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Abstract

We consider the problem of constructing stable maps from surfaces to the plane with branch set a given set of curves immersed
(except possibly with cusps) in the plane. Various constructions are used (1) piecing together regions immersed in the plane
(2) modifying an existing stable map by a sequence of codimension one transitions (swallowtails etc) or by surgeries. In (1) the
way the regions are pieced together is described by a bipartite graph (an edge C* corresponds to a branch curve C with the vertices
of C* corresponding to the two regions containing C). We show that any bipartite graph may be realized by a stable map and we
consider the question of realizing graphs by fold maps (i.e. maps without cusps). For example, using Arnol’d’s classification of
immersed curves, we list all branch sets with at most two branch curves and four double points realizable by planar fold maps of
the torus.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

By a well-known theorem of Whitney, the singular set of any stable smooth map from a closed surface to the
plane consists of curves of double points, possibly containing isolated cusp points. The branch set (i.e. the image of
the singular set) consists of a number of immersed curves in the plane (possibly with cusps) whose self-intersections
are all transverse and disjoint from the cusps (if any). Stable maps possess various topological invariants, the most
important being the graph (as defined in [8]), which describes the position of the singular set in the surface, and the
branching data, i.e. the restriction of the map to the singular set. In this work we address the question of characterizing
branching data realizable by stable maps. In [8,9] necessary and sufficient conditions were found for the realizability
of certain graphs by stable maps, with particular emphasis on the simplest case where the surface is a sphere, the graph
in this case being (necessarily) a tree. We consider the question of realizability of more general graphs and the related
question of the calculation of invariants of the branch set, in particular the local invariants which are characterized [14]
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by their behaviour at codimension one transitions, as classified by J. Rieger in [15] (for the multilocal classification
see [5]).

Stable maps may be constructed in various ways. One way is to immerse the surface in 3-space and then project it
into the plane. Or one may modify a given stable map by a (generic) homotopy consisting of a sequence of codimen-
sion one transitions: tangencies, swallowtails, beaks etc. Alternatively, one may perform surgery on a given map to
obtain a new map (see Section 3). In Section 4, surgeries are used to construct stable maps with prescribed graphs. We
show (Theorem 4.1) that any bipartite graph (with arbitrarily weighted vertices) is the graph of a stable map from an
orientable closed surface to the plane. Surgeries are useful in calculating local invariants (rather than via homotopy).
The relevant formulas are given in Section 5.

In Section 6 we consider fold maps (i.e. stable maps without cusps). Such maps and their higher dimensional
analogues have been studied by various authors [1,2,6,16,17]. Fold maps of surfaces are closely related to immersions
of surfaces (necessarily with non empty boundary) into the plane. These are classified, up to image isotopy, in [10,18].
In [9] graphs of fold maps of the sphere were characterized. In Section 6 this characterization is extended to planar
fold maps of closed orientable surfaces. Such maps can be obtained by suitable assembly of immersed planar regions
in the plane. This enables us to list all possible planar fold maps of the torus with μ � 2 and D � 4 (Theorem 6.3).

2. Stable maps and their invariants

We first recall some definitions and basic results. Two smooth maps f and g from an orientable surface M to the
plane are said to be topologically equivalent if there are orientation-preserving diffeomorphisms, l and k, such that
g ◦ l = k ◦ f. The maps f and g are isotopic if both the above diffeomorphisms are isotopic to the identity. A map f

is said to be stable if all maps sufficiently close to f (in the Whitney C∞-topology) are isotopic to f .
A point of the surface is non singular if the map is injective in a neighborhood of that point and is singular

otherwise. Denote by Σf the singular set of a map f . Its image Bf = f (Σf ) is the branch set of f . By Whitney’s
theorem, the singularities of any stable map consist of curves of fold points possibly containing (isolated) cusp points
(see [7]). Except at the cusp points (if any), the singular set is immersed into the plane with at most finitely many
transverse intersection points, none of which are cuspidal. The branch set is oriented as follows: as we traverse a
branch curve following the orientation, nearby points on our left have two more inverse images than those on our
right. The non-singular set (which is immersed into the plane by the map) consists of finitely many regions. Given
orientations of the surface and the plane, a region is positive if the map preserves orientation and negative otherwise.
The singular set is the frontier of each half of the surface (positive or negative) i.e. any singular curve lies in the
frontier of a positive and a negative region.

