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Abstract

The karyotype is a basic concept regarding the genome, fundamentally described by the

number and morphological features of all chromosomes. Chromosome class, centromeric

index, intra- and interchromosomal asymmetry index, and constriction localization are

important in clinical, systematic and evolutionary approaches. In spite of the advances in

karyotype characterization made over the last years, new data about the chromosomes can

be generated from quantitative methods, such as image cytometry. Therefore, using Zea

mays L., this study aimed to update the species’ karyotype by supplementing information on

chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry

and class as well as knob localization enabled describing the Z. mays karyotype. In addition,

applying image cytometry, DNA sizing was unprecedentedly measured for the arms and sat-

ellite of all chromosomes. This way, unambiguous identification of the chromosome pairs,

and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each

chromosome, their arms and satellite portions. These accurate, quantitative and reproduc-

ible data also enabled determining the distribution and variation of DNA content in each

chromosome. From this, a correlation between DNA amount and total chromosome length

evidenced that the mean DNA content of chromosome 9 was higher than that of chromo-

some 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights

into its dynamic genome with regards to the organization of the ten chromosomes and their

respective portions. Considering the results and the relevance of cytogenetics in the current

scenario of comparative sequencing and genomics, chromosomal DNA sizing should be

incorporated as an additional parameter for karyotype definition. Based on this study, it can

be affirmed that cytogenetic approaches go beyond the simple morphological description of

chromosomes.

Introduction

Since Chiarugi’s work in 1933 [1], plant karyograms have been assembled based on morpho-

logical features of all chromosomes in a particular complement–the karyotype. Some of these

features are commonly derived from the mitotic metaphase: chromosome shape, absolute/rela-

tive size of the chromosomes and their arms, and number and size of secondary constrictions.
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From these data, the centromeric index and chromosome class are determined [2,3], and the

intra- and interchromosomal asymmetry indices are measured [4].

Conventional chromosome analyses, which are based on morphometric data, are still widely

performed [5,6]. Via banding and in situ hybridization, specific chromosome segments as well as

the distribution and size of heterochromatin and euchromatin have been established, mainly in a

few crop species, facilitating the identification of homologous pairs and karyogram assembly [7,8].

Since the historical study of McClintock [9], the characterization of the Zea mays L., 1753,

(Poaceae) karyotype has progressed extensively [10–12]. Over nearly a century of research, Z.

mays has become one of the main plant species in several genetic approaches, due to its

intriguing and dynamic genome and crop relevance. Contributing for the significant progress

in karyotype understanding, Z. mays chromosomes have been identified and described via dis-

tinct techniques, such as morphometry [9,13], banding [14], fluorescent in situ hybridization

[5,15–17], flow karyotyping [18] and image cytometry (ICM) [19]. Knowledge about the kar-

yotype has contributed to taxonomic and systematic studies, and to understand the genome

evolution of Z. mays lines and hybrids [20]. In spite of the approaches conducted in Z. mays,
cytogenetic characterization of this species still presents divergences, especially regarding dif-

ferent cytogenetic classifications for the majority of its ten chromosomes [5,11,15–17,21–23].

In addition to these karyotype discrepancies, disparity in nuclear genome amount among

Z. mays lines have been reported, ranging from 4.62 to 6.29 pg [24,25]. This intraspecific

genome size variation possibly reflects karyotype divergences that may have accumulated in

different regions of the chromosomes [25,26]. These variations are primarily due to differences

in the heterochromatin amount, mainly in knobs [27,28]. Intraspecific DNA amount differ-

ences in this species have also been attributed to retrotransposon families, making up over

70% of its nuclear genome [10,29].

