumberOfUnits(T,N): Checks if the opponent player has N units of

type T

• HasLessNumberOfUnits(T,N): Checks if the ally player has less than N units of

type T

• HaveQtdUnitsAttacking(N): Checks if the ally player has N units attacking the

opponent

APPENDIX A. Domain-Specific Languages used for Can’t Stop and MicroRTS 50

• HasUnitWithinDistanceFromOpponent(N): Checks if the ally player has a unit within

a distance N from a opponent’s unit

• HasNumberOfWorkersHarvesting(N): Checks if the ally player has N units of type

Worker harvesting resources

• is_Type(T): Checks if a unit is an instance of Type T

• IsBuilder : Check if a unit is of type Worker

• CanAttack: Checks if a unit can attack

• HasUnitThatKillsInOneAttack: Checks if the ally player has a unit that kills an

opponent’s unit with one attack action

• OpponentHasUnitThatKillsUnitInOneAttack: Checks if the opponent player has a

unit that kills an ally’s unit with one attack action

• HasUnitInOpponentRange: Checks if an unit of the ally player is within attack range

of an opponent’s unit

• OpponentHasUnitInPlayerRange: Checks if an unit of the opponent player is within

attack range of an ally’s unit

• CanHarvest: Checks if a unit can harvest resources

Next, we describe the command-oriented functions used in our DSL:

• Build(T,D,N): Trains N units of type T on a cell located on the D direction of the

unit

• Train(T,D,N): Trains N units of type T on a cell located on the D direction of the

structure responsible for training them

• moveToUnit(Tp, Op): Commands a unit to move towards the player Tp following a

criterion Op

• Attack(Op): Commands a unit to attack units of the opponent player following a

criterion Op

• Harvest(N): Sends N Worker units to harvest resources

• Idle: Commands a unit to stay idle and attack if an opponent units comes within

its attack range

• MoveAway: Commands a unit to move in the opposite direction of the player’s base

APPENDIX A. Domain-Specific Languages used for Can’t Stop and MicroRTS 51

T represents the types a unit can assume. N is a set of integers. D represents the

directions available used in action functions. Op is a set of criteria to select an opponent

unit based on their current state. Tp represents the set of players. See the different types,

integers, directions, criteria, and players we used in the context-free grammar above.

	e8d5161f08ad093a23bf2aec9501d2549a48dd690aae710738902691e94ae698.pdf
	e8d5161f08ad093a23bf2aec9501d2549a48dd690aae710738902691e94ae698.pdf