The singular sets of two equivalent maps are equivalent in the sense that there is a diffeomorphism of the sur-
face carrying one singular set onto the other and similarly for the branch sets. Thus any diffeomorphism invariant
of singular sets or of branch sets will automatically be a topological invariant of the map. Clearly, the number of
connected components of the singular set as well as the topological types of the regions are topological invariants.
This information may be conveniently encoded in a weighted graph from which the pair M,Σf may be reconstructed
(up to diffeomorphism) [8]. The edges and vertices of the graph correspond (respectively) to the singular curves and
the regions (i.e. the connected components of the non-singular set). An edge is incident to a vertex if and only if the
singular curve corresponding to the edge lies in the frontier of the region corresponding to the vertex. Since each
singular curve lies in the frontier of a positive and a negative region, the graph is bipartite. The weight gv of a vertex
v is defined to be the genus of the corresponding region i.e. the genus of the closed surface obtained by adding a disk
to each boundary curve. Fig. 1 shows a stable map and its weighted graph.

3. Surgery of stable maps

One way of constructing a stable map is to glue together two stable maps. In particular, in a surgery, a pair of
disjoint disks in the surface is removed and replaced by a tube, the map then being extended over the interior of
the tube. There are two types of surgery: horizontal and vertical. Horizontal surgery is a generalization of Ohmoto’s
connected sum [14]. Given a stable map h, a bridge is an embedded arc β in the plane which meets the branch set
Bh in its two end points (and nowhere else) compatibly with the orientation of the branch set as shown in Fig. 2(a)
[13]. The stable map hβ is constructed as follows. The bridge meets h(M) in its end points, h(p) and h(q), say. As
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Fig. 1. Stable map and its weighted graph.

Fig. 2. Surgeries: (a) horizontal, (b) vertical.

in [14], choose small disks in M centered at p and q and replace their interiors by a tube (i.e. an annulus), respecting
the orientation of M, so as to obtain an oriented surface. As illustrated in Fig. 2(a), the map h may then be extended
over the tube to give the required stable map hβ . In particular, if M is the disjoint union of surfaces P and Q and f

and g denote the restrictions of h to P and to Q, with p ∈ P and q ∈ Q then we obtain the connected sum f ⊕β g (or
simply f ⊕ g). In other words h = f ∪ g and (f ∪ g)β = f ⊕ g.

Fig. 2(b) illustrates a vertical surgery. Here there are two non-singular disks, one positive and one negative (as in
the figure) whose images (in the plane) coincide. The disks are replaced by a tube which is mapped into the plane,
with a singular curve running around the middle of the tube. Thus the surgery adds a disjoint embedded curve to the
branch set. It is possible also to perform vertical surgery using a bridge, but this will not be needed here. Observe that
both types of surgery increase or decrease the value of μ by one.
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4. Realizing graphs with arbitrary weights

We next turn to the question of which weighted graphs can be realized by stable maps. A basic building block is a
certain stable map of the torus to the plane with just one singular curve. This singular curve necessarily contains cusps
(in fact two of them) and separates the torus into two regions, one of which is (must be) a disk. The map in question
may be constructed by means of the map of the annulus to the plane given by

(
r, (cos r) sin 2θ + (sin r) cos θ

)
,

where π/2 � r � 3π/2, r being the radial coordinate of the annulus and θ the circular coordinate. Alternatively, as
in Fig. 3, a pair of swallowtails may be introduced into the usual projection of the torus (to the plane) and then two
of the resulting four cusps may be cancelled by a beaks transition. Or one may use the stable map of the sphere (as
defined in [11, p. 154]) which has two singular curves, each containing one cusp point, see Fig. 4.

Fig. 5 illustrates the images of two curves (on either side of the singular curve), one bounding an immersed punc-
tured torus, the other an immersed disk.

Theorem 4.1. Any bipartite connected graph (with arbitrarily weighted vertices) is the graph of a stable map.