Regarding the need for new applications, even in the molecular cytogenetics era, the ICM

technique provides quantitative data about the nuclei [30] and chromosomes via DNA sizing

[31]. ICM is an accurate, quantitative and reproducible tool based on the analysis of digital

images, associating classical cytogenetics and image analysis [32]. The ICM application has

allowed to measure the DNA amount of nuclei (in fungi, human, animals and plants) and

chromosomes (in a few animal and plant species). Thereby, ICM data have been explored in

human clinical studies (mainly cancer diagnosis in distinct tissues) [33,34], for chromosome

characterization (in animal and plant species) [19,35], and for understanding the life cycle (in

fungi species) [36]. Considering only the chromosomal DNA amount data, ICM has been

applied to support investigations on the structure and evolution of chromosomes and genomes

through morphology and DNA amount [37,38]. Furthermore, ICM reveals small DNA

amount variations in plants with B chromosomes, which can thus be discriminated and indi-

vidualized in relation to A and other chromosomes [19].

Since the emergence of plant genomic sequencing projects and comparative mapping,

karyotype characterization by traditional techniques has become insufficient as input data.

Therefore, the aim of this study was to determine the DNA amount in the chromosomes, chro-

mosome arms and satellite of Z. mays. Based on the obtained results, we propose that chromo-

somal DNA content determination by ICM should be incorporated as an additional parameter

in karyotype characterization.

Materials and methods

Plant material

Seeds of commercial Z. mays ‘AL Bandeirante’ (allotment seed number 87/2014, category 52,

harvest 2014/2014, germination rate of 94.0%, 99.8% purity, certified on October 7, 2014) were
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germinated in Petri dish containing distilled water (dH2O) at 30˚C. The line ‘AL Bandeirante’

was preferred to other lines owing to its high seed germination rate and metaphase index from

its root meristems. Z. mays ‘CE-777’ seeds were kindly provided by Dr. Jaroslav Doležel

(Experimental Institute of Botany, Sokolovská, Czech Republic); leaves of this line were used

as internal standard in the flow cytometry (FCM) procedure.

Nuclear DNA sizing

Leaf fragments (2 cm2) from five individuals of ‘AL Bandeirante’ and ‘CE-777’ (2C = 5.57 pg;

[39]) were chopped [40] for 30 s in 0.5 mL of OTTO-I lysis buffer [41] supplemented with 2.0

mM dithiothreitol (Sigma1) and 50 μg mL-1 RNAse (Sigma1), pH 2.3. To each nuclei suspen-

sion were added 0.5 mL of OTTO-I lysis buffer, and the homogenate was filtered through 30-

μm nylon filter (Partec1) into 2.0-mL microcentrifuge tubes. The tubes were centrifuged

(ALC1 MicroCentrifugette1 4214) at 100 ×g for 5 min, the supernatant was poured out, and

the pellet resuspended and incubated for 5 min in 100 μL of OTTO-I lysis buffer. The suspen-

sions were stained for 20 min with 1.5 mL OTTO-II solution [41] supplemented with 75 μM

propidium iodide (PI, Sigma1), 2.0 mM dithiothreitol (Sigma1) and 50 μg mL-1 RNAse,

pH = 7.8 [39]. After filtration through 20-μm nylon mesh (Partec1), the suspensions were ana-

lyzed in a Partec PAS1 flow cytometer (Partec1 GmbH, Munster, Germany) equipped with a

laser source (488 nm). Nuclei-emitted PI fluorescence was detected by a RG 610 nm band-pass

filter. Five independent repetitions were performed for each ‘AL Bandeirante’ individual, with

over 10,000 nuclei being analyzed each time. The nuclear 2C DNA value was calculated by

dividing the mean G0/G1 fluorescence peak channel of the standard ‘CE-777’ by that of ‘AL

Bandeirante’ (sample).

Cytogenetic preparations

‘AL Bandeirante’ roots of 1-cm length were incubated for 18 h in 0.20 g L-1 MS salts [42] and

1.75, 2.00 or 3.00 mM hydroxyurea (HU) (Sigma1), at 30˚C. The roots were washed in dH2O

for four times of 15 min at 30˚C, then treated with 2–3 μM amiprophos-methyl (APM, Nihon

Bayer Agrochem K. K.1) for a period of 1–6 h, at 30˚C. Next, the roots were fixed three times

in solution of methanol and acetic acid 3:1 (v/v) (Merck1) for 24 h, followed by three times in

95% ethanol, and stored at -20˚C [43].

