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ABSTRACT. The aim of this study was to evaluate different methods used 
in genomic selection, and to verify those that select a higher proportion 
of individuals with superior genotypes. Thus, F2 populations of different 
sizes were simulated (100, 200, 500, and 1000 individuals) with 10 
replications each. These consisted of 10 linkage groups (LG) of 100 
cM each, containing 100 equally spaced markers per linkage group, of 
which 200 controlled the characteristics, defined as the 20 initials of each 
LG. Genetic and phenotypic values were simulated assuming binomial 
distribution of effects for each LG, and the absence of dominance. For 
phenotypic values, heritabilities of 20, 50, and 80% were considered. 
To compare methodologies, the analysis processing time, coefficient of 
coincidence (selection of 5, 10, and 20% of superior individuals), and 
Spearman correlation between true genetic values, and the genomic 
values predicted by each methodology were determined. Considering 
the processing time, the three methodologies were statistically different, 
rrBLUP was the fastest, and Bayesian LASSO was the slowest. Spearman 
correlation revealed that the rrBLUP and GBLUP methodologies were 
equivalent, and Bayesian LASSO provided the lowest correlation values. 
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Similar results were obtained in coincidence variables among the 
individuals selected, in which Bayesian LASSO differed statistically and 
presented a lower value than the other methodologies. Therefore, for the 
scenarios evaluated, rrBLUP is the best methodology for the selection of 
genetically superior individuals.
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INTRODUCTION

One of the most important stages of plant breeding is selection. In order to improve 
selection accuracy, different methods have been used, such as recurrent selection (Ordas et al., 
2012), combined selection (Bhering et al., 2013), and selection based on best linear unbiased 
prediction (BLUP) (Viana et al., 2011).

However, the biggest breakthrough in selection accuracy during plant breeding came with 
the advent of molecular markers (Heffner et al., 2009). The first technique used was marker assisted 
selection (MAS), which used data from molecular markers (Kumar et al., 2011) and microsatellites 
(Wang et al., 2011). This technique has been successfully used to select for monogenic or 
oligogenic characteristics; however, their use for quantitative characteristics is limited since this 
method cannot locate genes of lower effect (Xu and Crouch, 2008).

MAS has two main limitations: the mapping populations used for studies of quantitative 
trait loci (QTL) are not easily obtained, and the statistical methods used to identify QTLs are 
unsuitable for characteristics ruled by genes of low effect (Heffner et al., 2009). Thus, Meuwissen 
et al. (2001) proposed genomic selection methods using high-density markers, with no need for 
genetic maps. In addition, this uses appropriate statistical methods to identify genes of low effect. 
Genomic selection has attracted attention since the advent of single nucleotide polymorphism 
(SNP) markers, because SNPs are abundant in the genome (Gunderson et al., 2005).

The main aim of genomic selection is to estimate the genomic genetic value (GEBV) of the 
individual that was genotyped only, using data from a mapping population in which individuals were 
phenotyped and genotyped (Meuwissen et al., 2001). The training population is used to estimate 
the parameters of the model that will be used to estimate the GEBV of each individual in the 
validation population. GEBV values will be used to select the best individuals during the selection 
cycles. Thus, individuals with only genotypic information are selected (Heffner et al., 2009).

After the pioneering study of Meuwissen et al. (2001), several researchers began to 
evaluate different genomic selection techniques in bovine (Taylor et al., 2012), sheep (Van der Werf, 
2009), maize (Bernardo and Yu, 2007), wheat (Poland et al., 2012), and eucalyptus (Resende et al., 
2012). Many studies have also been carried out to compare the accuracy of prediction of genomic 
selection methods its (Muir, 2007; Zhong et al., 2009; Daetwyler et al., 2010). However, most 
studies have only focused on the following features: comparison between methods; a statistical 
approach involving each method; effects that will be estimated by the model; if the model will use 
only one variance for all markers; whether it will use one variance for each marker; or whether the 
Bayesian method will make the measurements more accurate. However, these lack information 
that would be more useful when methods for genetic improvement are used, such as the superior 
individuals selected by each method, and how each method is able to identify superior individuals 
within the population. Obtaining this information is as important as discussing the method, and 
should be the focus of applied studies.
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Therefore, the aim of this study was to evaluate different methods used in genomic 
selection, and to verify those that select a higher proportion of individuals with superior genotypes.