Proof. As observed above, the graph of a stable map is necessarily bipartite since, along every singular curve, a pos-
itive region meets a negative region. Conversely, in [8] it was shown that any tree is realizable by a stable map of
the sphere (so that all the regions are planar i.e. have weight zero). The stable maps in question were constructed
by a sequence of lips transitions. Consider next a (connected) bipartite graph (with all weights zero). Choose a tree
containing all the vertices of the graph. Realize the tree by a stable map (with all weights zero). The construction is
completed by showing that for any stable map there exists a stable map whose graph is the graph of the original map
plus an edge joining a pair of vertices of opposite signs. Thus, given a stable map and two regions of opposite signs,

Fig. 3. Two-cusp transition in the torus.

Fig. 4. Branch sets of stable maps with two cusps.

Fig. 5. Stable map of the torus with μ = 1.
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Fig. 6. Two-cusp surgery and its effect on the graph.

first perform a homotopy which does not alter the graph and after which the images (in the plane) of the two regions
intersect. We may now choose a pair of disks, one in each region, whose images coincide. Using these disks, we per-
form a vertical surgery whose effect is to add the desired edge to the original graph. Repeating this procedure realizes
the graph, with all weights zero since all the regions constructed are planar. We may now realize an arbitrary set of
weights without altering the graph, since the genus of any given region may be increased by one (without altering the
graph or the genus of the remaining regions) by means of connected sum with the stable map of the torus described
above, Fig. 6. By a suitable sequence of such connected sums, any set of weights may be realized without altering the
graph. �
5. Calculation of branch set invariants via surgery

There are three obvious topological invariants of the branch set: μ (the number of singular curves), C (the number
of cusps) and D (the number of double points). In [14] another invariant, BL(f ), was defined for stable maps f in
terms of the self-linking of a certain Legendrian link associated to the branch set. The invariant BL is local in that it is
characterized (up to an additive constant cM ) by its behaviour at transitions. It is be convenient to set

F(f ) = BL(f ) − BL(f0),

where f0 is the standard projection of M (embedded in 3-space) into the plane. For a sum f ⊕ g, where the images
of f and g are separated by a line in the plane, one has (by [14])

BL(f ⊕ g) = BL(f ) + BL(g) − 2.

Clearly (f ⊕ g)0 = f0 ⊕ g0 so that F is additive, in other words

F(f ⊕ g) = F(f ) + F(g).

According to [14], �F = �D at a reverse tangency, �F = −�D at a direct tangency, �F = 1
2�C for both beaks and

lips transitions and �F = 0 for all other transitions. Recall that, since the space of maps into the plane is contractible,
any two stable maps f and g may be joined by a homotopy which is generic, in the sense that it does not pass
through any stratum of codimension two or more and meets the codimension one strata transversely (the intersections
corresponding to the transitions). The transitions (see Fig. 7) were classified by Rieger [15] and Chíncaro [5] (see
also [14]).

C and D are also local invariants whose jumps at transitions (i.e. �C and �D) are easily calculated. On the other
hand, μ is not local since its jump at a transition depends not only on the transition in question but also on the rest of
the map. Clearly, any surgery leaves C and D unaltered and its effect on μ is easily calculated. Its effect on F is more
subtle and depends on the position of the bridge.

Lemma 5.1. If f ⊕g is a horizontal sum of f and g where the bridge (apart from its endpoints) lies in the unbounded
component of the complement of the branch set of f ∪ g then

F(f ⊕ g) = F(f ∪ g).
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Fig. 7. Local transitions of codimension one.

Proof. By the hypothesis on the bridge, there is a (translation) homotopy gt between g and h (say) where the images
of h and f are separated by a line in the plane, together with a family of bridges βt for f ∪gt . Thus there is a homotopy
between f ⊕ g and f ⊕ h where the transitions occur at points away from the connecting tube. Consequently

F(f ⊕ h) − F(f ⊕ g) = F(f ∪ h) − F(f ∪ g).

Since F(f ⊕ h) = F(f ∪ h), the lemma follows. �
More generally, one has
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Theorem 5.2. Let W(f ∪ g) be the sum of the winding numbers of the branch curves of f ∪ g (oriented by the usual
convention) relative to any point in the interior of the bridge. Then

F(f ⊕ g) = F(f ∪ g) − 4W(f ∪ g).