After washing three times in dH2O for a total of 30 min, the roots were macerated in

enzyme pool (4% cellulase + 0.4% hemicellulase + 1% pectolyase diluted in pectinase solution,

Sigma1) diluted in dH2O in the proportion 1:8 (enzyme: water). The maceration procedure

was performed for 2 h at 35˚C. The enzymatic solution was replaced by dH2O, the roots were

fixed twice in 95% ethanol and stored at -20˚C. The slides were prepared using cell dissociation

and air-drying technique [43].

Differential DAPI staining

Some slides, previously chosen based on metaphase number, were treated with 70% formam-

ide/SSC 2X, pH 7.0, at 72˚C for 3 min. Next, the slides were exposed to 70%, 85% and 100%

ethanol for 5 min each at -20˚C. The slides were stained using 5 μM 6-diamidino-2-phenylin-

dole (DAPI) for 5 min, then washed in phosphate buffer saline (PBS) for 3 min. The slides

were analyzed under a trinocular epifluorescence microscope OlympusTM BX-60 equipped

with WU filter. The images were visualized using an UPlanFI objective with magnification

×100 and 1.4 numeric aperture, and captured using a digital video camera (Olympus1 DP71)

of 12.5 megapixels and 12-bit color that displays the native CCD’s full-resolution live image at

15 frames per second.
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Chromosomal DNA sizing

For the Feulgen procedure, other slides, also selected based on metaphase number, were

immediately placed into 17:5:1 solution of methanol: 37% formaldehyde: acetic acid (Merck1)

for 12 h at 25˚C, washed in dH2O for 10 min, air-dried, and hydrolyzed in 5 M HCl (Merck1)

for 16–20 min at 25˚C [43]. After the hydrolysis step, the slides were again washed in dH2O

for 10 min and air-dried, then stained with Schiff’s reagent (5 g of basic fuchsine, Merck1; 15

mL of 1 M HCl; 2.23 g of K2S2O5; 0.703 g of active charcoal, Synth; and 85 mL of dH2O; [44])

for 12 h at 4˚C. Finally, the slides were washed for three times of 3 min in 0.5% SO2-water

(Merck1) and in dH2O.

The setup for ICM analysis and the calibration for microscope procedures were performed

according to Carvalho et al. [43]. Briefly, a standard stage micrometer slide (1,000 μm, Olym-

pusTM) for the area (spatial) parameter, a neutral density filter (ND6) plus 0.15, 0.30, 0.40,

0.60, 0.90 and 2.50-calibrated density filters for the optical density (OD) parameter, and a lin-

ear 11-stepped density filter (Edmund Industrial Optics1, Barrington, NJ, USA) for the linear-

ity test were used. The stability [45,46], linearity [43–45,47] and uniformity tests [46,48] were

employed to evaluate the setup and calibrations.

Metaphase images were captured using a 12-bit CCD digital video camera (Olympus1

DP71) coupled to a trinocular photomicroscope OlympusTM BX-60, equipped with stabilized

light source, UPlanFI objective with magnification ×100 and 1.4 numeric aperture, aplanat

achromat condenser with 1.4 aperture, neutral density filter (ND6) and interference green

color filter (IF 550–570 nm).

Chromosomes of 51 metaphases were digitally segmented using the Image Pro-Plus1 6.1

analysis system (Media Cybernetics1). The morphometric data (total length, length of the

long and short arms) were used for chromosome class determination according to Levan et al.