MATERIAL AND METHODS

Data simulation

To generate data, the simulation module of the GENES software was used (Cruz, 2013). 
Samples of 100, 200, 500, and 1000 individuals were generated with 10 linkage groups (LG) each. 
These population sizes are the most commonly used in breeding programs.

Genome simulation

A genome of 10 LG was simulated, which is similar to a diploid species 2n = 10, with a 100 
cM size, considering the existence of 100 molecular markers for the linkage group, equally spaced; 
thus, a total of 1000 molecular markers were considered.

Parental simulation

Contrasting homozygous parents were simulated for generating the F1 generation; thus, 
parent 1 (AA) was coded with 1 for all markers, and parent 2 (aa) was coded with 0, for all markers.

Simulation of the mapping population

For each population size, 10 replications were simulated. An F2 population was generated, 
and for that, each F1 individual produced 5000 gametes. There was random fecundation, which 
generated F2 individuals. This process was repeated until all individuals were formed and all replications 
were carried out. This population was coded 0, 1, and 2, with 0 corresponding to the homozygous 
recessive individuals (aa) for the locus, 1 for the heterozygous individual (Aa), and 2 for the dominant 
homozygous individuals (AA) for the considered locus.

Simulation of genomic selection population

Genotypic and phenotypic variables were simulated. The genotypic variables contain the 
actual genetic value of each individual. The phenotypic value was simulated considering three 
different heritabilities: 20, 50, and 80%. Of the 1000 markers previously simulated, 200 controlled 
the characteristics, and the first 20 molecular markers in each LG were taken into account. 
Therefore, at 10 LG, there were 200 loci.

The binomial distribution of effects for each characteristic in each LG was used. The additive 
gene action of all loci was used, i.e., the dominance effect was considered null. To establish the 
phenotypic and genotypic values, these were added up to a constant equal of 100, thus preventing 
that any of the individuals for each of these variables presenting negative values for any variable.

Data analysis

After data were obtained, three methods of analysis were used: rrBLUP, GBLUP, and 
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Bayesian LASSO. We ran the Bayesian LASSO using Monte Karlo Markov Chain method (MCMC) 
with 10,000 iterations, burn-in of 1000 iterations, and thin of 20 iterations. To perform data analysis 
in each method, R package (R Development Core Team, 2012). BLR (Pérez et al., 2010), rrBLUP 
(Endelman, 2011), and MASS were used. We used a DELL 12th generation server, Intel Xeon E5-
26 processor 3.30 GHz, 64 GB RAM, and a 1024 GB hard drive.  

Evaluation of populations analyzed

The mapping process was performed after data were generated, starting by the 
segregation of individual loci. Chi-square tests were used (χ2), at 5% probability, to verify the result 
of segregation for each marker in the populations generated. In addition, the restoration of all LGs 
was verified, with size, distance, and marker order, to conclude whether the populations simulated 
were F2 and contained the desired simulation properties.

Analyses comparison

To compare the analyses, variance analysis was carried out, followed by the Tukey test at 
5% probability. The variables used were: processing time (in seconds), Spearman correlation, and 
the percentage of coincidence at 5, 10, and 20% of superior individuals of the simulated genetic 
values, and genetic genomic values were generated after the use of each method.

RESULTS 

All the tested scenarios contained 1000 markers, the size of the population and heritability 
were varied, and subsequent analyses were performed by different methods. To better visualize 
the simulated populations, Figures 1 and 2 show the dispersion of markers in the most divergent 
populations (sizes: 100 and 1000; and heritability: 20 and 80%).