Proof. As in Fig. 8, the bridge β may be pulled into the unbounded component of B(f ∪ g) by a homotopy
ft ∪ gt , thus obtaining a second bridge (γ ) between f1 and g1. During this homotopy the only transitions are
d direct and r reverse tangencies. Thus F(f1 ∪ g1) − F(f ∪ g) = 4(r − d). From the orientation convention it
follows that W(f ∪ g) = d − r . Now F(f1 ⊕ g1) − F(f ⊕ g) = 0 because there are as many direct as indirect
tangencies during the homotopy between f ⊕ g and f1 ⊕ g1. By Lemma 5.1, F(f1 ∪ g1) = F(f1 ⊕ g1). Thus
F(f ⊕ g) = F(f ∪ g) − 4W(f ∪ g). �

Figs. 9 and 10 illustrate how to calculate the increments in the invariants via homotopy and surgery, in particular
the increment of F .

The possible branch sets for stable maps of the sphere for which μ � 3, D � 4 and C = 0 where determined
in [9]. Fig. 11 shows how to obtain all such maps with μ = 1 as horizontal sums of stable maps of the sphere without
cusps. In the figure, dotted lines indicate bridges. The invariant F on each one of these maps is easily calculated using
Theorem 5.2.

Fig. 8. Moving the bridge.

Fig. 9. Transition in the torus.

Fig. 10. Surgery on a map.
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Fig. 11. Branch sets for stable maps on the sphere with μ = 1.

6. Planar fold maps

More delicate is the question of characterizing those graphs which are graphs of fold maps (i.e. stable maps without
cusps). In the spherical case there is a necessary and sufficient condition [9] a weighted tree is the graph of a fold
map of the sphere if and only if it is balanced and all of its weights are zero. Recall that a bipartite graph is said to be
balanced if it has the same number of positive and negative vertices.

We say that a stable map is planar if all regions in the complement of the singular set are planar; see Fig. 12. In
other words, the vertices of the graph all have weight zero. As the figure shows, the graph of a planar map need not,
of course, be planar.

The result above on weighted trees extends easily to more general graphs:

Theorem 6.1. A weighted graph is the graph of a planar fold map if and only if it is balanced and all of its weights
are zero.

Proof. The Euler number of the positive half of the surface may be written as follows

χ+ = ΣχR = Σ(2 − μv) = 2V + − μ,

where the sum is over positive vertices v and μv denotes the number of edges containing v. Similarly for χ−. But, for
any fold map, χ+ = χ− [9] from which it follows that V + and V −, the numbers of positive and negative vertices, are
equal.

Conversely, from a balanced graph all of whose weights are zero one may obtain a balanced tree by removal of
appropriate edges. This tree may be realized by a fold map of the sphere [9] and the remaining edges realized by

Fig. 12. Examples of planar fold maps.
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Fig. 13. Branch sets for planar fold maps of the torus.

Fig. 14. Branch sets with cusps.

performing vertical surgeries on this map, as before. Since the vertical surgeries do not introduce any cusps, the
resulting map continues to be a (planar) fold map. �
Lemma 6.2. For any planar fold map of a connected, genus g surface, μ + g is odd and D is even.

Proof. First, observe that, for balanced graphs, V is even, since V = V + + V − = 2V +. For any planar map of a
connected surface, a simple Euler characteristic calculation yields g = μ − V + 1. Thus μ + g is odd. As for D, one
has, by [8], that, for any stable map of a connected surface,

μ + C

2
+ D = (1 + g) mod 2.

For fold maps, C = 0 so that D is even. �
Theorem 6.3. The table in Fig. 13 lists all possible pairs of graphs and branch sets of planar fold maps from the torus
to the plane with μ = 2 and D � 4.

Proof. For any planar fold map of the torus with μ = 2, the two singular curves separate the torus into two annuli.
One now lists all possible branch sets consisting of two curves (both chosen from Arnol’d’s list, [3,4]) with D � 4.
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The sum of the Whitney indices of the two branch curves is necessarily equal to the Euler characteristic (i.e. zero) and
Troyer’s condition for curves must be satisfied [12]. The possibilities are shown in Fig. 13. In fact, for each of these
branch sets, the required immersed annuli are easily found by inspection. �

If cusps are allowed, then Fig. 14 shows (possibly all) branch sets realizable by planar stable maps of the sphere
and the torus with μ � 2, C � 2 and D � 4.
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