[2], revised by Guerra [3]. The chromosome ICM was performed using the data on morphom-

etry, area and OD. The integral optical density (IOD) data were automatically measured for

each chromosome [43]. The DNA amount of each Z. mays chromosome was proportionally

determined by distributing the nuclear DNA amount (from FCM) by the mean IOD value

(from ICM) of each of the 102 sampled chromosomes, chromosome arm and satellite portion.

The values were estimated according to the formulas proposed by Carvalho et al. [43]:

I : 2Cn ¼
P

2Cn
r

� �

II : IODc ¼ ð
P

IODpc x nÞ=2

III : IODt ¼
P

IODc

IV : 2Cc ¼ ð2Cn x IODcÞ=IODt

where 2Cn = nuclear 2C value (pg), r = number of FCM repetitions, IODc = 2C IOD value,

IODpc = chromosomal 2C IOD value, n = number of metaphases, IODt = IOD value of all

chromosomes, and 2Cc = chromosomal 2C DNA amount.

The DNA amount of each chromosome arm and of the satellite portion was measured by

the equations:

I : 2Cn ¼
P

2Cn
r

� �
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II : IODb ¼ ð
P

IODbc x nÞ=2

III : IODt ¼
P

IODc

IV : 2Cb ¼ ð1Cn x IODbÞ=IODt

where 2Cn = nuclear 2C value (pg), r = number of FCM repetitions, IODb = 2C IOD value of

the chromosome arm, IODbc = 2C IOD value of the chromosome short arm, n = number of

metaphases, IODt = IOD value of all chromosome, and 2Cb = 2C DNA amount of the chromo-

some arm or satellite portion.

The mean value of chromosomal 2C amount was converted to 1C to be made comparable

to values reported by other studies [18, 19] and genomic sequencing (http://ensembl.gramene.

org/Zea_mays/Location/Genome?r=1:8001-18000). In order to enhance the reproducibility,

the ICM protocol for chromosomal DNA sizing was deposited in protocols.io. The same pro-

tocol can be adapted for other species and for nuclear DNA sizing.

Results

Nuclear DNA sizing

Z. mays ‘AL Bandeirante’ showed mean 2C = 6.10 ± 0.044 pg, corresponding to

2C = 5.96 × 109 bp. Considering the high resolution of the G0/G1 peaks, revealed by coeffi-

cients of variation (CV) between 3.00% and 4.10%, the 2C nuclear DNA amount of ‘AL Ban-

deirante’ is 0.53 pg (9.52%) larger than that of ‘CE-777’. Therefore, FCM evidenced an

intraspecific variation between the two Z. mays lines (Fig 1A).

Fig 1. Representative histogram and karyogram of Z. mays. (A) Representative histogram from FCM measurement of the nuclear DNA amount of Z. mays
‘AL Bandeirante’ from suspensions stained with propidium iodide. Channel 200 shows the G0/G1 peak of ‘CE-777’ (internal standard), 2C = 5.57 pg and

CV = 3.20%, and channel 219 the G0/G1 peak of sample ‘AL Bandeirante’, 2C = 6.10 pg and CV = 3.80%. (B) Representative karyogram of Z. mays.
Prometaphase obtained from root meristem treated with 1.75 mM HU for 18 h and 3 μM APM for 4 h, followed by Feulgen reaction. The further preparations

display stoichiometrically stained chromosomes with well-defined telomeric, centromeric and secondary constriction portions, which are prerequisites for

morphometric characterization and determination of area, OD and IOD. Bar = 10 μm. (C) Ideogram assembled based on chromosome morphometry. Relative

arm length and arm ratio are respectively shown to the right of the chromosome representation. Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0190428.g001
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Cytogenetic preparations

The cell cycle was reversibly inhibited in S phase by the root treatment with 1.75 mM HU for

18 h. From these roots, several metaphases were obtained using 3 μM APM for 4 h. Prelimi-

nary tests revealed a metaphase index of 0.80% in untreated root meristems, which is very infe-

rior in relation to meristems exposed to HU (47%) and HU followed by APM (61%).