Figure 1. Effect of each marker in populations of 100 (A) and 1000 (B) individuals; Variables evaluated: genotypic value 
(A1 and B1), phenotypic value with 20% heritability (A2 and B2), and phenotypic value with 80% heritability (A3 and B3).

Figure 2. Scatter plots of predicted genotypic value for populations of 100 (A) and 1000 (B) individuals. Variables 
evaluated: genotypic value (A1 and B1), phenotypic value with 20% heritability (A2 and B2), and phenotypic value 
with 80% heritability (A3 and B3).
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Figure 1 shows the dispersion of all markers and their effects, considering the variable 
constituted only by the simulated genetic value (A1 and B1), and A refers to the population of 100 
individuals, and B to the population of 1000 individuals. The effect of heritability in the simulated 
phenotypic variables is noted, and therefore A2 and A3 are the populations with 100 individuals 
with 20 and 80% heritability, respectively. As heritability increases (A3 and B3), the images become 
closer to that simulated with the genetic value only (A1 and B1).

Figure 2 shows the dispersion of predicted genotypic and phenotypic values. The observed 
and predicted genotypic values are the same and form a perfect line, with no outlying points; 
thus, the correlation between the predicted value is 1 (A1 and B1). For phenotypic values, as the 
heritability increases, the environmental variation decreases, and therefore, the predicted value 
becomes increasingly close to the actual value, tending to form a line (A3 and B3). Figure 2 shows 
that increasing the population interferes with the continuity of the sampled points.

Genetic maps were generated for all populations in order to evaluate the quality of 
simulated data. Starting with the segregation analysis of individual loci, chi-square tests (χ2) were 
applied to check the segregation ratio of all populations generated. There was no segregation 
distortion, i.e., all markers typically segregate as a codominant F2 (1:2:1). All linkage groups were 
restored according to the parameters used, both in terms of the total size (100 cM), the main 
distance between markers, and the order of the markers that constitute the linkage group; thus, it 
was concluded that the simulated population had characteristics of an F2 population, and would 
be appropriate for use in this study. Therefore, it was important to carry out the aforementioned 
analyses to ensure that an F2 population was being used, and from this, it is possible to infer 
the genetic parameters set by Falconer and Mackay (1996) for this type of population, such as 
genetic, phenotypic, and environmental variance, all of which are estimated by RRBLUP, GBLUP, 
and Bayesian LASSO methods, and then used for to calculate heritability.

From the heritability, it was possible to estimate the selection gain, select the best 
individuals, and then calculate the Spearman correlation and the coincidence. Analysis of 
processing time, Spearman correlation, and coincidence between the individuals selected based on 
phenotypic value and genotipic breeding value for different percentege of the individuals selected 
(5, 10, and 20%) was carried out using the analysis of variance for balanced data, followed by a 
5% probability test. The analysis time differed significantly according to the population size and 
analysis method used, with rrBLUP having the shortest processing time, and Bayesian LASSO 
having the longest processing time (Table 1).

Table 1. Time taken for each analysis in seconds, considering populations of different sizes (100, 200, 500, and 
1000 individuals) and different methods [Bayesian LASSO (BLASSO), GBLUP, and RRBLUP].

Methods                                                   Population size

 100 200 500 1000

BLASSO 39.57a 43.51a 57.59a 70.08a

GBLUP   4.33b   4.55b   5.95b 12.22b

RRBLUP   0.29c   0.51c   1.67c   6.55c

*Means followed by different letters differ statistically at 5% probability by the Tukey test.

Spearman correlation is a nonparametric correlation that measures the variation of the 
materials ranking. It is extremely important that it is as high as possible, since this would allow the 
methods to select the genetically superior individuals, and to maintain their order. For this variable, 
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the methods showed significant differences at heritabilities of 20 and 50%, and Bayesian LASSO 
presented the worst Spearman correlation (Table 2). At a heritability of 80%, the three methods 
were equivalent; however, numerically, Bayesian LASSO had the worst values (Table 2).