Fixation, enzymatic root maceration and slide preparation were also crucial. These proce-

dures provided cytoplasm-free metaphases with morphologically preserved and isolated chro-

mosomes exhibiting well-defined telomere and primary and secondary constrictions. These

features were fundamental to establish the chromosome morphometry, area and OD values,

and to assemble the 51 karyograms (Fig 1B) and one representative ideogram (Fig 1C).

Differential DAPI staining

Higher fluorescence intensity of DAPI was verified in knobs located in interstitial chromo-

some portions of the long arms of chromosomes 2–9. Thus, the differential DAPI staining also

facilitated the identification of chromosome pairs and karyogram assembly (S1 Fig).

Chromosomal DNA sizing

The chromosomes were stoichiometrically stained by Feulgen procedure including 5 M HCl for

18 min at 25˚C and Schiff’s reagent for 12 h at 4˚C (Fig 1B). The depurination step with HCl also

contributed to remove residual cytoplasmic background and to the staining by Schiff’s reaction

during the Feulgen procedure. As a result, the maize chromosomes presented well-defined telo-

meric portions as well as centromeric and secondary constrictions, which are prerequisites for the

unprecedented measurement of the OD (S2 Fig), area (S3 Fig) and, consequently, IOD (S4 Fig)

and chromosomal DNA amount (Table 1). All 51 karyograms showed 2n = 2x = 20 chromo-

somes, being two metacentric (1 and 5), eight submetacentric (2–4, 6–10), and one pair (6) exhib-

iting the nucleolar organizer region (NOR) in the terminal portion of the short arm (Fig 1C).

In the optical setup, the signal of OD mean values was considered stable after 12 min.

Hence, all metaphases were only captured after this time. All other setups for microscope cali-

bration and digital image analysis system were evaluated. The image analysis software calcu-

lated a R2 = 0.999 for the linearity test and a CV below 3.0% for the uniformity test. For the

first time, the area and OD values were thus measured for all chromosomes (total length, short

and long arms, satellite) of the 51 karyograms of a plant species.

Mean area values ranged from 9.478 μm2 (chromosome 1) to 4.652 μm2 (chromosome 10).

Chromosome 9 had a mean area (6.672 μm2) greater than that of chromosome 8 (6.342 μm2).

Mean values of OD varied from 1.127 (chromosome 1) to 1.112 (chromosome 5), with the

mean values for chromosomes 4 and 5 (1.112) being smaller than for chromosomes 6–10

(1.133 to 1.117). Chromosome 6 had a mean OD value (1.113) smaller than that of chromo-

some 7 (1.114), and the mean OD value for these chromosomes was smaller than for chromo-

somes 8–10 (1.117) (S2 and S3 Figs).

Based on area and OD values of each chromosome (total length, short and long arms, satel-

lite), the IOD value was automatically calculated (S2 and S4 Figs). This way, the mean DNA

amount could be determined for all chromosome portions based on the distribution of the

mean nuclear 2C value (FCM) of ‘AL Bandeirante’ in relation to the mean IOD values

(Table 1). Mean 2C values for the short chromosome arm ranged from 0.376 ± 0.027 pg for

chromosome 1 to 0.131 ± 0.008 pg for chromosome 10, whereas the 2C values for the long

chromosome arm ranged from 0.427 ± 0.017 pg for chromosome 1 to 0.255 ± 0.013 pg for

chromosome 10. The mean DNA amount of the satellite portion of chromosome 6 was

2C = 0.053 ± 0.009 pg. Standard deviations (± SD) regarding the DNA amount values varied
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from 0.008 to 0.040, being that the highest values were associated with the long arms of chro-

mosomes 2–9 (Table 1), which possess knobs (S1 Fig). Corroborating the OD and area data

(S2 and S3 Figs), the mean DNA amount of chromosome 9 (2C = 0.561 pg) was higher than

that of chromosome 8 (2C = 0.533 pg) (Table 1, Fig 2).

Mean values of the chromosomal 2C DNA amount were converted to 1C × 109 bp for com-

parability to other values. Differences were verified between the mean values (1C bp) reported

here and by Lee et al. [18], Rosado et al. [19], and genomic sequencing (http://ensembl.

gramene.org/Zea_mays/Location/Genome?r=1:8001-18000). The mean chromosomal DNA

amount of chromosome 1 (1C = 0.365 × 109 bp) reported by Lee et al. [18], which was mea-

sured using flow karyotyping, was 7.67% smaller than the value assigned to chromosome 1 in

this study (1C = 0.393 × 109). The DNA amount values for all chromosomes of Z. mays ‘Black

Mexican Sweet Corn’ obtained via ICM by Rosado et al. [19] were also lower than the mean

values found here, except for chromosome 10. The mean DNA amount values for the ‘AL Ban-

deirante’ chromosomes were also higher than those obtained via genomic sequencing (http://

ensembl.gramene.org/Zea_mays/Location/Genome?r=1:8001-18000), exhibiting 26.00%

(chromosome 10) to 74.52% more DNA (chromosome 9) (Table 1, Fig 2).

Discussion

Meticulous cytogenetic procedures provided a high rate of clear metaphases, exhibiting chro-

mosomes well spread on the slide, without cytoplasmic background or chromatin breakage.

Table 1. Mean 2C DNA value of each maize chromosome arm and satellite portions in pg (± standard deviation) and in 1C bp.

Chromosome Arm 2C DNA amount by chromosome arm (pg) 1C Value (bp × 109)a

1 S 0.376 ± 0.027 0.184

L 0.427 ± 0.017 0.209

2 S 0.269 ± 0.023 0.132

L 0.456 ± 0.030 0.223

3 S 0.237 ± 0.024 0.116

L 0.440 ± 0.040 0.215

4 S 0.239 ± 0.031 0.117

L 0.395 ± 0.040 0.193

5 S 0.271 ± 0.019 0.133

L 0.355 ± 0.020 0.174

6 SAT 0.053 ± 0.009 0.026

S 0.171 ± 0.021 0.084

L 0.366 ± 0.035 0.179

7 S 0.156 ± 0.023 0.076

L 0.408 ± 0.026 0.200

8 S 0.131 ± 0.013 0.064

L 0.402 ±0.030 0.197

9 S 0.215 ± 0.025 0.105

L 0.346 ± 0.028 0.169

10 S 0.131 ± 0.008 0.064

L 0.255 ± 0.013 0.125

Total 6.10 2.983

SAT–satellite; S–short arm; L–long arm.
aValues converted to bp, whereby 1 pg of DNA corresponds to 0.978 × 109 bp [49].

https://doi.org/10.1371/journal.pone.0190428.t001
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These cytogenetic aspects allowed the stoichiometric staining by DAPI and Schiff’s reaction,

being considered crucial for chromosome morphometry and DNA amount determination

[19,43]. The image analysis system, which was calibrated and evaluated according to medical

criteria [43,44,47], also resulted in accurate ICM parameters: area, OD and, thus, IOD. There-

fore, these steps were considered essential to obtain reliable, reproducible and quantitative

data for all chromosomes of the 51 metaphases.

Chromosomal DNA sizing promoted an update of the Z. mays karyotype, further allowing

to resolve the morphological similarity between chromosomes 2–4 and 7–9 [5]. This way, the

51 karyograms were assembled after identification and classification of all chromosome pairs

based on chromosome class (Fig 1B and 1C), DAPI fluorescence bands (S1 Fig), and especially

chromosomal DNA amount (Table 1, Fig 2). Attempts to resolve the Z. mays karyotype have

been made according to rules proposed by Chiaruhi [1] for karyogram assembly. However, con-

troversies regarding chromosome class have been reported, for instance: three metacentric (1, 2

and 5), six submetacentric (3, 4, 6, 7, 9 and 10) and one acrocentric (8) chromosome pair in