Table 2. Spearman correlation between breeding values and genomic values, considering different heritability 
(20, 50, and 80%) and methods [Bayesian LASSO (BLASSO), GBLUP, RRBLUP].

Methods  Herytability

 20% 50% 80%

BLASSO 0.59b 0.78b 0.92a

GBLUP 0.80a 0.87a 0.95a

RRBLUP 0.80a 0.90a 0.95a

Means followed by different letters differ statistically at 5% probability by the Tukey test.

Considering the different population sizes, the results of the Spearman correlation did 
not differ statistically between the methods. However, Bayesian LASSO continued to provide the 
lowest values for this variable, which is not desirable for breeding, while the RRBLUP method 
presented higher values for all population sizes evaluated (Table 3).

Table 3. Spearman correlation between genetic and genomic values, considering different population sizes (100, 
200, 500, and 1000 individuals) and methods [Bayesian LASSO (BLASSO), GBLUP, RRBLUP].

Methods                                                          Population size

 100 200 500 1000

BLASSO 0.67a 0.71a 0.80a 0.82a

GBLUP 0.79a 0.86a 0.88a 0.94a

RRBLUP 0.79a 0.86a 0.91a 0.94a

Means followed by different letters differ statistically at 5% probability by the Tukey test.

The percent coincidence (5, 10, and 20%) of superior individuals is important for breeding 
since, if selection of phenotypically superior individuals is carried out, it is desirable that they are 
genetically superior. Therefore, this provides key information of which method would be more useful 
for selection in breeding programs. For 200, 500, and 1000 individuals for a selection intensity of 
5% of the superior individuals, Bayesian LASSO differed statistically from the other methods, and 
provided the lowest coincidence value between genetic and genomic genetic values predicted. 
For the other combinations of population size and percent coincidence, there were no statistical 
differences between the methods; however, Bayesian LASSO provided numerically lower values 
for this variable under all situations evaluated (Table 4).

On the other hand, when we compared the methods for each percentage of superior 
individuals selected and heritability was observed that Bayesian LASSO was statistically lower 
than RRBLUP and GBLUP, except when the heritability was 80% and the selection of the 5% 
superior individuals where do not have statistic difference between methods (Table 5).
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Table 4. Percent coincidence between genetic values and genomic values, considering the percentage of superior 
individuals (5, 10, and 20%), different population sizes (100, 200, 500, and 1000 individuals), and methods 
[Bayesian LASSO (BLASSO), GBLUP, RRBLUP].

      Population size/coincidence %

  100   200     500   1000 

 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

BLASSO 47.5a 46.66a 57.91a 45.0b 53.54a 60.10a 58.3b 58.75a 67.25a 53.8b 58.79a 68.39a

GBLUP 55.0a 61.25a 67.50a   64.58a 69.58a 71.14a 76.3a 71.75a 78.83a 80.6a 75.79a 79.43a

RRBLUP 56.6a 61.25a 67.50a 64.5a 69.58a 71.14a 76.3a 71.75a 78.87a 80.6a 75.62a 79.39a

Means followed by different letters statistically differ at 5% probability by the Tukey test.

Table 5. Percent coincidence between genetic and genomic values, considering the percentage of superior 
individuals (5, 10, and 20%), different heritabilities (20, 50, and 80%) and methods [Bayesian LASSO (BLASSO), 
GBLUP, RRBLUP].

     Populations size/coincidence % 

  20%   50%   80% 

 5% 10% 20% 5% 10% 20% 5% 10% 20%

LASSO 29.41b 36.87b 49.77b 50.66b 55.12b 66.02b 79.58a 72.20b 77.77b

GBLUP 54.50a 57.70a 65.81a 71.25a 71.29a 77.43a 86.25a 79.79a 82.52a

RRBLUP 54.50a 57.50a 65.81a 72.91a 71.37a 77.39a 86.25a 79.75a 82.56a

Means followed by different letters statistically differ at 5% probability by the Tukey test.