‘KYS’ [16] and ‘Black Mexican Sweet Corn’ [19]; six metacentric (1, 2, 3, 4, 5 and 9) and four

submetacentric pairs (6, 7, 8 and 10) in ‘Amarillo Chico’ [28]; and two metacentric (1 and 5)

and eight submetacentric pairs (2–4, 6–10) in the present study (Fig 1C). Thus, varying chromo-

some classes have been determined for Z. mays chromosomes 2, 3, 4, 8 and 9. In spite of changes

promoted by chromosome rearrangements [17], the polymorphism of the knobs has been

appointed as the main cause of the karyotype variation in Z. mays, affecting 5–20% of the chro-

mosome arm length [5]. Although interfering with chromosome structure, the quantitative

chromosomal DNA sizing, in association with the further parameters, allowed the unambigu-

ous identification of each chromosome pair, increasing the resolution for karyogram assembly.

The variations observed in the area, OD (S2 and S3 Figs) and DNA amount of the maize

chromosomes (Table 1) may be caused by knob polymorphism, which has been reported for

distinct lines [5,17,20]. This hypothesis is corroborated by the DNA amount of chromosome 9

being larger than that of chromosome 8 (Table 1, Fig 2), and the differential DAPI staining

evidencing a knob portion in the long arm of chromosome 9 (S1 Fig). Mondin et al. [17] dem-

onstrated that these divergences could be the result of different amounts of repetitive DNA.

Fig 2. Comparison between chromosomal 1C DNA amount (in bp) of the present study (ICM, Z. mays ‘AL

Bandeirante’; black square), sequencing data (Z. mays ‘B73’; red triangle) (http://ensembl.gramene.org/Zea_mays/

Location/Genome?r=1:8001-18000) and ICM data (Z. mays ‘Black Mexican Sweet Corn’; green circle) [19]. Note

that all values measured for ‘Black Mexican Sweet Corn’, except for chromosome 10 (1C = 0.234 × 109 bp), and by

sequencing were lower when compared to ‘AL Bandeirante’. Sequencing values ranged from 1C = 0.301 × 109 bp

(chromosome 1) to 1C = 0.150 × 109 bp (chromosome 10). Chromosomal DNA values for ‘AL Bandeirante’ ranged

from 1C = 0.393 × 109 bp (chromosome 1) to 1C = 0.188 × 109 bp (chromosome 10). Values converted to bp,

considering that 1 pg of DNA corresponds to 0.978 × 109 [49].

https://doi.org/10.1371/journal.pone.0190428.g002
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Comparing the chromosomal DNA amounts of ‘AL Bandeirante’ (2C = 6.10 pg) and ‘Black

Mexican Sweet Corn’ without B chromosomes (2C = 5.72 pg, [19]), significant differences

were found in the chromosomes displaying knobs. These portions were confirmed by differen-

tial DAPI fluorescence in the long arms of chromosomes 2–9 (S1 Fig). Besides, the highest

standard deviation values were obtained for the chromosomal DNA amount of long arms con-

taining knob portions (chromosomes 2–9, S1 Fig, Table 1). Regarding these, the data suggest

that the intraspecific variation in nuclear and chromosomal DNA amount was promoted by

differential heterochromatin amounts in knobs, as also suggested by previous studies [27,28].

The activity of retrotransposon families, which make up over 75% of the Z. mays genome

[10,50], is appointed as the main phenomenon that culminates in the DNA amount fluctua-

tions detected in this study. In Z. mays, retrotransposons are abundant in the knob regions

[51]. These regions have been observed in 34 distinct regions of Z. mays chromosomes, varying

in size and number among distinct lines [52]. Knobs behave as megatransposons, owing to the

presence of different types of retrotransposable elements, which may transpose the knobs from

one region to another [53]. Other factors, such as meiosis, also influence the polymorphism in

these regions by recombination [54].