DISCUSSION

The analysis time differed significantly according to the population size and analysis 
method used, with rrBLUP having the shortest processing time, and Bayesian LASSO having the 
longest processing time (Table 1). This result was expected since the processing time of Bayesian 
methods, such as Bayesian LASSO, is related to the size of the Monte Carlo chain (MCMC) through 
the simulated Markov Chain (Meuwissen et al., 2001). Considering the processing time variable, 
the three methods did not differ between different heritabilities; thus, changing the heritability value 
did not change the efficiency of computer processing, and for this reason, the results are not 
shown. Pérez et al. (2010) showed that the Bayesian LASSO processing time was 11 s for 1000 
interactions, and the data file consists of 599 individuals and 1279 markers, and twice the time 
was spent on analyses using the Bayesian Ridge Regression method (BRR). The longer time 
spent by Bayesian LASSO is justified since the Gibbs sampler, used in the Bayesian method of 
this study, belongs to the MCMC class of methods. This method is used to obtain the marginal 
distribution a posteriori of the model parameters; however, it requires more computational time. On 
the other hand, methods based on frequent statistics, such as RRBLUP and GBLUP, require less 
computational time since they do not need interaction to converge.

The accuracy with which the genomic genetic values are predicted is limited by two main 
factors: the linkage disequilibrium between the markers and the QTL, which may be incomplete, and 
thus the marker does not explain all the variance of the QTL; and sampling error in the estimation 
of marker effects. These errors increase with environmental variance (Meuwissen et al., 2001). The 
first factor explains why no Spearman correlation was observed close to 100%. Since the number 
of markers was small, these markers could not be in linkage disequilibrium with the QTL. The 
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second limiting factor explains why Spearman correlation was lower at 20% heritability, since at this 
magnitude, environmental variance is greater than for the other heritabilities analyzed in this study.

The fact that the Spearman correlation calculated in Bayesian LASSO was lower than that 
calculated by other methods may be due to two reasons: the small number of markers and thus marker 
density used, and the fact that not all markers may have been in linkage disequilibrium with the QTL.

This affects Bayesian LASSO more than the other methods because, according to Rolf 
et al. (2010), even with the low number of markers, it is possible to estimate the G matrix used 
in GBLUP precisely, meaning that this method estimates the genomic genetic value with high 
accuracy, even when using small number of SNP markers. Another factor may be the use of a 
more informative priori. Once there was no previous knowledge of the hyperparameters used 
by Bayesian LASSO (λ), flat priori values were used. When using a flat priori, the estimates of 
genetic values are based only on the likelihood function, making the results of Bayesian methods 
(Bayesian LASSO) close to the results found by frequentist methods (RRBLUP and GBLUP) (De 
Los Campos et al., 2009).

According to Meuwissen et al. (2001), increasing the number of individuals analyzed, 
i.e., individuals genotyped and phenotyped, consequently increases the accuracy of the 
genomic selection method, and this occurs even when the number of individuals evaluated is 
already high. This was observed in the present study where the population of 1000 individuals 
had higher coincidence values when compared with the populations containing 100, 200, and 
500 individuals.

Simulation studies may help breeders in decision-making, once it is possible to define 
the real genetic value of individuals. Therefore, this study showed that despite the methodological 
and statistical point of view being more interesting, Bayesian LASSO may not be the best method 
recommended for selection, while faster methods, such as RRBLUP, may be able to assist in 
selection carried out in plant breeding programs, allowing the breeder to select the most superior 
individuals for recombination or further steps of a breeding program.

In conclusion, Bayesian LASSO had the lowest Spearman correlation values and 
percentage of coincidence in the selection of superior individuals; it presented even greater 
computational requirements for processing, and was therefore considered to be the worst method 
for selection in this study.

RRBLUP and GBLUP obtained similar Spearman correlation results and percentage of 
coincidence, and both are suitable for use in selection. 

Finally, RRBLUP had lower computational requirements for processing, and required 
less time for analysis; thus, this is the method that presented more satisfactory results in all of 
the variables.
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