The chromosome 1 of ‘AL Bandeirante’ showed 9.69% higher DNA amount (2C = 0.803

pg) compared to ‘Black Mexican Sweet Corn’ (2C = 0.732 pg) (Fig 2), supporting the nuclear

DNA amount of this line (2C = 6.10 pg) (Fig 1A). Differently from the other chromosomes (2–

9), the knob portion was not differentiated by DAPI staining in this chromosome (S1 Fig).

Knob portions have been reported in the arms of the maize chromosome 1, with the knob of

the short arm being found in more than 50% of the lines [22]. Considering this, the present

data reinforce the knob polymorphism in maize. Realini et al. [25] reported that other non-

coding, repetitive DNA sequences contribute for the genome size variation in Z. mays. Fur-

thermore, repetitive DNA sequences distributed throughout the genome are a major compo-

nent of eukaryotic genomes and may account for up to 90% of their size [55].

Besides updating the Z. mays karyotype, the present ICM data should be added to the

Maize Genetics and Genomics Database, evidencing the total complexity of the genome and

providing data for comparison to other species and lines. Here, the chromosomal DNA

amount was higher in all chromosomes compared to sequencing data (Fig 2). This result may

reflect an excessive DNA amount in ‘AL Bandeirante’ (Fig 1A) or an underestimation of the

bp number in sequencing. The genome of Z. mays has a high amount of repetitive DNA [10],

which is often not considered in the sequencing-based assembly [26]. As shown here, the

knowledge conferred by ICM on the genome complexity via resolution of chromosome arms

and satellite allowed verifying the variations in DNA amount among chromosomes.

The Z. mays karyotype has been studied since the work by McClintock [9], representing a

model in plant cytogenetics. As in other species, the hindrances related to cytogenetic procedures,

karyotype similarities and changes in Z. mays require a constant search for new applications to

characterize its chromosomes. Hence, in this work chromosomal DNA sizing resolved the Z.

mays karyotype, updating the description of all chromosomes and their respective portions: arms

of all chromosomes and satellite in chromosome 6. The same quantitative data, associated to clas-

sical cytogenetics and DAPI staining, allowed determining the genome size variation and its dis-

tribution in the chromosomes and their respective arms. Therefore, we hereby suggest that

chromosomal DNA sizing should be incorporated for karyotype description in plants.

Supporting information

S1 Fig. Karyogram showing positive DAPI regions, corresponding to the knobs located in

the long arms of chromosomes 2–9. The knobs were identified according to the cytological
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map of Z. mays chromosomes [22]. Note the secondary constriction in the short arm of chro-

mosome 6. Bar = 10 μm.

(TIF)

S2 Fig. Mean OD values of Z. mays chromosomes generated from 102 chromosomes (51

karyograms). The OD of the chromosomes ranged from 1.127 (chromosome 1) to 1.112

(chromosome 5). Note that the density of chromosomes 4 and 5 (1.112) is lower than that of

chromosomes 6–10 (1.133–1.117); the density of chromosome 6 (1.113) is lower than that of

chromosome 7 (1.114); and that the OD of chromosomes 6 and 7 is smaller than for chromo-

somes 8–10 (1.117).

(TIF)

S3 Fig. Mean values for area of each Z. mays chromosome, from measurement of 102 chro-

mosomes (51 karyograms). The median chromosome areas ranged from 9.478 (chromosome

1) to 4.652 μm2 (chromosome 10). Note that the area of chromosome 9 (6.672 μm2) is greater

in relation to chromosome 8 (6.342 μm2).

(TIF)

S4 Fig. Mean IOD values of Z. mays chromosomes measured from the ratio between area

and OD values. IOD values ranged from 10.679 (chromosome 1) to 5.196 (chromosome 10).

Note that the IOD of chromosome 9 (7.454) is higher than that of chromosome 8 (7.083).

(TIF)
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